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Abstract

The Nyström method is an efficient technique which obtains a low-rank approxi-
mation of a large kernel matrix based on a subset of its columns. The quality of
the Nyström approximation highly depends on the subset of columns used, which
are usually selected using random sampling. This paper presents a novel recursive
algorithm for calculating the Nyström approximation, and an effective greedy cri-
terion for column selection1.

1 The Nyström method

The Nyström method obtains a low-rank approximation of a kernel matrix using a subset of its
columns. This method has been used in many large-scale applications in machine learning and data
mining, including efficient learning of kernel-based models, fast dimension reduction, and efficient
spectral clustering. Let K be an n × n kernel matrix defined over n data instances. The Nyström
method starts by sampling k � n columns of K. Let S be the set of the indices of the sampled
columns, D be an n × k matrix which consists of the sampled columns, and A be a k × k matrix
whose elements are {Kij : i, j ∈ S}, where Kij denotes the element of K at row i and column j.
The Nyström method calculates a rank-k approximation of K based on S as [1]:

K̃S = DA−1DT , (1)
The Nyström method can also be used to approximate the d ≤ k leading singular values and vectors
of K using those of A [1]. In addition, the approximate singular values and vectors of K can be
used to map data points to a d-dimensional space, where the kernel over the data points represents a
rank-d approximation of K, which is referred to as K̃S,d throughout the rest of the paper.

The quality of the Nyström approximation highly depends on the subset of selected columns. Differ-
ent sampling schemes have been used with the Nyström method. These schemes include: uniform
sampling [1], which has been the most common technique for column selection; non-uniform sam-
pling [2, 3], using probabilities calculated based on the kernel matrix; adaptive sampling [4, 5], in
which probabilities are updated based on intermediate Nyström approximations; and deterministic
sampling [6, 7], where columns are selected such that some criterion function is optimized.

2 Recursive Nyström approximation

This section proposes a novel recursive algorithm for calculating Nystrom̈ approximation. Let l ∈ S
be the index of one of the sampled columns, α be the l-th diagonal element of K, δ be the l-th
column of K, and β be a column vector of length k − 1 whose elements are {Kil : i ∈ S \ {l}}.
Without loss of generality, the rows and columns of K, A and D can be rearranged such that the
first row and column correspond to l:

A =

[
α βT

β Γ

]
, D =

[
δ ∆T

]
(2)

1An extended version of this paper is currently under review at the Journal of Machine Learning Research.
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where Γ is a (k − 1) × (k − 1) sub-matrix of A whose elements are {Kij : i, j ∈ S \ {l}}, and ∆
is a (k − 1)× (n) sub-matrix of D whose elements are {Kij : i ∈ S \ {l}, j ∈ {1, .., n}}.

Let S = Γ − 1
αββ

T be the Schur complement of α in A. Use the block-wise inversion formula of
A−1 and substitute with D and A−1 in Equation (1):

K̃S =
[
δ ∆T

] [ 1
α + 1

α2β
TS−1β − 1

αβ
TS−1

− 1
αS
−1β S−1

] [
δT

∆

]
=

1

α
δδT +

(
∆− 1

α
βδT

)T
S−1

(
∆− 1

α
βδT

) (3)

Let K̃{l} = 1
αδδ

T be the rank-1 Nyström approximation of K obtained using the column corre-
sponding to l 2, and E(K)

{l} be an n× n residual matrix which is calculated as: E(K)
{l} = K − K̃{l}. It

can be shown that E(Γ)
{l} = S and E(∆)

{l} = ∆ − 1
αβδ

T are the sub-matrices of E(K)
{l} corresponding

to Γ and ∆ respectively. K̃S can be written in terms of E(Γ)
{l} and E(∆)

{l} as:

K̃S = K̃{l} + E
(∆)
{l}

T
E

(Γ)
{l}
−1
E

(∆)
{l} . (4)

The second term is the Nyström approximation of the residual matrix E(K)
{l} = K − K̃{l} based

on S \ {l}. This means that rank-k Nyström approximation of matrix K can be constructed in a
recursive manner by first calculating a rank-1 Nyström approximation of K based on one column,
and then calculating the rank-(k − 1) Nyström approximation of the residual matrix.

