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Abstract—Recently, a supervised dictionary learning (SDL)
approach based on the Hilbert-Schmidt independence criterion
(HSIC) has been proposed that learns the dictionary and the corr-
esponding sparse coefficients in a space where the dependency be-
tween the data and the corresponding labels is maximized. In this
paper, two multiview dictionary learning techniques are proposed
based on this HSIC-based SDL. While one of these two techniques
learns one dictionary and the corresponding coefficients in the
space of fused features in all views, the other learns one dictionary
in each view and subsequently fuses the sparse coefficients in
the spaces of learned dictionaries. The effectiveness of the pro-
posed multiview learning techniques in using the complementary
information of single views is demonstrated in the application
of speech emotion recognition (SER). The fully-continuous sub-
challenge (FCSC) of the AVEC 2012 dataset is used in two
different views: baseline and spectral energy distribution (SED)
feature sets. Four dimensional affects, i.e., arousal, expectation,
power, and valence are predicted using the proposed multiview
methods as the continuous response variables. The results are
compared with the single views, AVEC 2012 baseline system,
and also other supervised and unsupervised multiview learning
approaches in the literature. Using correlation coefficient as the
performance measure in predicting the continuous dimensional
affects, it is shown that the proposed approach achieves the
highest performance among the rivals. The relative performance
of the two proposed multiview techniques and their relationship
are also discussed. Particularly, it is shown that by providing an
additional constraint on the dictionary of one of these approaches,
it becomes the same as the other.

Index Terms—Dictionary learning, sparse representation, mul-
tiview representation, emotion recognition, supervised learning.
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THERE are many mathematical models with varying de-
grees of success to describe data, among which dictionary

learning and sparse representation (DLSR) have attracted the
interest of many researchers in various fields. Dictionary
learning and sparse representation are two closely-related
topics that have roots in the decomposition of signals to some
predefined bases, such as the Fourier transform. Representation
of signals using predefined bases is based on the assumption
that these bases are general enough to represent any kind of
signal, however, recent research shows that learning the bases1

from data, instead of using off-the-shelf ones, leads to state-
of-the-art results in many applications such as texture classifi-
cation [1]–[3], face recognition [4]–[6], image denoising [7],
[8], biomedical tissue characterization [9]–[11], motion and
data segmentation [12], [13], data representation and column
selection [14], and image super-resolution [15]. In fact, what
makes DLSR distinct from the representation using predefined
bases is that first, the bases are learned here from the data, and
second, only a few components in the dictionary are needed to
represent the data (sparse representation). This latter attribute
can also be seen in the decomposition of signals using some
predefined bases such as wavelets [16].

For a more formal description, let X = [x1,x2, ...,xN ] ∈
Rd×N be a finite set of data samples, where d is the dimen-
sionality and N is the number of data samples. The main
goal in classical dictionary learning and sparse representation
(DLSR) is to decompose the data over a few dictionary atoms
by minimizing a loss function as follows

L(X,D,α) =

N∑
i=1

l(xi,D,α), (1)

where D ∈ Rd×l is the dictionary of l atoms, and α ∈ Rl×N
are the coefficients. The most common loss function in the
DLSR literature is the reconstruction error between the origi-
nal data samples X and the decomposed data in the space of
the learned dictionary D, regularized using a sparsity inducing
function to guarantee the sparsity of the coefficients. The most
common sparsity inducing function is `1 norm. Hence, (1) can
be rewritten as

L(X,D,α) = min
D,α

N∑
i=1

(
1
2‖xi −Dαi‖22 + λ‖αi‖1

)
, (2)

1Here, the term basis is loosely used as the dictionary can be overcomplete,
i.e., the number of dictionary elements can be larger than the dimensionality
of the data, and its atoms are not necessarily orthogonal and can be linearly
dependent.
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where αi is the ith column of α.
The optimization problem in (2) is mainly based on the min-

imization of the reconstruction error in mean-squared sense,
which is optimal in applications such as denoising, inpainting,
and coding [17]. However, the representation obtained from (2)
does not necessarily lead to a discriminative representation,
which is important in classification tasks.

