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Abstract Reducing the dimensionality of the data has been a challenging
task in data mining and machine learning applications. In these applications,
the existence of irrelevant and redundant features negatively affects the effi-
ciency and effectiveness of different learning algorithms. Feature selection is
one of the dimension reduction techniques which has been used to allow a
better understanding of data and improve the performance of other learning
tasks. Although the selection of relevant features has been extensively studied
in supervised learning, feature selection with the absence of class labels is still
a challenging task. This paper proposes a novel method for unsupervised fea-
ture selection, which efficiently selects features in a greedy manner. The paper
first defines an effective criterion for unsupervised feature selection which mea-
sures the reconstruction error of the data matrix based on the selected subset
of features. The paper then presents a novel algorithm for greedily minimiz-
ing the reconstruction error based on the features selected so far. The greedy
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algorithm is based on an efficient recursive formula for calculating the recon-
struction error. Experiments on real data sets demonstrate the effectiveness
of the proposed algorithm in comparison to the state-of-the-art methods for
unsupervised feature selection.1

Keywords Feature selection · Greedy algorithms · Unsupervised learning

1 Introduction

Data instances are typically described by a huge number of features. Most of
these features are either redundant, or irrelevant to the data mining task at
hand. Having a large number of redundant and irrelevant features negatively
affects the performance of the underlying learning algorithms, and makes them
more computationally demanding. Therefore, reducing the dimensionality of
the data is a fundamental task for machine learning and data mining applica-
tions.

Throughout past years, two approaches have been proposed for dimension
reduction; feature selection, and feature extraction. Feature selection (also
known as variable selection or subset selection) searches for a relevant sub-
set of existing features [1][13], while feature extraction (also known as feature
transformation) learns a new set of features which combines existing features
[9][12]. These methods have been employed with both supervised and unsu-
pervised learning, where in the case of supervised learning class labels are used
to guide the selection or extraction of features.

Feature extraction methods produce a set of continuous vectors which rep-
resent data instances in the space of the extracted features. Accordingly, most
of these methods obtain unique solutions in polynomial time, which make
these methods more attractive in terms of computational complexity. On the
other hand, feature selection is a combinatorial optimization problem which
is NP-hard, and most feature selection methods depend on heuristics to ob-
tain a subset of relevant features in a manageable time. Nevertheless, feature
extraction methods usually produce features which are difficult to interpret,
and accordingly feature selection is more appealing in applications where un-
derstanding the meaning of features is crucial for data analysis.

Feature selection methods can be categorized into wrapper and filter meth-
ods. Wrapper methods wrap feature selection around the learning process and
search for features which enhance the performance of the learning task. Fil-
ter methods, on the other hand, analyze the intrinsic properties of the data,
and select highly-ranked features according to some criterion before doing the
learning task. Wrapper methods are computationally more complex than filter
methods as they depend on deploying the learning models many times until a
subset of relevant features are found.

This paper presents an effective filter method for unsupervised feature se-
lection. The method is based on a novel criterion for feature selection which

1 A preliminary version of this paper appeared as [10]
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measures the reconstruction error of the data matrix based on the subset of
selected features. The paper presents a novel recursive formula for calculating
the criterion function as well as an efficient greedy algorithm to select features.
The greedy algorithm selects at each iteration the most representative feature
among the remaining features, and then eliminates the effect of the selected
features from the data matrix. This step makes it less likely for the algorithm
to select features that are similar to previously selected features, which accord-
ingly reduces the redundancy between the selected features. In addition, the
use of the recursive criterion makes the algorithm computationally feasible and
memory efficient compared to the state of the art methods for unsupervised
feature selection.

The rest of this paper is organized as follows. Section 2 defines the notations
used throughout the paper. Section 3 discusses previous work on filter methods
for unsupervised feature selection. Section 4 presents the proposed feature
selection criterion. Section 5 presents a novel recursive formula for the feature
selection criterion. Section 6 proposes an effective greedy algorithm for feature
selection as well as memory and time efficient variants of the algorithm. Section
7 presents an empirical evaluation of the proposed method. Finally, Section 8
concludes the paper.

2 Notations

Throughout the paper, scalars, vectors, sets, and matrices are shown in small,
small bold italic, script, and capital letters, respectively. In addition, the fol-
lowing notations are used.
For a vector x ∈ Rp:

xi i-th element of x.
‖x‖ the Euclidean norm (`2-norm) of x.

For a matrix A ∈ Rp×q:
Aij (i, j)-th entry of A.
Ai: i-th row of A.
A:j j-th column of A.
AS: the sub-matrix of A which consists of the set S of rows.
A:S the sub-matrix of A which consists of the set S of columns.

Ã a low rank approximation of A.

ÃS a rank-k approximation of A based on the set S of columns,
where |S| = k.