Let δ(t) be the column sampled at iteration t of the recursive algorithm, α(t) be the correspond-
ing diagonal element, and ω(t) = δ(t)/

√
α(t). The rank-k Nyström approximation of K can

be calculated as: K̃S =
∑k
t=1 ω

(t)ω(t)T , while δ(t) and α(t) can be efficiently calculated as:
δ(t) = K:l −

∑t−1
r=1 ω

(r)
l ω

(r) and α(t) = δ
(t)
l , where l is the index of the column selected at it-

eration t, K:l denotes the l-th column of K, and δl denotes the l-th element of δ. K̃S can also be
expressed in a matrix form as: WTW , where W is an k × n matrix whose t-th row is ω(t)T . The
columns of W can be used to represent data instances in a k-dimensional space. However, as the
rows of W are non-orthogonal, the proposed algorithm calculates the singular decomposition of W ,
and then uses the d leading eigenvectors to represent data instances in a low-dimension space.

Although the recursive Nyström algorithm calculates the same rank-k Nyström approximation
K̃S as the traditional Nyström formula (Equation 1), it calculates different estimates of the low-
dimension basis and K̃S,d. The advantage of the recursive algorithm is that the basis of low-
dimension representation is orthogonal, and that K̃S,d is the best rank-d approximation of K̃S .

3 Greedy sampling criterion

The recursive nature of the Nyström method can be used to develop an efficient greedy algorithm for
sampling columns while calculating the low-rank approximation. The basic idea here is to select,
at each iteration, the column that constructs the best rank-1 Nyström approximation of the current
residual matrix. The proposed sampling criterion defines the best approximation based on the key
observation that the rank-1 Nyström approximation based on the i-th column implicitly projects all
data points onto a vector which connects data point i and the origin in the high-dimensional feature
space defined by the kernel. Let X:i be the vector of the data point i in the high-dimensional space
defined by the kernel. The sampling criterion selects the column δ = K:l which achieves the least
squared error between data points in the feature space and their projections onto X:l (i.e., the recon-
struction error). The intuition behind this criterion is that greedily minimizing reconstruction error
in the high-dimensional feature space leads to minimizing the difference between kernel matrices in
the original and reconstructed spaces.

The sampling criterion at the first iteration can be expressed as the following optimization problem:
l = arg min

i
Σnj=1‖X:j −X:ji‖2, (5)

2This can be obtained using Equation (1) when A is a scalar and D is a column vector.
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where X:ji represents a vector in the direction of X:i whose length is the scalar projection of
data point j onto X:i. Since vector (X:j − X:ji) is orthogonal to X:ji , ‖X:j − X:ji‖2 =
‖X:j‖2 − ‖X:ji‖2, and the objective function of the sampling criterion is: Σnj=1‖X:j − X:ji‖2 =

Σnj=1‖X:j‖2 − Σnj=1‖X:ji‖2. The term Σnj=1‖X:j‖2 is the sum of the lengths of all data vec-
tors which is a constant for different values of i, and the term Σnj=1‖X:ji‖2 can be written as:
Σnj=1(XT

:j
X:i

‖X:i‖ )
2 = ‖ 1√

Kii
K:i‖2. Accordingly, the optimization problem (5) is equivalent to:

l = arg max
i

‖ 1√
Kii

K:i‖2. (6)

This means that to obtain the best rank-1 approximation according to the squared error criterion,
the proposed algorithm first computes ‖K:i/

√
Kii‖2 for all the columns of K, and then selects

the column with the maximum criterion function. The same selection procedure is then applied
during the next iterations of the recursive algorithm on the new residual matrices (i.e., ‖E:i/

√
Eii‖2).

The computational complexity of the selection criterion is O
(
n2 + n

)
per iteration, and it requires

O
(
n2
)

memory to store the residual of the whole kernel matrix after each iteration.