Several approaches have recently been proposed in the
literature to include class labels into the optimization problem
given in (2) to yield more discriminative representations. These
approaches can broadly be grouped into five categories as
suggested in [18]2, including: 1) Learning one dictionary per
class, where one subdictionary is learned per class and then
all these subdictionaries are composed into one. Supervised
k-means [3], [19], sparse representation-based classification
(SRC) [5], metaface [20], and dictionary learning with struc-
tured incoherence (DLSI) [21] are in this category. 2) Pruning
large dictionaries, in which, initially a very large dictionary is
learned in an unsupervised manner, and then the atoms in the
dictionary are merged according to some objective function
that takes into account the class labels. The supervised dictio-
nary learning approaches based on agglomerative information
bottleneck (AIB) [22] and universal visual dictionary [23] are
in this category. 3) Learning the dictionary and classifier in
one optimization problem, where the optimization problem for
the classifier is embedded into the optimization problem given
in (2) or its modified version. Discriminative SDL [24] and
discriminative K-SVD (DK-SVD) [25] are two techniques in
this category. 4) Including class labels in the learning of the
dictionary, such as the technique based on information loss
minimization (known as info-loss) [26] and the one based
on randomized clustering forests (RCF) [27]. 5) Including
class labels in the learning of the sparse coefficients or both
the dictionary and coefficients such as Fisher discrimination
dictionary learning (FDDL) [6].

Recently, a supervised dictionary learning approach has
been proposed [18] which is based on the Hilbert Schmidt
independence criterion (HSIC) [28], in which the category
information is incorporated into the dictionary by learning
the dictionary in a space where the dependency between the
data and class labels is maximized. The approach has several
attractive features such as closed-form formulation for both
the dictionary and sparse coefficients, very compact dictionary,
i.e., discriminative dictionary at small size, and fast efficient
algorithm [18]. Thus, it has been adopted in this paper.

There are instances where the data in a dataset is represented
in multiple views [29]. This can be due to the availability of
several feature sets for the same data such as representation
of a document in several languages [30], representation of
webpages by both their text and hyperlinks, etc., or due to
the availability of information from several modalities, e.g.,
biometric information for the purpose of authentication that
may come from fingerprints, iris, and face. Although single-
view representation might be sufficient in a machine learning
task for the analysis of the data, complementary information

2The interested reader is urged to refer to [18] and the references thereof for
a more extensive review on various supervised dictionary learning approaches
in the literature and their main advantages and shortcomings.

provided by multiple views usually facilitates the improvement
of the learning process.

In this paper, we provide the formulation for multiview
learning based on the supervised dictionary learning proposed
in [18]. Two different methods for multiview representation are
proposed and the application to speech emotion recognition
using two different feature sets are investigated. Additionally,
the multiview approach is extended to continuous labels, i.e.,
to the case of a regression problem (it was originally proposed
for classification tasks using discrete labels [18]). It is worth
to note that not all the proposed supervised dictionary learning
approaches in the literature can be extended to regression
problems. For example, in supervised k-means, the discrete
labels are needed and it cannot be extended to continuous
labels. We will show that the proposed approach can effec-
tively use the complementary information in different feature
sets and improve the performance of the recognition system
on the AVEC (audio/visual emotion challenge) 2012 emotion
recognition dataset compared with some other supervised and
unsupervised multiview approaches.

The organization of the rest of the paper is as follows:
in Section II, the mathematical formulation of the proposed
multiview supervised dictionary learning is provided. The
application to speech emotion recognition will be discussed
in Section III, followed by a discussion of the experimental
setup and the results in Section IV. Section V concludes the
paper.

II. METHODS

In this section, the formulation of the proposed multiview
supervised dictionary learning (MV-SDL) is provided. To this
end, we first briefly review the Hilbert-Schmidt independence
criterion (HSIC). Then we provide the formulation for the
adopted supervised dictionary learning as being proposed
in [18]. Eventually, the mathematical formulation for the
proposed MV-SDL is presented.

A. Hilbert-Schmidt Independence Criterion

HSIC is a kernel-based independence measure between two
random variables X and Y [28]. It computes the Hilbert-
Schmidt norm of the cross-covariance operators in reproducing
kernel Hilbert Spaces (RKHSs) [28], [31].

Suppose that H and G are two RKHSs in X and Y ,
respectively. Hence, by the Riesz representation theorem, there
are feature mappings φ(x) : X → R and ψ(y) : Y → R such
that k(x, x′) = 〈φ(x), φ(x′)〉H and l(y, y′) = 〈ψ(y), ψ(y′)〉G .

