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Abstract—In data mining applications, data instances are
typically described by a huge number of features. Most of
these features are irrelevant or redundant, which negatively
affects the efficiency and effectiveness of different learning
algorithms. The selection of relevant features is a crucial task
which can be used to allow a better understanding of data
or improve the performance of other learning tasks. Although
the selection of relevant features has been extensively studied
in supervised learning, feature selection with the absence of
class labels is still a challenging task. This paper proposes
a novel method for unsupervised feature selection, which
efficiently selects features in a greedy manner. The paper
first defines an effective criterion for unsupervised feature
selection which measures the reconstruction error of the data
matrix based on the selected subset of features. The paper
then presents a novel algorithm for greedily minimizing the
reconstruction error based on the features selected so far. The
greedy algorithm is based on an efficient recursive formula for
calculating the reconstruction error. Experiments on real data
sets demonstrate the effectiveness of the proposed algorithm
in comparison to the state-of-the-art methods for unsupervised
feature selection.

Keywords-Feature Selection; Greedy Algorithms; Unsuper-
vised Learning

I. INTRODUCTION

Data instances are typically described by a huge number
of features. Most of these features are either redundant,
or irrelevant to the data mining task at hand. Having a
large number of redundant and irrelevant features negatively
affects the performance of the underlying learning algo-
rithms, and makes them more computationally demanding.
Therefore, reducing the dimensionality of the data is a
fundamental task for machine learning and data mining
applications.

Throughout past years, two approaches have been pro-
posed for dimension reduction; feature selection, and fea-
ture extraction. Feature selection (also known as variable
selection or subset selection) searches for a relevant subset
of existing features, while feature extraction (also known
as feature transformation) learns a new set of features
which combines existing features. These methods have been
employed with both supervised and unsupervised learning,
where in the case of supervised learning class labels are used
to guide the selection or extraction of features.

Feature extraction methods produce a set of continuous
vectors which represent data instances in the space of the

©2011 IEEE DOI 10.1109/ICDM.2011.22

extracted features. Accordingly, most of these methods ob-
tain unique solutions in polynomial time, which make these
methods more attractive in terms of computational complex-
ity. On the other hand, feature selection is a combinatorial
optimization problem which is NP-hard, and most feature
selection methods depend on heuristics to obtain a subset
of relevant features in a manageable time. Nevertheless,
feature extraction methods usually produce features which
are difficult to interpret, and accordingly feature selection
is more appealing in applications where understanding the
meaning of features is crucial for data analysis.

Feature selection methods can be categorized into wrapper
and filter methods. Wrapper methods wrap feature selection
around the learning process and search for features which
enhance the performance of the learning task. Filter methods,
on the other hand, analyze the intrinsic properties of the
data, and select highly-ranked features according to some
criterion before doing the learning task. Wrapper methods
are computationally more complex than filter methods as
they depend on deploying the learning models many times
until a subset of relevant features are found.

This paper presents an effective filter method for un-
supervised feature selection. The method is based on a
novel criterion for feature selection which measures the
reconstruction error of the data matrix based on the subset
of selected features. The paper presents a novel recursive
formula for calculating the criterion function as well as an
efficient greedy algorithm to select features. The greedy
algorithm selects at each iteration the most representative
feature among the remaining features, and then eliminates
the effect of the selected features from the data matrix. This
step makes it less likely for the algorithm to select fea-
tures that are similar to previously selected features, which
accordingly reduces the redundancy between the selected
features. In addition, the use of the recursive criterion makes
the algorithm computationally feasible and memory efficient
compared to the state of the art methods for unsupervised
feature selection.

The rest of this paper is organized as follows. Section II
defines the notations used throughout the paper. Section III
discusses previous work on filter methods for unsupervised
feature selection. Section IV presents the proposed feature
selection criterion. Section V presents a novel recursive for-
mula for the feature selection criterion. Section VI proposes
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an effective greedy algorithm for feature selection as well as
memory and time efficient variants of the algorithm. Section
VII presents an empirical evaluation of the proposed method.
Finally, Section VIII concludes the paper.

II. NOTATIONS

Throughout the paper, scalars, vectors, sets, and matrices
are shown in small, small bold italic, script, and capital
letters, respectively. In addition, the following notations are
used.