‖A‖F the Frobenius norm of A: ‖A‖2F = Σi,jA
2
ij

3 Previous Work

Many filter methods for unsupervised feature selection depend on the Principal
Component Analysis (PCA) method [17] to search for the most representative
features. PCA is the best-known method for unsupervised feature extraction
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which finds directions with maximum variance in the feature space (namely
principal components). The principal components are also those directions
that achieve the minimum reconstruction error for the data matrix. Jolliffe [17]
suggests different algorithms to use PCA for unsupervised feature selection. In
these algorithms, features are first associated with principal components based
on the absolute value of their coefficients, and then features corresponding to
the first (or last) principal components are selected (or deleted). This can be
done once or recursively (i.e., by first selecting or deleting some features and
then recomputing the principal components based on the remaining features).
Similarly, sparse PCA [29], a variant of PCA which produces sparse princi-
pal components, can also be used for feature selection. This can be done by
selecting for each principal component the subset of features with non-zero
coefficients. However, Masaeli et al. [20] showed that these sparse coefficients
may be distributed across different features and accordingly are not always
useful for feature selection. Another iterative approach is suggested by Cui
and Dy [7], in which the feature that is most correlated with the first principal
component is selected, and then other features are projected onto the direction
orthogonal to that feature. These steps are repeated until the required number
of features are selected. Lu et al. [18] suggests a different PCA-based approach
which applies k-means clustering to the principal components, and then se-
lects the features that are close to clusters’ centroids. Boutsidis et al. [2][3]
propose a feature selection method that randomly samples features based on
probabilities calculated using the k-leading singular values of the data matrix.
In [3], random sampling is used to reduce the number of candidate features,
and then the required number of features is selected by applying a complex
subset selection algorithm on the reduced matrix. In [2], the authors derive
a theoretical guarantee for the error of the k-means clustering when features
are selected using random sampling. However, theoretical guarantees for other
clustering algorithms were not explored in this work. Recently, Masaeli et al.
[20] propose an algorithm called Convex Principal Feature Selection (CPFS).
CPFS formulates feature selection as a convex continuous optimization prob-
lem which minimizes the mean-squared-reconstruction error of the data matrix
(a PCA-like criterion) with sparsity constraints. This is a quadratic program-
ming problem with linear constraints, which was solved using a projected
quasi-Newton method.

Another category of unsupervised feature selection methods are based on
selecting features that preserve similarities between data instances. Most of
these methods first construct a k nearest neighbor graph between data in-
stances, and then select features that preserve the structure of that graph.
Examples for these methods include the Laplacian score (LS) [14] and the
spectral feature selection method (a.k.a., SPEC) [28]. The Laplacian score
(LS) [14] calculates a score for each feature based on the graph Laplacian and
degree matrices. This score quantifies how each feature preserves similarity
between data instances and their neighbors in the graph. Spectral feature se-
lection [28] extends this idea and presents a general framework for ranking
features on a k nearest neighbor graph.
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Some methods directly select features which preserve the cluster structure
of the data. The Q − α algorithm [26] measures the goodness of a subset of
features based on the clustering quality (namely cluster coherence) when data
is represented using only those features. The authors define a feature weight
vector, and propose an iterative algorithm that alternates between calculating
the cluster coherence based on current weight vector and estimating a new
weight vector that maximizes that coherence. This algorithm converges to a
local minimum of the cluster coherence and produces a sparse weight vector
that indicates which features should be selected. Recently, Cai et al. [4] propose
an algorithm called Multi-Cluster Feature Selection (MCFS) which selects a
subset of features such that the multi-cluster structure of the data is preserved.
To achieve that, the authors employ a method similar to spectral clustering
[23], which first constructs a k nearest neighbor graph over the data instances,
and then solves a generalized eigenproblem over the graph Laplacian and de-
gree matrices. After that, for each eigenvector, an L1-regularized regression
problem is solved to represent each eigenvector using a sparse combination
of features. Features are then assigned scores based on these coefficients and
highly scored features are selected. The authors show experimentally that the
MCFS algorithm outperforms Laplacian score (SC) and the Q− α algorithm.

Another well-known approach for unsupervised feature selection is the Fea-
ture Selection using Feature Similarity (FSFS) method suggested by Mitra et
al. [21]. The FSFS method groups features into clusters and then selects a
representative feature for each cluster. To group features, the algorithm starts
by calculating pairwise similarities between features, and then it constructs
a k nearest neighbor graph over the features. The algorithm then selects the
feature with the most compact neighborhood and removes all its neighbors.
This process is repeated on the remaining features until all features are either
selected or removed. The authors also suggested a new feature similarity mea-
sure, namely maximal information compression, which quantifies the minimum
amount of information loss when one feature is represented by the other.

3.1 Comparison to Previous Work

The greedy feature selection method proposed in this paper uses a PCA-like
criterion which minimizes the reconstruction error of the data matrix based on
the selected subset of features. In contrast to traditional PCA-based methods,
the proposed algorithm does not calculate the principal components, which is
computationally demanding. Unlike Laplacian score (LS) [14] and its exten-
sion [28], the greedy feature selection method does not depend on calculating
pairwise similarity between instances. It also does not calculate eigenvalue
decomposition over the similarity matrix as the Q − α algorithm [26] and
Multi-Cluster Feature Selection (MCFS) [4] do. The feature selection crite-
rion presented in this paper is similar to that of Convex Principal Feature
Selection (CPFS) [20] as both minimize the reconstruction error of the data
matrix. While the method presented here uses a greedy algorithm to minimize
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a discrete optimization problem, CPFS solves a quadratic programming prob-
lem with sparsity constraints. In addition, the number of features selected
by the CPFS depends on a regularization parameter λ which is difficult to
tune. Similar to the method proposed by Cui and Dy [7], the method pre-
sented in this paper removes the effect of each selected feature by projecting
other features to the direction orthogonal to that selected feature. However,
the method proposed by Cui and Dy is computationally very complex as it
requires the calculation of the first principal component for the whole matrix
after each iteration. The Feature Selection using Feature Similarity (FSFS)
[21] method employs a similar greedy approach which selects the most repre-
sentative feature, and then eliminates its neighbors in the feature similarity
graph. The FSFS method, however, depends on a computationally complex
measure for calculating similarity between features. As shown in Section 7,
experiments on real data sets show that the proposed algorithm outperforms
the Feature Selection using Feature Similarity (FSFS) method [21], Laplacian
score (SC) [14], and Multi-Cluster Feature Selection (MCFS) [4] when applied
with different clustering algorithms.

4 Feature Selection Criterion

This section defines a novel criterion for unsupervised feature selection. The
criterion measures the reconstruction error of data matrix based on the selected
subset of features. The goal of the proposed feature selection algorithm is to
select a subset of features that minimizes this reconstruction error.