HSIC can be practically estimated in the RKHSs
using a finite number of data samples. Let Z :=
{(x1,y1, ), ..., (xN ,yN )} ⊆ X × Y be N independent ob-
servations drawn from p := PX×Y . The empirical estimate of
HSIC can be computed using [28]

HSIC(Z) = 1

(N − 1)2
tr(KHLH), (3)

where tr is the trace operator, H,K,L ∈ RN×N ,Ki,j =
k(xi, xj), Li,j = l(yi, yj), and H = I − N−1ee> (I is the
identity matrix, and e is a vector of N ones, and hence,
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H is the centering matrix). According to (3), maximizing
the empirical estimate of HSIC, i.e., tr(KHLH), will lead
to the maximization of the dependency between two random
variables X and Y .

B. HSIC-Based Supervised Dictionary Learning

The HSIC-based supervised dictionary learning (SDL)
learns the dictionary in a space where the dependency between
the data and corresponding class labels is maximized. To
this end, it has been proposed in [18] to solve the following
optimization problem

max
U

tr(U>XHLHX>U),

s.t. U>U = I
(4)

where X = [x1,x2, ...,xN ] ∈ Rd×N is N data samples with
the dimensionality of d; H is the centering matrix, and its
function is to center the data, i.e., to remove the mean from
the features; L is a kernel on the labels y; and U is the
transformation that maps the data to the space of maximum
dependency with the labels. According to the Rayleigh-Ritz
Theorem [32], the solution for the optimization problem given
in (4) is the corresponding eigenvectors of the top eigenvalues
of Φ = XHLHX>.

To explain how the optimization problem provided in (4)
learns the dictionary in the space of maximum dependency
with the labels, using a few manipulations, we note that the
objective function given in (4) has the form of empirical HSIC
given in (3), i.e.,

max
U

tr(U>XHLHX>U)

= max
U

tr(X>UU>XHLH)

= max
U

tr
([

(U>X)>U>X

]
HLH

)
= max

U
tr(KHLH), (5)

where K = (U>X)>U>X is a linear kernel on the trans-
formed data in the subspace U>X. To derive (5), it is noted
that the trace operator is invariant under cyclic permutation,
e.g., tr(ABC) = tr(CAB) = tr(BCA) and also that X>U =
(U>X)>.

Now, it is easy to observe that the form given in (5) is the
same as empirical HSIC in (3) up to a constant factor and
therefore, it can be easily interpreted as transforming centered
data X using the transformation U to a space where the
dependency between the data and class labels is maximized.
In other words, the computed transformation U constructs
the dictionary learned in the space of maximum dependency
between the data and class labels.

After finding the dictionary D = U, the sparse coefficients
can be computed using the formulation given in (2). As
explained in [18], (2) can be either solved using iterative
methods such as the lasso or in closed-form using soft-
thresholding [33], [34] with the soft-thresholding operator
Sλ(.), i.e.,

αij = Sλ

(
[D>xi]j

)
, (6)

Algorithm 1 HSIC-Based Supervised Dictionary Learn-
ing [18]
Input: Training data, Xtr, test data, Xts, kernel matrix of labels
L, training data size, N , size of dictionary, l.
Output: Dictionary, D, coefficients for training and test data,
αtr and αts.

1: H← I−N−1ee>

2: Φ← XtrHLHX>tr
3: Compute Dictionary: D ← eigenvectors of Φ corr-

esponding to top l eigenvalues
4: Compute Training Coefficients: For each data sample

xtri in the training set, use αij = Sλ
(
[D>xtri ]j

)
, j =

1, ..., l to compute the corresponding coefficient
5: Compute Test Coefficients: For each data sample xtsi

in the test set, use αij = Sλ
(
[D>xtsi ]j

)
, j = 1, ..., l to

compute the corresponding coefficient

where xi ∈ Rd is the ith data sample, [D>xi]j and αij are
the jth elements of D>xi and αi, respectively, and Sλ(t) is
defined as follows

Sλ(t) =


t− 0.5λ if t > 0.5λ

t+ 0.5λ if t < −0.5λ
0 otherwise

The steps for the computation of the dictionary and coeffi-
cients using the HSIC-based SDL is provided in Algorithm 1.