For a vector x € RP:

x; i-th element of x.
Il]| the Euclidean norm (¢3-norm) of x.
For a matrix A € RP*4:

Aij (i,7)-th entry of A.

A;. i-th row of A.

A j-th column of A.

Ags. the sub-matrix of A which consists of the set
S of rows.

A.s the sub-matrix of A which consists of the set
S of columns.

A a low rank approximation of A.

As a rank-k approximation of A based on the set

S of columns, where |S| = k.
the Frobenius norm of A: ||A||r = Em-A?j

III. PREVIOUS WORK

1]l

Many filter methods for unsupervised feature selection
depend on the Principal Component Analysis (PCA) method
[1] to search for the most representative features. PCA is
the best-known method for unsupervised feature extraction
which finds directions with maximum variance in the feature
space (namely principal components). The principal compo-
nents are also those directions that achieve the minimum
reconstruction error for the data matrix. Jolliffe [1] suggests
different algorithms to use PCA for unsupervised feature
selection. In these algorithms, features are first associated
with principal components based on the absolute value of
their coefficients, and then features corresponding to the first
(or last) principal components are selected (or deleted). This
can be done once or recursively (i.e., by first selecting or
deleting some features and then recomputing the principal
components based on the remaining features). Similarly,
sparse PCA [2], a variant of PCA which produces sparse
principal components, can also be used for feature selection.
This can be done by selecting for each principal component
the subset of features with non-zero coefficients. However,
Masaeli et al. [3] showed that these sparse coefficients may
be distributed across different features and accordingly are
not always useful for feature selection. Another iterative ap-
proach is suggested by Cui and Dy [4], in which the feature
that is most correlated with the first principal component
is selected, and then other features are projected onto the
direction orthogonal to that feature. These steps are repeated
until the required number of features are selected. Lu et al.
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[5] suggests a different PCA-based approach which applies
k-means clustering to the principal components, and then
selects the features that are close to clusters’ centroids.
Boutsidis et al. [6], [7] propose a feature selection method
that randomly samples features based on probabilities calcu-
lated using the k-leading singular values of the data matrix.
In [6], random sampling is used to reduce the number of
candidate features, and then the required number of features
is selected by applying a complex subset selection algorithm
on the reduced matrix. In [7], the authors derive a theoretical
guarantee for the error of the k-means clustering when
features are selected using random sampling. However, the-
oretical guarantees for other clustering algorithms were not
explored in this work. Recently, Masaeli et al. [3] propose an
algorithm called Convex Principal Feature Selection (CPFS).
CPFS formulates feature selection as a convex continuous
optimization problem which minimizes the mean-squared-
reconstruction error of the data matrix (a PCA-like criterion)
with sparsity constraints. This is a quadratic programming
problem with linear constraints, which was solved using a
projected quasi-Newton method.

Another category of unsupervised feature selection meth-
ods are based on selecting features that preserve similarities
between data instances. Most of these methods first construct
a k nearest neighbor graph between data instances, and
then select features that preserve the structure of that graph.
Examples for these methods include the Laplacian score
(LS) [8] and the spectral feature selection method (a.k.a.,
SPEC) [9]. The Laplacian score (LS) [8] calculates a score
for each feature based on the graph Laplacian and degree
matrices. This score quantifies how each feature preserves
similarity between data instances and their neighbors in the
graph. Spectral feature selection [9] extends this idea and
presents a general framework for ranking features on a k
nearest neighbor graph.

Some methods directly select features which preserve the
cluster structure of the data. The Q — « algorithm [10]
measures the goodness of a subset of features based on the
clustering quality (namely cluster coherence) when data is
represented using only those features. The authors define a
feature weight vector, and propose an iterative algorithm that
alternates between calculating the cluster coherence based on
current weight vector and estimating a new weight vector
that maximizes that coherence. This algorithm converges to
a local minimum of the cluster coherence and produces a
sparse weight vector that indicates which features should
be selected. Recently, Cai et al. [11] propose an algorithm
called Multi-Cluster Feature Selection (MCFS) which selects
a subset of features such that the multi-cluster structure
of the data is preserved. To achieve that, the authors em-
ploy a method similar to spectral clustering [12], which
first constructs a k nearest neighbor graph over the data
instances, and then solves a generalized eigenproblem over
the graph Laplacian and degree matrices. After that, for each
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eigenvector, an L1-regularized regression problem is solved
to represent each eigenvector using a sparse combination
of features. Features are then assigned scores based on
these coefficients and highly scored features are selected.
The authors show experimentally that the MCFS algorithm
outperforms Laplacian score (SC) and the () — « algorithm.