Definition 1 (Unsupervised Feature Selection Criterion) Let A be an
m× n data matrix whose rows represent the set of data instances and whose
columns represent the set of features. The feature selection criterion is defined
as:

F (S) = ‖A− P (S)A‖2F
where S is the set of the indices of selected features, and P (S) is an m ×m
projection matrix which projects the columns of A onto the span of the set S
of columns.

The criterion F (S) represents the sum of squared errors between original
data matrix A and its rank-k approximation based on the selected set of
features (where k = |S|):

ÃS = P (S)A. (1)

The projection matrix P (S) can be calculated as:

P (S) = A:S
(
AT

:SA:S
)−1

AT
:S (2)

where A:S is the sub-matrix of A which consists of the columns corresponding
to S. It should be noted that if the subset of features S is known, the projection
matrix P (S) is the closed-form solution of the least-squares problem which
minimizes F (S).
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The goal of the feature selection algorithm presented in this paper is to
select a subset S of features such that F (S) is minimized.

Problem 1 (Unsupervised Feature Selection) Find a subset of features
L such that,

L = arg min
S

F (S) .

This is an NP-hard combinatorial optimization problem. In Section 5, a
recursive formula for the selection criterion is presented. This formula allows
the development of an efficient algorithm to greedily minimize F (S). The
greedy algorithm is presented in Section 6.

5 Recursive Selection Criterion

In this section, a recursive formula is derived for the feature selection criterion
presented in Section 4. This formula is based on a recursive formula for the
projection matrix P (S) which can be derived as follows.

Lemma 1 Given a set of features S. For any P ⊂ S,

P (S) = P (P) +R(R)

where R(R) is a projection matrix which projects the columns of E = A−P (P)A
onto the span of the subset R = S \ P of columns:

R(R) = E:R
(
ET

:RE:R
)−1

ET
:R.

Proof Define a matrix B = AT
:SA:S which represents the inner-product over

the columns of the sub-matrix A:S . The projection matrix P (S) can be written
as:

P (S) = A:SB
−1AT

:S (3)

Without loss of generality, the columns and rows of A:S and B in Eq. (3)
can be rearranged such that the first sets of rows and columns correspond to
P:

A:S =
[
A:P A:R

]
, B =

[
BPP BPR
BT
PR BRR

]
where BPP = AT

:PA:P , BPR = AT
:PA:R and BRR = AT

:RA:R.
Let BRR−BT

PRB
−1
PPBPR be the Schur complement [19] of BPP in B. Use

the block-wise inversion formula [19] of B−1 and substitute with A:S and B−1

in Eq. (3):

P (S) =
[
A:P A:R

] [B−1PP +B−1PPBPRS
−1BT

PRB
−1
PP −B

−1
PPBPRS

−1

−S−1BT
PRB

−1
PP S−1

] [
AT

:P
AT

:R

]
The right-hand side can be simplified to:

P (S) = A:PB
−1
PPA

T
:P +

(
A:R −A:PB

−1
PPBPR

)
S−1

(
AT

:R −BT
PRB

−1
PPA

T
:P
)

(4)
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The first term of Eq. (4) is the projection matrix which projects the
columns of A onto the span of the subset P of columns: P (P) = A:PB

−1
PPA

T
:P .

The second term can be simplified as follows. Let E be an m × n resid-
ual matrix which is calculated as: E = A − P (P)A. It can be shown that
E:R = A:R − A:PB

−1
PPBPR, and S = ET

:RE:R. Hence, the second term of Eq.
(4) is the projection matrix which projects the columns of E onto the span of
the subset R of columns:

R(R) = E:R
(
ET

:RE:R
)−1

ET
:R. (5)

This proves that P (S) can be written in terms of P (P) and R as: P (S) =
P (P) +R(R)

This means that projection matrix P (S) can be constructed in a recursive
manner by first calculating the projection matrix which projects the columns
of A onto the span of the subset P of columns, and then calculating the
projection matrix which projects the columns of the residual matrix onto the
span of the remaining columns. Based on this lemma, a recursive formula can
be developed for ÃS .

Corollary 1 Given a matrix A and a subset of columns S. For any P ⊂ S,

ÃS = ÃP + ẼR

where E = A− P (P)A, and ẼR is the low-rank approximation of E based on
the subset R = S \ P of columns.

Proof Using Lemma (1), and substituting with P (S) in Eq. (1) gives:

ÃS = P (P)A+ E:R
(
ET

:RE:R
)−1

ET
:RA (6)

The first term is the low-rank approximation of A based on P: ÃP = P (P)A.
The second term is equal to ẼR as ET

:RA = ET
:RE. To prove that, multiplying

ET
:R by E = A− P (P)A gives:

ET
:RE = ET

:RA− ET
:RP

(P)A.

Using E:R = A:R − P (P)A:R, the expression ET
:RP

(P) can be written as:

ET
:RP

(P) = AT
:RP

(P) −AT
:RP

(P)P (P).

This is equal to 0 as P (P)P (P) = P (P) (A property of projection matrices).
This means that ET

:RA = ET
:RE. Substituting ET

:RA with ET
:RE in Eq. (6)

proves the corollary.
Based on Corollary (1), a recursive formula for the feature selection crite-

rion can be developed as follows.

Theorem 1 Given a set of features S. For any P ⊂ S,

F (S) = F (P)− ‖ẼR‖2F
where E = A− P (P)A, and ẼR is the low-rank approximation of E based on
the subset R = S \ P of columns.
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Proof Substituting with P (S) in Eq. (1) gives:

F (S) = ‖A− ÃS‖2F = ‖A− ÃP − ẼR‖2F = ‖E − ẼR‖2F

Using the relation between the Frobenius norm and the trace function2, the
right-hand side can be expressed as:

‖E − ẼR‖2F = trace

((
E − Ẽ(R)

)T (
E − ẼR

))
= trace(ETE − 2ET ẼR + ẼT

RẼR)

As R(R)R(R) = R(R), the expression ẼT
RẼR can be written as:

ẼT
RẼR = ETR(R)R(R)E = ETR(R)E = ET ẼR

This means that: F (S) = ‖E − ẼR‖2F = trace(ETE − ẼRẼR) = ‖E‖2F −
‖ẼR‖2F . Replacing ‖E‖2F with F (P) proves the theorem.