The main advantages of the HSIC-based SDL are that the
dictionary and coefficients are computed in closed form and
separately. Hence, unlike many other SDL techniques in the
literature, learning these two do not have to be performed
iteratively and alternately. Another remark on the HSIC-based
SDL is that unlike many other SDLs in the literature, the
labels y are not restricted to discrete values and can also be
continuous. In other words, the HSIC-based SDL can be easily
extended to regression problems, in which the target values are
continuous, which is the case in this paper as will be discussed
in next sections.

C. Multiview Supervised Dictionary Learning

In this section, the formulation for two-view supervised
dictionary learning is provided; the extension to more than
two views is straightforward. The main assumption is that
both views agree on the class labels of all instances in the
training set. Let X(v) ∈ Rd1×N and X(w) ∈ Rd2×N be
two views/representations of N training samples with the
dimensionalities of d1 and d2, respectively. Having these two
representations, the main question is how to perform the
learning task using the proposed SDL provided in Algorithm 1.
There are two approaches, as follows:

Method 1: One approach is to fuse the feature sets from the

two views to obtain X =

[
X(v)

X(w)

]
, where X ∈ R(d1+d2)×N .

To learn the supervised dictionary, one needs to use the
optimization problem in (4). The columns of U, which are
the eigenvectors of Φ = XHLHX>, construct the dictionary
D ∈ R(d1+d2)×l, where l is the number of dictionary atoms.
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Using the formulation given in (2), the sparse coefficients
α ∈ Rl×N can be subsequently computed for both the training
and test sets. These coefficients are submitted to a classifier
such as SVM for training or classifying an unknown test
sample, respectively. As mentioned in the previous subsection,
given the data samples X ∈ R(d1+d2)×N and the dictionary
D ∈ R(d1+d2)×l, the formulation given in (2) can be either
solved using iterative methods such as the lasso or using a
closed-form method such as soft-thresholding given in (6).
The latter has the main advantage that it provides the solution
in closed form and hence, in lower computation cost compared
to iterative approaches like the lasso.

Method 2: The alternative approach is to learn one subdic-
tionary from the data samples in each view. In other words,
by replacing X(v) ∈ Rd1×N in (4) we have

max
U(v)

tr(U(v)>X(v)HLHX(v)>U(v)),

s.t. U(v)>U(v) = I.
(7)

By computing the corresponding eigenvectors of the largest
eigenvalues of Φ(v) = X(v)HLHX(v)> , a subdictionary
D(v) ∈ Rd1×l1 is obtained, where l1 is the size of the
subdictionary for this view.

Similarly, another subdictionary D(w) ∈ Rd2×l2 with the
size of l2 can be computed by replacing X(w) ∈ Rd2×N in (4),
i.e.,

max
U(w)

tr(U(w)>X(w)HLHX(w)>U(w)),

s.t. U(w)>U(w) = I
(8)

and computing the corresponding eigenvectors of the top
eigenvalues of Φ(w) = X(w)HLHX(w)> . By replacing the
data samples of each view and their corresponding subdic-
tionaries computed in the previous step in the formulation
given in (2), the sparse coefficients α(v) ∈ Rl1×N and
α(w) ∈ Rl2×N can be computed in each view for the training
and test samples3. Each of these coefficients can be interpreted
as the representation of the data samples in the space of the
subdictionary of the corresponding view. These coefficients

are then fused such that α =

[
α(v)

α(w)

]
, where α ∈ R(l1+l2)×N .

Fused coefficients α are eventually submitted to a classifier
such as SVM for training or classifying an unknown test
sample. Algorithms 2 and 3 summarize the computation steps
for the two multiview approaches proposed in this paper.

The connection between the two proposed multiview meth-
ods is provided in the Appendix. As proved, by adding an
additional constraint on U provided in (13) of the appendix,
Methods 1 and 2 yield the same results, i.e., the same
dictionary and coefficients. This special form of U, effectively,
decouples the computation of the dictionary and coefficients
over two views.

In the following sections, the relative performance of these
two multiview approaches is shown in the application of
emotion recognition.

3The solution can be provided in closed form using (6) as mentioned in
Method 1.