Another well-known approach for unsupervised feature
selection is the Feature Selection using Feature Similarity
(FSFS) method suggested by Mitra et al. [13]. The FSFS
method groups features into clusters and then selects a
representative feature for each cluster. To group features, the
algorithm starts by calculating pairwise similarities between
features, and then it constructs a k nearest neighbor graph
over the features. The algorithm then selects the feature
with the most compact neighborhood and removes all its
neighbors. This process is repeated on the remaining fea-
tures until all features are either selected or removed. The
authors also suggested a new feature similarity measure,
namely maximal information compression, which quantifies
the minimum amount of information loss when one feature
is represented by the other.

In comparison to previous work, the greedy feature selec-
tion method proposed in this paper uses a PCA-like criterion
which minimizes the reconstruction error of the data matrix
based on the selected subset of features. In contrast to
traditional PCA-based methods, the proposed algorithm does
not calculate the principal components, which is computa-
tionally demanding. Unlike Laplacian score (LS) [8] and its
extension [9], the greedy feature selection method does not
depend on calculating pairwise similarity between instances.
It also does not calculate eigenvalue decomposition over
the similarity matrix as the @ — « algorithm [10] and
Multi-Cluster Feature Selection (MCFES) [11] do. The feature
selection criterion presented in this paper is similar to
that of Convex Principal Feature Selection (CPFS) [3] as
both minimize the reconstruction error of the data matrix.
While the method presented here uses a greedy algorithm
to minimize a discrete optimization problem, CPFS solves
a quadratic programming problem with sparsity constraints.
In addition, the number of features selected by the CPFS
depends on a regularization parameter A which is difficult
to tune. Similar to the method proposed by Cui and Dy
[4], the method presented in this paper removes the effect
of each selected feature by projecting other features to the
direction orthogonal to that selected feature. However, the
method proposed by Cui and Dy is computationally very
complex as it requires the calculation of the first princi-
pal component for the whole matrix after each iteration.
The Feature Selection using Feature Similarity (FSFS) [13]
method employs a similar greedy approach which selects
the most representative feature, and then eliminates its
neighbors in the feature similarity graph. The FSFS method,
however, depends on a computationally complex measure
for calculating similarity between features. As shown in
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Section VII, experiments on real data sets show that the
proposed algorithm outperforms the Feature Selection using
Feature Similarity (FSFS) method [13], Laplacian score (SC)
[8], and Multi-Cluster Feature Selection (MCFES) [11] when
applied with different clustering algorithms.

IV. FEATURE SELECTION CRITERION

This section defines a novel criterion for unsupervised
feature selection. The criterion measures the reconstruction
error of data matrix based on the selected subset of features.
The goal of the proposed feature selection algorithm is to
select a subset of features that minimizes this reconstruction
error.

Definition 1: (Unsupervised Feature Selection Crite-
rion) Let A be an m X n data matrix whose rows represent
the set of data instances and whose columns represent the
set of features. The feature selection criterion is defined as:

F(S)=|lA~ PS4

where S is the set of the indices of selected features, and
P(S) is an m x m projection matrix which projects the
columns of A onto the span of the set S of columns.

The criterion F (S) represents the sum of squared errors
between original data matrix A and its rank-% approximation
based on the selected set of features (where k = |S|):

Ag = PO A, (1)
The projection matrix P(%) can be calculated as:
-1
PO = A (Al5As) T AL )

where A.s is the sub-matrix of A which consists of the
columns corresponding to S. It should be noted that if the
subset of features S is known, the projection matrix P(5) is
the closed-form solution of the least-squares problem which
minimizes F (S).

The goal of the feature selection algorithm presented in
this paper is to select a subset S of features such that F'(S)
is minimized.

Problem 1: (Unsupervised Feature Selection) Find a
subset of features £ such that,

L =arg minF(S).
s

This is an NP-hard combinatorial optimization problem.
In Section V, a recursive formula for the selection criterion
is presented. This formula allows the development of an
efficient algorithm to greedily minimize F (S). The greedy
algorithm is presented in Section VI.