The term ‖ẼR‖2F represents the decrease in reconstruction error achieved
by adding the subset R of features to P. In the following section, a novel
greedy heuristic is presented to optimize the feature selection criterion based
on this recursive formula.

6 Greedy Selection Algorithm

This section presents an efficient greedy algorithm to optimize the feature se-
lection criterion presented in Section 4. The algorithm selects at each iteration
one feature such that the reconstruction error for the new set of features is
minimum. This problem can be formulated as follows.

Problem 2 At iteration t, find feature l such that,

l = arg min
i

F (S ∪ {i}) (7)

where S is the set of features selected during the first t− 1 iterations.

A näıve implementation of the greedy algorithm is to calculate the recon-
struction error for each candidate feature, and then select the feature with the
smallest error. This implementation is however computationally very complex
as it requires O(m2n2) floating-point operations per iteration. A more efficient
approach is to use the recursive formula for calculating the reconstruction er-
ror. Using Theorem 1,

F (S ∪ {i}) = F (S)− ‖Ẽ{i}‖2F ,

where E = A − ÃS . Since F (S) is a constant for all candidate features, an
equivalent criterion is:

l = arg max
i

‖Ẽ{i}‖2F (8)

2 ‖A‖2F = trace(ATA)
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This formulation selects the feature l which achieves the maximum decrease

in reconstruction error. The new objective function
∥∥∥Ẽ{i}∥∥∥2

F
can be simplified

as follows: ∥∥∥Ẽ{i}∥∥∥2
F

= trace
(
ẼT
{i}Ẽ{i}

)
= trace

(
ETR({i})E

)
= trace

(
ETE:i

(
ET

:iE:i

)−1
ET

:iE
)

=
1

ET
:iE:i

trace
(
ETE:iE

T
:iE
)

=

∥∥ETE:i

∥∥2
ET

:iE:i
.

This defines the following equivalent problem.

Problem 3 (Greedy Feature Selection) At iteration t, find feature l such
that,

l = arg max
i

∥∥ETE:i

∥∥2
ET

:iE:i
(9)

where E = A− ÃS , and S is the set of features selected during the first t− 1
iterations.

The computational complexity of this selection criterion is O
(
n2m

)
per

iteration, and it requires O (nm) memory to store the residual of the whole
matrix, E, after each iteration. In the rest of this section, two novel techniques
are proposed to reduce the memory and time requirements of this selection
criterion.

6.1 Memory-Efficient Criterion

This section proposes a memory-efficient algorithm to calculate the feature
selection criterion without explicitly calculating and storing the residual ma-
trix E at each iteration. The algorithm is based on a recursive formula for
calculating the residual matrix E.

Let S(t) denote the set of features selected during the first t− 1 iterations,
E(t) denote the residual matrix at the start of the t-th iteration (i.e., E(t) =
A− ÃS(t)), and l(t) be the feature selected at iteration t. The following lemma
gives a recursive formula for residual matrix at the end of iteration t, E(t+1).

Lemma 2 E(t+1) can be calculated recursively as:

E(t+1) = (E − E:lE
T
:l

ET
:lE:l

E)(t).

Proof Using Corollary 1, ÃS∪{l} = ÃS + Ẽ{l}. Subtracting both sides from A,

and substituting A − ÃS∪{l} and A − ÃS with E(t+1) and E(t) respectively
gives:

E(t+1) = (E − Ẽ{l})(t)
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Using Eqs (1) and (2), Ẽ{l} can be expressed as
(
E:l(E

T
:lE:l)

−1ET
:l

)
E. Substi-

tuting Ẽ{l} with this formula in the above equation proves the lemma.
Let G be an n × n which represents the inner-products over the columns

of the residual matrix E: G = ETE. The following corollary is a direct result
of Lemma 2.

Corollary 2 G(t+1) can be calculated recursively as:

G(t+1) = (G− G:lG
T
:l

Gll
)(t).

Proof This corollary can be proved by substituting with E(t+1)T (Lemma 2)

in G(t+1) = E(t+1)TE(t+1), and using the fact that:(
E:l(E

T
:lE:l)

−1ET
:l

) (
E:l(E

T
:lE:l)

−1ET
:l

)
= E:l(E

T
:lE:l)

−1ET
:l .

To simplify the derivation of the memory-efficient algorithm, at iteration
t, define δ = G:l and ω = G:l/

√
Gll = δ/

√
δl. This means that G(t+1) can be

calculated in terms of G(t) and ω(t) as follows:

G(t+1) = (G− ωωT )(t), (10)

or in terms of A and previous ω’s as:

G(t+1) = ATA−
t∑

r=1

(ωωT )(r). (11)

δ(t) and ω(t) can be calculated in terms of A and previous ω’s as follows:

δ(t) = ATA:l −
t−1∑
r=1

ω
(r)
l ω(r),

ω(t) = δ(t)/

√
δ
(t)
l .

The feature selection criterion can be expressed in terms of G as:

l = arg max
i

‖G:i‖2

Gii

The following theorem gives recursive formulas for calculating the feature
selection criterion without explicitly calculating E nor G.

Theorem 2 Let f i = ‖G:i‖2 and gi = Gii be the numerator and denominator
of the criterion function for a feature i respectively, f = [f i]i=1..n, and g =
[gi]i=1..n. Then,

f (t) =
(
f − 2

(
ω ◦

(
ATAω −Σt−2

r=1

(
ω(r)Tω

)
ω

(r)
))

+ ‖ω‖2 (ω ◦ ω)
)(t−1)

,

g(t) =
(
g − (ω ◦ ω)

)(t−1)
.
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where ◦ represents the Hadamard product operator.