To reduce the memory requirements of the greedy criterion, the sampling score for each data instance
can be calculated in a recursive manner with no need to store and update the whole residual matrix.
Let f i = ‖E:i‖2 and gi = Eii be the numerator and denominator of the criterion function for
data point i respectively, f = [f i]i=1..n, and g = [gi]i=1..n. It can be shown that f and g can be
calculated recursively as follows:

f (t) =
(
f − 2

(
ω ◦

(
Kω − Σt−2

r=1

(
ω(r)Tω

)
ω

(r)
))

+ ‖ω‖2 (ω ◦ ω)
)(t−1)

,

g(t) =
(
g − (ω ◦ ω)

)(t−1)

.

(7)

where ◦ represents the Hadamard product operator, and ‖.‖ is the `2 norm. This means that the
greedy sampling criterion can be memory-efficient by only maintaining two score variables for each
data point, f i and gi, and updating them at each iteration based on their previous values and the
selected columns so far.

In order to reduce the computational complexity, a novel partition-based criterion is proposed, which
reduces the number of scalar projections to be calculated at each iteration. The partition-based
criterion divides data points into c random groups, and selects the column ofK which best represents
the centroids of these groups in the high-dimensional feature space. In this case, more efficient
update formulas can be developed for f , and g. The computational complexity of the partition-
based criterion is O (nc+ n) per iteration, It has been empirically shown that using few random
groups (c� n) achieves a very good approximation accuracy.

4 Experiments and results

Experiments have been conducted on six benchmark data sets, where the proposed greedy Nyström
methods are compared to five well-known sampling methods: uniform sampling without replace-
ment, adaptive sampling based on the full kernel matrix (AdaptFull) [4], adaptive sampling based
on a part of the kernel matrix (AdaptPart) [5], k-means [7], and the sparse greedy matrix ap-
proximation (SGMA) algorithm with probabilistic speedup [6]. For each method, the parameters
recommended in the corresponding paper were used. Similar to previous work [3, 7], the low-rank
approximations obtained by the greedy Nyström algorithm are compared to those obtained by other
Nyström methods relative to the best low-rank approximation obtained by singular value decom-
position. Linear kernels were used for document data sets (Reuters-21578, Reviews, and LA1),
and Gaussian kernels with σ = 10 for image data sets (MNIST-4K, PIE-20, and YaleB-38). Fig-
ure 1 shows the relative accuracy and run times for different methods when calculating the rank-d
Nyström approximations K̃S,d.

It can be observed from the results that the greedy Nyström algorithm (GreedyNyström) achieves
significant improvement in estimating low-rank approximations of a kernel matrix, compared to
other sampling-based methods. It also achieves better accuracy than SGMA and k-means for most
data sets. Although the k-means achieves better accuracy for some data sets, it obtains much worse
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Figure 1: The relative accuracy and run time for the calculation of rank-d approximations K̃S,d.

accuracy for others. This inconsistency could be due to the nature of the k-means algorithm, which
might obtain a poor local minimum. GreedyNyströmn is more efficient than SGMA and Adapt-
Full, but is less efficient than uniform sampling and AdaptPart. The latter two methods, however,
obtain inferior accuracies. The greedy Nyström algorithm (GreedyNyström) is computationally
less complex than k-means for data sets with large number of features. On the other hand, the al-
terative partition-based algorithm (PartGreedyNyström) for greedy Nyström outperforms all other
adaptive and deterministic sampling method in obtaining low-rank approximations, and it requires
small overhead in run time compared to uniform sampling. In addition, it is not sensitive to the
number of random partitions used.

5 Conclusion

This paper presents a novel recursive algorithm for Nyström approximation and an effective greedy
criterion for column selection, which minimizes the reconstruction error in the high-dimensional
feature space implicitly defined by the kernel. It has been empirically shown that the proposed
algorithm consistently achieves a significant improvement in obtaining low-rank approximations,
with minimum overhead in run time.
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