V. RECURSIVE SELECTION CRITERION

In this section, a recursive formula is derived for the
feature selection criterion presented in Section IV. This
formula is based on a recursive formula for the projection
matrix P(5) which can be derived as follows.



This article has been accepted for publication at the 2011 IEEE 11th International Conference on Data Mining

Lemma 1: Given a set of features S. For any P C S,
P — p(P) + R™®)

where R(®) is a projection matrix which projects the
columns of F = A — P(P) A onto the span of the subset
R =S\ P of columns:

R®) = B (EREx) " El.

Proof: Define a matrix B = A’ A.s which represents
the inner-product over the columns of the sub-matrix A.s.
The projection matrix P(°) can be written as:

P = A sB AL (3)

Without loss of generality, the columns and rows of A.g
and B in Eq. (3) can be rearranged such that the first sets
of rows and columns correspond to P:

Bpp Bpr
A:S—[A:’P A:R]7 B_liBgR BRR:l
where Bpp = A?;)A:p, BP’R = AI;DAR and B’RR =
A%A;R.
Let Brr —B7T,R B7371; Bpr be the Schur complement [14]
of Bpp in B. Use the block-wise inversion formula [14] of
B~ and substitute with A.s and B~! in Eq. (3):

P(S) = [ A:P AR ]
Bpp + BppBprS™ ' BirBpp  —BppBprS™!
—S™'Bfz Bpp S
AT
¥id
R

The right-hand side can be simplified to:
P® = ApBoL AL
+ (AR — ApBppBpr) S (AR — BprBppAip)
C))
The first term of Eq. (4) is the projection matrix which
projects the columns of A onto the span of the subset P
of columns: P(P) = A:pB;%AE,. The second term can be
simplified as follows. Let £ be an m x n residual matrix
which is calculated as: £ = A — P(P)A. It can be shown
that B.gx = Agr — A:;pBrpBpr, and S = EL E.. Hence,
the second term of Eq. (4) is the projection matrix which
projects the columns of £ onto the span of the subset R of
columns:
R® = B (EREr) " EY. (5)

This proves that P(S) can be written in terms of P(P) and
R as: P(S) = p(P) 4 R(R) |

This means that projection matrix P(%) can be constructed
in a recursive manner by first calculating the projection
matrix which projects the columns of A onto the span of
the subset P of columns, and then calculating the projection
matrix which projects the columns of the residual matrix
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onto the span of the remaining columns. Based on this
lemma, a recursive formula can be developed for flg.

Corollary 1: Given a matrix A and a subset of columns
S. Forany P C S,

As = 1473 + Ex
where E = A — P(P) A, and Ey is the low-rank approxi-
mation of E based on the subset R = S\ P of columns.

Proof: Using Lemma (1), and substituting with P(5) in
Eq. (1) gives:

As=PP A+ Ex (ERER) ERA (6

The first term is the low-rank approximation of A based
on P: Ap = PP)A. The second term is equal to Er as
E:%A = E%E To prove that, multiplying E% by E =
A — PP A gives:

ELE=ELA-ELPP A
Using E.r = A.r — P(P) A.z, the expression E%P(P) can
be written as:
EL PP = AT, pP) _ AL, pP) p(P),

This is equal to 0 as P(P)P(P) = P(P) (A property of
projection matrices). This means that E7, A = EX, E. Sub-
stituting E%, A with EL, E in Eq. (6) proves the corollary.
|

Based on Corollary (1), a recursive formula for the feature
selection criterion can be developed as follows.

Theorem 2: Given a set of features S. For any P C S,

F(S)=F(P) —||Erll%
where E = A — P(P)A, and Ey is the low-rank approxi-
mation of E based on the subset R = S\ P of columns.
Proof- Substituting with P(5) in Eq. (1) gives:
F(S)= A~ As|} = |A— Ap — Er|% = ||E - Er|%

Using the relation between the Frobenius norm and the trace
function!, the right-hand side can be expressed as:

- - T -
IE — Er|% = trace ((E - E(R)> (E - ER)>
= trace(ETE — 2ETEr + ELER)

As RR)IR(R) = R(R) the expression E% Ex can be written
as:

ELEr = ETR®MR®E = ETR®E = ETEx
This means that: F'(S) = ||E — Er||% = trace(ETE —
ErEr) = |E|} — [|Er||%- Replacing || E||7 with F (P)
proves the theorem. |

The term || Ez||% represents the decrease in reconstruction
error achieved by adding the subset R of features to P. In

NA|Z = trace(AT A)



This article has been accepted for publication at the 2011 IEEE 11th International Conference on Data Mining

the following section, a novel greedy heuristic is presented
to optimize the feature selection criterion based on this
recursive formula.