Proof Based on Eq. (10), f
(t)
i can be calculated as:

f
(t)
i =

(
‖G:i‖2

)(t)
=
(
‖G:i − ωiω‖2

)(t−1)
=
(
(G:i − ωiω)T (G:i − ωiω)

)(t−1)
=
(
GT

:iG:i − 2ωiG
T
:iω + ω2

i ‖ω‖2
)(t−1)

=
(
f i − 2ωiG

T
:iω + ω2

i ‖ω‖2
)(t−1)

.

(12)

Similarly, g
(t)
i can be calculated as:

g
(t)
i = G

(t)
ii =

(
Gii − ω2

i

)(t−1)
=
(
gi − ω2

i

)(t−1)
.

(13)

Let f = [f i]i=1..nand g = [gi]i=1..n, f (t) and g(t) can be expressed as:

f (t) =
(
f − 2 (ω ◦Gω) + ‖ω‖2 (ω ◦ ω)

)(t−1)
,

g(t) = (g − (ω ◦ ω))
(t−1)

,
(14)

where ◦ represents the Hadamard product operator, and ‖.‖ is the `2 norm.
Based on the recursive formula of G (Eq. 11), the term Gω at iteration

(t− 1) can be expressed as:

Gω =
(
ATA−Σt−2

r=1

(
ωωT

)(r))
ω

= ATAω −Σt−2
r=1

(
ω(r)Tω

)
ω

(r)
(15)

Substitute with Gω in Equation (14) gives the update formulas for f and
g

This means that the greedy criterion can be memory-efficient by only main-
taining two score variables for each feature, f i and gi, and updating them at
each iteration based on their previous values and the selected features so far.
Algorithm 1 shows the complete memory-efficient greedy algorithm.

6.2 Partition-Based Criterion

The feature selection criterion calculates, at each iteration, the inner-products
between each candidate feature E:i and other features E. The computational
complexity of these inner-products is O(nm) per candidate feature (or O(n2m)
per iteration). When the memory-efficient update formulas are used, the com-
putational complexity is reduced to O(nm) per iteration (that of calculating
ATAω). However, the complexity of calculating the initial value of f is still
O(n2m).
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Algorithm 1 Greedy Feature Selection
Input: Data matrix A, Number of features k
Output: Selected features S,
Steps:

1. Initialize S = { }
2. Initialize f

(0)
i = ‖ATA:i‖2, and g

(0)
i = AT

:iA:i

3. Repeat t = 1→ k:

(a) l = arg max
i

f
(t)
i /g

(t)
i , S = S ∪ {l}

(b) δ(t) = ATA:l −
∑t−1

r=1 ω
(r)
l ω(r)

(c) ω(t) = δ(t)/

√
δ
(t)
l

(d) Update f i’s, gi’s (Theorem 2)

In order to reduce this computational complexity, a novel partition-based
criterion is proposed, which reduces the number of inner products to be cal-
culated at each iteration. The criterion partitions features into c � n ran-
dom groups, and selects the feature which best represents the centroids of
these groups. Let Pj be the set of feature that belong to the j-th partition,
P = {P1,P2, ...Pc} be a random partitioning of features into c groups, and B
be an m × c matrix whose element j-th column is the sum of feature vectors
that belong to the j-th group: B:j =

∑
r∈Pj

A:r. The use of the sum function

(instead of mean) weights each column of B with the size of the corresponding
group. This avoids any bias towards larger groups when calculating the sum
of inner-products.

The selection criterion can be written as:

Problem 4 (Partition-Based Greedy Feature Selection) At iteration t,
find feature l such that,

l = arg max
i

∥∥FTE:i

∥∥2
ET

:iE:i
(16)

where E = A − ÃS , S is the set of features selected during the first t − 1
iterations, F:j =

∑
r∈Pj

E:r, and P = {P1,P2, ...Pc} is a random partitioning
of features into c groups.

Similar to E (Lemma 2), F can be calculated in a recursive manner as
follows:

F (t+1) = (F − E:lE
T
:l

ET
:lE:l

F )(t).

This means that random partitioning can be done once at the start of the
algorithm. After that, F is initialized to B and then updated recursively using
the above formula. The computational complexity of calculating B is O(nm) if
the data matrix is full. However, this complexity could be considerably reduced
if the data matrix is very sparse.

Further, a memory-efficient variant of the partition-based algorithm can
be developed as follows. Let H be an c × n matrix whose element Hji is the
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inner-product of the centroid of the j-th group and the i-th feature, weighted
with the size of the j-th group: H = FTE. Similarly, H can be calculated
recursively as follows:

H(t+1) = (H − H:lG
T
:l

Gll
)(t).

Define γ = H:l and υ = H:l/
√
Gll = γ/

√
δl. H

(t+1) can be calculated in terms
of H(t), υ(t) and ω(t) as follows:

H(t+1) = (H − υωT )(t), (17)

or in terms of A and previous ω’s and υ’s as:

H(t+1) = BTA−
t∑

r=1

(υωT )(r). (18)

γ(t) and υ(t) can be calculated in terms of A, B and previous ω’s and υ’s as
follows:

γ(t) = BTA:l −
t−1∑
r=1

ω
(r)
l υ(r),

υ(t) = γ(t)/

√
δ
(t)
l .

The partition-based selection criterion can be expressed in terms of H and
G as:

l = arg max
i

‖H:i‖2

Gii

Similar to Theorem 2, the following theorem derives recursive formulas for the
partition-based criterion function.