VI. GREEDY SELECTION ALGORITHM

This section presents an efficient greedy algorithm to
optimize the feature selection criterion presented in Section
IV. The algorithm selects at each iteration one feature such
that the reconstruction error for the new set of features is
minimum. This problem can be formulated as follows.

Problem 2: (Greedy Feature Selection) At iteration t,
find feature [ such that,

l=argmin F(SU{i}) ™

where S is the set of features selected during the first t — 1
iterations.

A naive implementation of the greedy algorithm is to
calculate the reconstruction error for each candidate feature,
and then select the feature with the smallest error. This
implementation is however computationally very complex as
it requires O(m?n?) floating-point operations per iteration.
A more efficient approach is to use the recursive formula
for calculating the reconstruction error. Using Theorem 2,

F(Su{i}) = F(S) - IEgl%,
where E = A — Ag. Since F (S) is a constant for all
candidate features, an equivalent criterion is:
I =argmaz ||Eq|% ®)
This formulation selects the feature [ which achieves the
maximum decrease in reconstruction error. The new objec-

2
‘F can be simplified as follows:

tive function HE{i}

L2 o 4
HE{Z’} ‘F = trace (E{Ti}E{i}> = trace (ETR({Z})E>

= trace (ETE:i (E?Ei)i1 E{E>
L ETE,|
= EEE:itrace (ETE:iESE) = w

This defines the following simplified problem.

Problem 3: (Simplified Greedy Feature Selection) At
iteration ¢, find feature [ such that,
|5 B

l = arg max 9
K3

where £ = A — /15, and S is the set of features selected

during the first ¢ — 1 iterations.

The computational complexity of this selection criterion
is O (nzm) per iteration, and it requires O (nm) memory to
store the residual of the whole matrix, F, after each iteration.
In the rest of this section, two novel techniques are proposed
to reduce the memory and time requirements of this selection
criterion.
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A. Memory-Efficient Criterion

This section proposes a memory-efficient algorithm to
calculate the simplified feature selection criterion without
explicitly calculating and storing the residual matrix £ at
each iteration. The algorithm is based on a recursive formula
for calculating the residual matrix F.

Let S(*) denote the set of features selected during the first
t — 1 iterations, F(®) denote the residual matrix at the start
of the ¢-th iteration (i.e., E® = A — Ag), and [ be the
feature selected at iteration ¢. The following lemma gives a
recursive formula for residual matrix at the end of iteration
t, B4+,

Lemma 2: E*1 can be calculated recursively as:

E.ET

E(t+1): E
o o

E)®),

Proof: Using Corollary 1, ASU{l} = As + E{l}.
Subtracting both sides from A, and substituting A — Agsyqy
and A — Ag with E+1 and E® respectively gives:

B+ — (E _ E{l})(t)

Using Egs (1) and (2), E{l} can be expressed as
(E:l(EgE:l)’lEf) E. Substituting E{l} with this formula
in the above equation proves the lemma. |
Let G be an n X n which represents the inner-products
over the columns of the residual matrix E: G = ETE. The
following corollary is a direct result of Lemma 2.
Corollary 3: G*+1) can be calculated recursively as:

_ %)a)_
Gu

Proof: This corollary can be proved by substituting with
ECD" (Lemma 2) in GAY) = BE+D" R+ and ys-
ing the fact that (Ey(ETE,)"'ET) (E.(EYEy)'EY) =
E;I(E?lﬂE;l)flEg. |

To simplify the derivation of the memory-efficient algo-
rithm, at iteration ¢, define § = G; and w = G,;/vVG =
8/+/8;. This means that G**1) can be calculated in terms
of G® and w® as follows:

G — (@

G = (G — wwT)®, (10)
or in terms of A and previous w’s as:
t
QU+ — AT 7 — Z(wa)““). (11)
r=1

5 and w® can be calculated in terms of A and previous
w’s as follows:
t—1
5§ — ATA:l _ Zwl(T)w(r)7

r=1

w® =§0 /6",



This article has been accepted for publication at the 2011 IEEE 11th International Conference on Data Mining

The simplified feature selection criterion can be expressed
in terms of G as:

2
Il =argmazx LGZH
i G

The following theorem gives recursive formulas for cal-
culating the simplified feature selection criterion without
explicitly calculating E nor G.

Theorem 4: Let f; = ||G.s||*> and g; = G; be the numer-
ator and denominator of the simplified criterion function for
a feature 4 respectively, f = [f;],_; ,. and g = [g,]
Then,

f(t) = (f -2 (w o (ATAw -t (w(r)Tw) wm))

(t=1)
tlwl?@ow))

g = (g —(wo w))(H)-

where o represents the Hadamard product operator.
Proof: Based on Eq. (10), fl(»t) can be calculated as:

(® -
fW:0mmﬁ :warwwWWl’

= (G (G — wiw)) "™ (12)
(GTG — 2w,GTw + w?w|?) Y
= (£
)

i=1..n"

— 2w, GTw + W?|w|? ) =1

(t

;~ can be calculated as:

V=G = (Gi—wt)"Y
_ (g . wz)(t—l) )

Let f = [fi],—, ,and g = [g;];—1 ., f(t) and g can
be expressed as:

Similarly, g,

13)

t—1)

FO = (f ~2(woGw) + [w|? (wow) ™,

(14)
9" =(g— (wouw)" Y,

where o represents the Hadamard product operator, and ||. |
is the ¢ norm.

Based on the recursive formula of G (Eq. 11), the term
Guw at iteration (¢ — 1) can be expressed as:

Gw = (ATA -xi2 (wa)(T)> w
s)
=ATAw - %!73 (w(T)Tw) w"”
Substitute with Gw in Equation (14) gives the update
formulas for f and g |
This means that the greedy criterion can be memory-
efficient by only maintaining two score variables for each
feature, f, and g;, and updating them at each iteration based
on their previous values and the selected features so far.
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B. Partition-Based Criterion

The simplified feature selection criterion calculates, at
each iteration, the inner-products between each candidate
feature E.; and other features E. The computational com-
plexity of these inner-products is O(nm) per candidate fea-
ture (or O(n?m) per iteration). When the memory-efficient
update formulas are used, the computational complexity is
reduced to O(nm) per iteration (that of calculating A7 Aw).
However, the complexity of calculating the intial value of f
is still O(n?m).

In order to reduce this computational complexity, a novel
partition-based criterion is proposed, which reduces the
number of inner products to be calculated at each iteration.
The criterion partitions features into ¢ < n random groups,
and selects the feature which best represents the centroids of
these groups. Let P; be the set of feature that belong to the
j-th partition, P = {P1, P, ...P.} be a random partitioning
of features into ¢ groups, and B be an m X ¢ matrix whose
element j-th column is the sum of feature vectors that belong
to the j-th group: B.; = Zrepj A.,.. The use of the sum
function (instead of mean) weights each column of B with
the size of the corresponding group. This avoids any bias
towards larger groups when calculating the sum of inner-
products.

The simplified selection criterion can be written as:

Problem 4: (Simplified Partition-Based Greedy Fea-
ture Selection) At iteration ¢, find feature [ such that,

|7 B

16
FTE, (16)

l =argmax
where £ = A — flg, S is the set of features selected
during the first ¢ — 1 iterations, F\; = ZTG’P FE.., and
P = {P1,Ps,..P.} is a random partitioning of features
into ¢ groups.

Similar to £ (Lemma 2), F' can be calculated in a
recursive manner as follows:
E.EY Euby o
ETE A
This means that random partitioning can be done once at
the start of the algorithm. After that, F' is initialized to
B and then updated recursively using the above formula.
The computational complexity of calculating B is O(nm)
if the data matrix is full. However, this complexity could be
considerably reduced if the data matrix is very sparse.