Theorem 3 Let f i = ‖H:i‖2 and gi = Gii be the numerator and denom-
inator of the partition-based criterion function for a feature i respectively,
f = [f i]i=1..n, and g = [gi]i=1..n. Then,

f (t) =
(
f − 2

(
ω ◦

(
ATBυ −Σt−2

r=1

(
υ(r)Tυ

)
ω

(r)
))

+ ‖υ‖2 (ω ◦ ω)
)(t−1)

,

g(t) =
(
g − (ω ◦ ω)

)(t−1)
.

where ◦ represents the Hadamard product operator.
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Algorithm 2 Partition-based Greedy Feature Selection
Input: Data matrix A, Number of features k
Output: Selected features S,
Steps:

1. Initialize S = { }, Generate a random partitioning P , Calculate B: B:j =
∑

r∈Pj
A:r

2. Initialize f
(0)
i = ‖BTA:i‖2, and g

(0)
i = AT

:iA:i

3. Repeat t = 1→ k:

(a) l = arg max
i

f
(t)
i /g

(t)
i , S = S ∪ {l}

(b) δ(t) = ATA:l −
∑t−1

r=1 ω
(r)
l ω(r)

(c) γ(t) = BTA:l −
∑t−1

r=1 ω
(r)
l υ(r)

(d) ω(t) = δ(t)/

√
δ
(t)
l , υ(t) = γ(t)/

√
δ
(t)
l

(e) Update f i’s, gi’s (Theorem 3)

Proof The proof is similar to that of Theorem 2. It can be easily derived by
using the recursive formula for H:i instead of that for G:i.

In these update formulas, ATB can be calculated once and then used in dif-
ferent iterations. This makes the computational complexity of the new update
formulas is O(nc) per iteration. Algorithm 2 shows the complete partition-
based greedy algorithm. The computational complexity of the algorithm is
dominated by that of calculating ATA:l in Step (b) which is of O(mn) per
iteration. The other complex step is that of calculating the initial f , which is
O(mnc). However, these steps can be implemented in an efficient way if the
data matrix is sparse.

The total complexity of the algorithm is O(max(mnk,mnc)), where k is
the number of features and c is the number of random partitions.

7 Experiments and Results

Experiments have been conducted on six benchmark data sets, whose proper-
ties are summarized in Table 13. The first four data sets were recently used by
Cai et al. [4] to evaluate different feature selection techniques in comparison
to the Multi-Cluster Feature Selection (MCFS) method, while the last two
data sets consist of documents and are characterized by very high dimensional
feature vectors. The ORL data set consists of 400 face images, and it has been
used to evaluate algorithms for the face identification task [24]. The COIL’20
data set is the Columbia University Image Library [22] which consists of 1440
images for 20 different objects. The ISOLET is a subset of the ISOLET data
set [6] whose data instances represent spoken letters. The USPS is the US
postal handwritten digit data set [15] which consists of 9298 of handwritten

3 Data sets are available in MATLAB format at:
http://www.zjucadcg.cn/dengcai/Data/FaceData.html

http://www.zjucadcg.cn/dengcai/Data/MLData.html

http://www.zjucadcg.cn/dengcai/Data/TextData.html
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Table 1 The properties of data sets used to evaluate different feature selection methods.

Data set # Instances # Features # Classes Data Types Feature Types

ORL 400 1024 40 Face images Pixels
COIL20 1440 1024 20 Object images Pixels
ISOLET 1560 617 26 Speech signals Different properties [6]

USPS 9298 256 10 Digit images Pixels
TDT2-30 9394 19677 30 Documents Terms

20NG 18774 29360 20 Documents Terms

digits. This data set has been used to evaluate different algorithms for hand-
written digit recognition. The TDT2-35 data set is a subset of the NIST Topic
Detection and Tracking corpus [5] which consists of the top 30 categories. The
20NG is the 20 newsgroups data set4. The TDT2-35 and 20NG data sets
have been used to evaluate different algorithms for document clustering and
classification. The data sets were preprocessed as follows. For image data sets
(ORL, COIL20 and USPS ), the intensity values of each image were scaled
to lie in the range [0 1]. For document data sets (TDT2-35 and 20NG), the
terms that appear in less than 5 documents were removed and the normalized
term frequency - inverse document frequency (tf -idf) weighting scheme was
used to encode the importance of terms inside documents.

In the conducted experiments, seven methods for unsupervised feature se-
lection are compared5:

1. PCA-LRG: is a PCA-based method that selects features associated with
the first k principal components [17]. It has been shown that by Masaeli
et al. [20] that this method achieves a low reconstruction error of the data
matrix compared to other PCA-based methods6.

2. FSFS: is the Feature Selection using Feature Similarity [21] method with
the maximal information compression as the feature similarity measure.

3. LS: is the Laplacian Score (LS) [14] method.
4. SPEC: is the spectral feature selection method [28] using all the eigenvec-

tors of the graph Laplacian.
5. MCFS: is the Multi-Cluster Feature Selection [4] method which has been

shown to outperform other methods that preserve the cluster structure of
the data.

6. GreedyFS: is the basic greedy algorithm presented in this paper (Algo-
rithm 1).

4 http://people.csail.mit.edu/jrennie/20Newsgroups/
5 The following implementations were used:

FSFS: http://www.facweb.iitkgp.ernet.in/~pabitra/paper/fsfs.tar.gz
LS: http://www.zjucadcg.cn/dengcai/Data/code/LaplacianScore.m
SPEC: http://featureselection.asu.edu/algorithms/fs_uns_spec.zip
MCFS: http://www.zjucadcg.cn/dengcai/Data/code/MCFS_p.m

6 The CPFA method was not included in the comparison as its implementation details
were not completely specified in [20].
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7. PartGreedyFS: is the partition-based greedy algorithm (Algorithm 2).
In the conducted experiments, the number of partitions is set to 1% of the
number of features. For each data set, the algorithm is repeated 10 times
with different random partitions, and the average and standard deviation
of the performance measures are calculated.