Further, a memory-efficient variant of the partition-based
algorithm can be developed as follows. Let H be an ¢ X n
matrix whose element Hj; is the inner-product of the cen-
troid of the j-th group and the ¢-th feature, weighted with
the size of the j-th group: H = FTE. Similarly, H can be
calculated recursively as follows:

H,GY
G

P+ — (F — )(t)

HE+D — (H — )(t)_
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Define v = H,; and v = H, /Gy = ~/v/&. H*D can
be calculated in terms of H®), v® and w(® as follows:

HY = (H — vw™)®, a7
or in terms of A and previous w’s and v’s as:
t
HOH = BTA = " (vw™) "), (18)
r=1

’y(t) and v® can be calculated in terms of A, B and previous
w’s and v’s as follows:

t—1
,y(t) — BTA:l _ Zwl(r)v(7-)7

r=1

v® = 50/, /60).

The simplified partition-based selection criterion can be
expressed in terms of H and G as:

2
l =argmazx ”IéZH
K2 (23
Similar to Theorem 4, the following theorem derives re-
cursive formulas for the simplified partition-based criterion
function.

Theorem 5: Let f, = |H,|* and g, = Gy be the
numerator and denominator of the partition-based simplified
criterion function for a feature i respectively, f = [f;],_; ..,
and g = [g;],_, ,,- Then,

19 = (r=2(wo (4TBo -2 (v7v) "))

(t=1)
ol wow))

50 = (g wow) "

where o represents the Hadamard product operator.
Proof: The proof is similar to that of Theorem 4. It
can be easily derived by using the recursive formula for H.;
instead of that for G.;. |
In these update formulas, AT B can be calculated once
and then used in different iterations. This makes the compu-
tational complexity of the new update formulas is O(nc) per
iteration. Algorithm 1 shows the complete greedy algorithm.
The computational complexity of the algorithm is dominated
by that of calculating AT A, in Step (b) which is of
O(mn) per iteration. The other complex step is that of
calculating the initial f, which is O(mnc). However, these
steps can be implemented in an efficient way if the data
matrix is sparse. The total complexity of the algorithm is
O(max(mnk, mnc)), where k is the number of features and
c is the number of random partitions.
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Algorithm 1 Greedy Feature Selection

Inputs: Data matrix A, Number of features k
Outputs: Selected features S,
Steps:
1) Initialize S = { }, Generate a random partitioning P,

Calculate B: B.j =3, cp A
2) Initialize fgo) =||BTA,|? and ggo) =ATA,
3) Repeatt =1 — k:

a) | =arg max fl(-t)/ggt), S=8Su{i}
b) 8 = ATA; - 31wl
o) ¥ =BTA;->""] wl(T)v(T)

d) w®) =48t/ /(;l(t), v® =1/, /5l(t)
e) Update f,’s, g;’s (Theorem 5)

VII. EXPERIMENTS AND RESULTS

Experiments have been conducted on four benchmark data
sets, whose properties are summarized in Table I. These data
sets were recently used by Cai et al. [11] to evaluate different
feature selection methods in comparison to the Multi-Cluster
Feature Selection (MCFS) method?.

In this section, seven methods for unsupervised feature
selection are compared?:

1) PCA-LRG: is a PCA-based method that selects fea-
tures associated with the first £ principal components
[1]. It has been shown that by Masaeli et al. [3] that
this method achieves a low reconstruction error of the
data matrix compared to other PCA-based methods®.

2) FSFS: is the Feature Selection using Feature Sim-
ilarity [13] method with the maximal information
compression as the feature similarity measure.

3) LS: is the Laplacian Score (LS) [8] method.

4) SPEC: is the spectral feature selection method [9]
using all the eigenvectors of the graph Laplacian.

5) MCEFS: is the Multi-Cluster Feature Selection [11]
method which has been shown to outperform other
methods that preserve the cluster struture of the data.

6) GreedyFS: The basic greedy algorithm presented in
this paper (using recursive update formulas for f and
g but without random partitioning).

7) PartGreedyFS: The partition-based greedy algorithm
(Algorithm 1).

Data sets are available at:
http://www.zjucadcg.cn/dengcai/Data/FaceData.html
http://www.zjucadcg.cn/dengcai/Data/MLData.html

3The following implementations were used:

FSFS: http://www.facweb.iitkgp.ernet.in/~pabitra/paper/fsfs.tar.gz
LS: http://www.zjucadcg.cn/dengcai/Data/code/LaplacianScore.m
SPEC: http://featureselection.asu.edu/algorithms/fs_uns_spec.zip

MCEFS: http://www.zjucadcg.cn/dengcai/Data/code/MCFS_p.m

4The CPFA method was not included in the comparison as its imple-
mentation details were not completely specified in [3].
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Similar to previous work [8], [11], the feature selection
methods were compared based on their performance in
clustering tasks. Two clustering algorithms were used to
compare different methods: the well-known k-means algo-
rithm [15], and the state-of-the-art affinity propagation (AP)
algorithm [16]. For each feature selection method, the k-
means algorithm is applied to the rows of the data matrix
whose columns are the subset of the selected features. For
the affinity propagation, a distance matrix is first calculated
based on the selected subset of features, and then the
algorithm is applied to the negative of this distance matrix.
The preference vector, which controls the number of clusters,
is set to the median of each column of the similarity matrix,
as suggested by Frey and Dueck [16]. After the clustering is
performed using the subset of selected features, the cluster
labels are compared to ground-truth labels provided by
human annotators and the Normalized Mutual Information
(NMI) [17] between clustering labels and the class labels
is calculated. The clustering performance with all features
is also calculated and used as a baseline. In addition to
clustering performance, the run times of different feature
selection methods are compared. This run time includes the
time for selecting features only, and not the run time of the
clustering algorithm.

Figures 1 and 2 show the clustering performance for the
k-means and affinity propagation (AP) algorithms respec-
tively>. It can be observed from results that the greedy
feature selection methods (GreedyFS and PartGreedyFS)
outperforms the PCA-LRG, FSFS, LS, and SPEC methods
for almost all data sets. The GreedyFS method outperforms
MCEFS for many data sets, while its partition-based variant,
PartGreedyFS, outperforms MCFS for some data sets and
shows comparable performance for others.

Figure 3 shows the run times of different feature selection
methods. It can be observed that FSFS is computationally
more expensive than other methods as it depends on cal-
culating complex similarities between features. The MCFS
method, however efficient, is more computationally complex
than Laplacian score (LS) and the proposed greedy methods.
It can be also observed that for data sets with large number
of instances (like USPS), the MCFS method, the Laplacian
score (LS) and the SPEC become very computationally de-
manding as they depend on calculating pairwise similarities
between instances. Figure 4 shows the run times of the PCA-
LRG and Laplacian score (LS) methods in comparison to
the proposed greedy methods. It can be observed that the
complexity of the Laplacian score increases as the size of the
data set increases. It can also be observed that the partition-
based greedy feature selection (PartGreedyFS) is more
efficient than the basic greedy feature selection (GreedyFsS).

5The implementations of SPEC and AP do not scale to run on the USPS
data set on the used simulation machine.
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THE PROPERTIES OF DATA SETS USED TO EVALUATE DIFFERENT

Table 1

FEATURE SELECTION METHODS [11].

[ Data set || # Instances | # Features [ # Classes |

ORL 400 1024 40
COIL20 1440 1024 20
ISOLET 1560 617 26

USPS 9298 256 10

— All Features |
—%—PCA-LRG
FSES
LS
—¥— SPEC
MCFS
—8— GreedyFS
—©— PartGreedyFS

50

100

150 200

Number of features (k)

COIL20

— All Features

—¥—PCA-LRG
FSFS
LS
—¥— SPEC
MCFS
—8— GreedyFS
—©— PartGreedyFS |{

50

100

150 200

Number of features (k)
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S
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Z FSFS
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—B— GreedyFS
20 —O— PartGreedyFS ||
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Figure 1.
selection methods.

Number of features (k)

The k-means clustering performance of different feature
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Figure 2.

VIII. CONCLUSIONS

This paper presents a novel greedy algorithm for unsuper-
vised feature selection. The algorithm optimizes a feature
selection criterion which measures the reconstruction error
of the data matrix based on the subset of selected features.
The paper proposes a novel recursive formula for calculating
the feature selection criterion, which is then employed to
develop an efficient greedy algorithm for feature selection.
In addition, two memory and time efficient variants of
the feature selection algorithm are proposed. It has been
empirically shown that the proposed algorithm achieves
better clustering performance compared to state-of-the-art
methods for feature selection, and is less computationally
demanding than methods that give comparable clustering
performance.
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