For methods that depend on constructing a k-nearest neighbor graph over
the data instances (i.e., LS, SPEC, and MCFS), a five-nearest neighbor
graph is constructed for each data set, and the weighs of the graph edges are
calculated as follows:

Wij = exp

(
−

D2
ij

2 (
∑

kDik) (
∑

kDjk)

)
,

where D is an n×n matrix of Euclidean distances between data instances, and
Wij is the weight between nodes i and j of the graph. This weighting function
is a variant of the Gaussian kernel used with self-tuned spectral clustering [27],
which has been shown to achieve better clustering performance compared to
Gaussian kernels with manually tuned parameters.

Similar to previous work [4][14], the feature selection methods were com-
pared based on their performance in clustering tasks. Two clustering algo-
rithms were used to compare different methods:

– The well-known k-means algorithm [16]: For each feature selection method,
the k-means algorithm is applied to the rows of the data matrix whose
columns are the subset of the selected features. For document data sets,
the spherical k-mean algorithm [8] is applied, where the cosine similarity
between data points are used instead of the Euclidean distance. Each run of
the k-means algorithm is repeated 10 times with different initial centroids
and the clustering with the minimum objective function is selected. In
addition, for each experiment, the k-means algorithm is repeated 20 times
and the mean and standard deviation of the performance measures are
calculated.

– The state-of-the-art affinity propagation (AP) algorithm [11]: The distance
matrix between data instances is first calculated based on the selected
subset of features, and then the AP algorithm is applied to the negative of
this distance matrix. The preference vector, which controls the number of
clusters, is set to the median of each column of the similarity matrix, as
suggested by Frey and Dueck [11].

After the clustering is performed using the subset of selected features, the
cluster labels are compared to ground-truth labels provided by human anno-
tators and the Normalized Mutual Information (NMI) [25] between clustering
labels and the class labels is calculated. The clustering performance with all
features is also calculated and used as a baseline. In addition to clustering per-
formance, the run times of different feature selection methods are compared.
This run time includes the time for selecting features only, and not the run
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time of the clustering algorithm7. For all data sets, the number of selected
features were changed from 1% to 10% of the total number of features.

Figures 1-3 show the clustering performance for the k-means and affin-
ity propagation (AP) algorithms for different data sets8, and Table 2 shows
the k-means clustering performance for the best performing feature selection
methods (LS, MCFS, GreedyFS, and GreedyFSPart). In Table 2, each
sub-table represents a data set and each column represents a percentage of se-
lected features. The NMI measures in each sub-column are divided into groups
according to their statistical significance. The best group of methods is high-
lighted in bold, and the second best group is underlined. The tests of statistical
significance were performed as follows. The methods in each sub-column are
first sorted in a descending order according to their average NMI measures and
a one-tailed t-test is then used to assess the significance of each method with
respect to its successor. The t-test uses the null-hypothesis that two methods
are equivalent and the alternative hypothesis that the method is superior to
its successor. For each pair of methods, the t-statistic is calculated as:

t =
q1 − q2√
s21
r1

+
s22
r2

,

where q1 and q2 are the average NMI measures for the two methods, s1 and
s2 are the standard deviations of the NMI measures, and r1 and r2 are the
number of k-means runs used to estimate q1 and q2 respectively. The value
of t-statistic is then compared to the critical value tcritical obtained from the
t-distribution table for a 95% confidence interval. If t > tcritical, the null-
hypothesis is rejected and the method is considered superior to its successor.

It can be observed from Figures 1-3 and Table 2 that the greedy fea-
ture selection methods (GreedyFS and PartGreedyFS) outperforms the
PCA-LRG, FSFS, LS, and SPEC methods for almost all data sets. The
GreedyFS method outperforms MCFS for the COIL20 data set as well as
the three large data sets (USPS, TDT2-30 and 20NG), while its partition-
based variant, PartGreedyFS, outperforms MCFS for the two document
data sets (TDT2-30 and 20NG) and gives comparable performance for the
COIL20 and USPS data sets. The MCFS method mostly outperforms the
two greedy algorithms for the ORL and ISOLET data sets.

Figures 4 and 5 show the run times of different feature selection methods.
It can be observed that FSFS is computationally more expensive than other
methods as it depends on calculating complex similarities between features.
The FSFS method does not even scale to run on the document data sets.
The MCFS method, however efficient, is more computationally complex than

7 The experiments on the first four data sets were conducted on an Intel P4 3.6GHz
machine with 2GB RAM, while the experiments on the last two last sets were conducted on
an Intel Core i5 650 3.2GHz machine with 8GB RAM.

8 The implementations of AP and SPEC algorithms do not scale to run on the USPS data
set, and those of AP, PCA-LRG, FSFS, and SPEC do not scale to run on the TDT2-30
and 20NG data sets on the used simulation machines.
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Laplacian score (LS) and the proposed greedy methods. It can be also observed
that for data sets with large number of instances (like USPS, TDT2-30 and
20NG), the MCFS method becomes very computationally demanding as it
depends on computing the eigenvectors of the data similarity matrix, and then
solving an L1-regularized regression problem for each eigenvector.

Figure 6 and 7 show the run times of the PCA-LRG and Laplacian score
(LS) methods in comparison to the proposed greedy methods. It can be ob-
served that the PCA-LRG method is computationally more demanding than
the proposed greedy methods for the first four data sets, and it does not scale
to run on data sets with large number of features as it depends on comput-
ing the principal components of the data matrix. On the other hand, the LS
method is computationally efficient relative to greedy methods when the num-
ber of data instances is comparable to the number of features. However, the
LS method becomes very computationally demanding for data sets with very
large number of data instances (like the USPS data set). It can also be ob-
served that the partition-based greedy feature selection (PartGreedyFS) is
more efficient than the basic greedy feature selection (GreedyFS).

8 Conclusions

This paper presents a novel greedy algorithm for unsupervised feature selec-
tion. The algorithm optimizes a feature selection criterion which measures the
reconstruction error of the data matrix based on the subset of selected features.
The paper proposes a novel recursive formula for calculating the feature selec-
tion criterion, which is then employed to develop an efficient greedy algorithm
for feature selection. In addition, two memory and time efficient variants of the
feature selection algorithm are proposed. It has been empirically shown that
the proposed algorithm achieves better clustering performance compared to
state-of-the-art methods for feature selection especially for high-dimensional
data sets, and is less computationally demanding than methods that give com-
parable clustering performance.

References

1. Boln-Canedo, V., Snchez-Maroo, N., Alonso-Betanzos, A.: A review of feature selection
methods on synthetic data. Knowl. Inf. Syst. (2012). DOI 10.1007/s10115-012-0487-8

2. Boutsidis, C., Mahoney, M., Drineas, P.: Unsupervised feature selection for the k-means
clustering problem. In: Proceedings of Advances in Neural Information Processing Sys-
tems (NIPS) 22, pp. 153–161. Curran Associates, Inc., Red Hook, NY, USA (2009)

3. Boutsidis, C., Mahoney, M.W., Drineas, P.: Unsupervised feature selection for principal
components analysis. In: Proceeding of the 14th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining (KDD), pp. 61–69. ACM, New York,
NY, USA (2008)

4. Cai, D., Zhang, C., He, X.: Unsupervised feature selection for multi-cluster data. In:
Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining (KDD), pp. 333–342. ACM, New York, NY, USA (2010)

5. Cieri, C., Graff, D., Liberman, M., Martey, N., Strassel, S.: The TDT-2 text and speech
corpus. In: Proceedings of the DARPA Broadcast News Workshop, pp. 57–60 (1999)



20 Ahmed K. Farahat et al.

1 2 3 4 5 6 7 8 9 10

55

60

65

70

ORL

Number of features (%)

N
M

I 
(%

)

 

 

All Features
PCA-LRG
FSFS
LS
SPEC
MCFS
GreedyFS
PartGreedyFS

1 2 3 4 5 6 7 8 9 10

45

50

55

60

65

70

75

COIL20

Number of features (%)

N
M

I 
(%

)

 

 

All Features
PCA-LRG
FSFS
LS
SPEC
MCFS
GreedyFS
PartGreedyFS

1 2 3 4 5 6 7 8 9 10
20

30

40

50

60

70

ISOLET

Number of features (%)

N
M

I 
(%

)

 

 

All Features
PCA-LRG
FSFS
LS
SPEC
MCFS
GreedyFS
PartGreedyFS

Fig. 1 The k-means clustering performance of different feature selection methods for the
ORL, COIL20 and ISOLET data sets.
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Fig. 2 The k-means clustering performance of different feature selection methods for the
USPS, TDT2-30 and 20NG data sets.
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Fig. 3 The affinity propagation (AP) clustering performance of different feature selection
methods for the ORL, COIL20 and ISOLET data sets.
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Fig. 4 The run times of different feature selection methods for the ORL, COIL20 and
ISOLET data sets.
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Fig. 5 The run times of different feature selection methods for the USPS, TDT2-30 and
20NG data sets.
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Fig. 6 The run times of the PCA-LRG and LS methods in comparison to the proposed
greedy algorithms for the ORL, COIL20 and ISOLET data sets.
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Fig. 7 The run times of the PCA-LRG and LS methods in comparison to the proposed
greedy algorithms for the USPS, TDT2-30 and 20NG data sets.
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Table 2 The clustering performance of the k-means algorithm for the top performing meth-
ods. In each sub-column, the best group of methods (according to t-test) is highlighted in
bold, and the second best group is underlined.

Method k/n = 1% k/n = 4% k/n = 7% k/n = 10%
ORL

All Features 70.61±01.51 70.61±01.51 70.61±01.51 70.61±01.51
LS 58.52±00.85 62.83±00.69 66.39±01.21 67.87±01.28

MCFS 65.17±01.09 69.59±01.10 70.15±01.45 69.93±01.63
GreedyFS 65.22±00.74 68.78±01.42 70.43±01.64 68.96±01.60

PartGreedyFS 63.05±00.98 67.43±00.84 68.74±00.61 69.42±00.64
COIL20

All Features 73.80±02.20 73.80±02.20 73.80±02.20 73.80±02.20
LS 59.44±01.36 64.81±01.57 67.57±01.48 67.90±01.28

MCFS 63.22±01.42 70.94±01.32 71.00±01.48 72.98±01.29
GreedyFS 65.18±01.91 74.30±01.49 73.34±02.20 74.66±01.43

PartGreedyFS 61.84±01.98 71.65±00.74 73.41±00.75 73.73±00.66
ISOLET

All Features 75.40±01.82 75.40±01.82 75.40±01.82 75.40±01.82
LS 50.13±00.63 61.03±00.68 65.51±00.91 66.75±01.13

MCFS 48.32±00.92 73.77±01.19 74.20±00.88 73.68±00.89
GreedyFS 57.62±00.81 62.59±01.43 67.09±01.94 69.24±01.49

PartGreedyFS 45.66±01.75 60.39±03.55 66.64±02.73 68.77±01.84
USPS

All Features 65.73±00.58 65.73±00.58 65.73±00.58 65.73±00.58
LS 27.43±00.14 39.12±00.73 46.47±00.87 48.51±00.74

MCFS 29.41±00.67 46.31±01.80 56.91±01.02 63.08±01.27
GreedyFS 27.44±00.59 54.81±01.04 62.15±01.28 65.17±00.88

PartGreedyFS 21.01±01.12 47.02±01.75 56.30±02.35 61.54±01.61
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