Algorithm 2 Multiview Supervised Dictionary Learning-
Method 1 (MV1)

Input: Training data at multiple views, X
(v)
tr , v = 1, ...,V,

test data at multiple views, X
(v)
ts , v = 1, ...,V, kernel matrix

of labels L, training data size, N , size of dictionary, l.
Output: Dictionary, D, coefficients for training and test data,
αtr and αts.

1: Xtr =


X

(1)
tr
...

X
(V)
tr


2: Xts =


X

(1)
ts
...

X
(V)
ts


3: H← I−N−1ee>

4: Φ← XtrHLHX>tr
5: Compute Dictionary: D ← eigenvectors of Φ corr-

esponding to top l eigenvalues
6: Compute Training Coefficients: For each data sam-

ple xtri in the fused training set Xtr, use αij =
Sλ
(
[D>xtri ]j

)
, j = 1, ..., l to compute the corresponding

coefficient
7: Compute Test Coefficients: For each data sample xtsi

in the fused test set Xts, use αij = Sλ
(
[D>xtsi ]j

)
, j =

1, ..., l to compute the corresponding coefficient

III. SPEECH EMOTION RECOGNITION (SER)

Although automatic speech recognition has been around for
many years now, it is not always sufficient only to know what
is said in a conversation, but sometimes we need to know how
something is said. That is due to the fact that a piece of speech
can convey much more information than the mere verbal
content [35]. Speech emotion recognition attempts to unveil a
part of this information, which is related to affection. A natural
application of this is to human-computer interaction. That is, to
enable computers to adapt to the emotional states of the users,
in order to reduce their frustration during interactions [36].
Different modalities (also referred to as social cues) have been
used for this purpose, among which only voice cues have led
to the discussion of the current section.

Given the speech signal x[n], there are two major phases
into a solution for speech emotion recognition: 1) extraction of
low-level descriptors (LLDs) (acoustic features) from speech,
and 2) statistical modeling. Extraction of LLDs is essential, as
on the one hand, each speech sample does not convey more
than the air pressure recorded by the microphone at a very
small fraction of time, therefore one is required to calculate
some useful measures of speech that have closer relationship
with its affective qualities; on the other hand, speech signals
are usually of very high dimensions, hence extracting LLDs
also counts as a dimensionality reduction stage. Subsequently,
at the second stage, given the LLDs, as the covariates (i.e.,
X ∈ Rd×N ), and an affective quality of speech, as the
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Algorithm 3 Multiview Supervised Dictionary Learning-
Method 2 (MV2)

Input: Training data at multiple views, X
(v)
tr , v = 1, ...,V,

test data at multiple views, X
(v)
ts , v = 1, ...,V, kernel matrix

of labels L, training data size, N , size of dictionary, l.
Output: Dictionary, D, coefficients for training and test data,
αtr and αts.

1: H← I−N−1ee>

2: for v = 1→ V do
a: Φ(v) ← X

(v)
tr HLHX

(v)>

tr
b: D(v) ← eigenvectors of Φ(v) corresponding to top l
eigenvalues
c: For each data sample x

(v)
tri in the training set X

(v)
tr ,

use αij = Sλ

(
[D>x

(v)
tri ]j

)
, j = 1, ..., l to compute the

corresponding coefficient
d: For each data sample x

(v)
tsi in the test set X

(v)
ts , use

αij = Sλ

(
[D>x

(v)
tsi ]j

)
, j = 1, ..., l to compute the

corresponding coefficient
3: end for

4: Compute Dictionary: D←


D(1) 0 · · · 0
0 D(2) · · · 0
...

...
. . .

...
0 0 · · · D(V)


5: Compute Training Coefficients: αtr ←


α

(1)
tr
...

α
(V)
tr


6: Compute Test Coefficients: αts ←


α

(1)
ts
...

α
(V)
ts



response variable (i.e., y ∈ ZN in case of discrete affects4,
or y ∈ [−1, 1]N in case of continuous affects), the idea is
to find a mapping between the two: X → y. Later on, this
mapping will be used to make predictions on the affective
qualities of speech samples.

As for the affective qualities, denoted by y, two points
of view for representing emotional states have been used:
categorical and dimensional. According to the categorical
view, emotional states [37], [38] can be described using
discrete emotion categories such as anger or happiness. On
the other hand, a dimensional point of view, also known as
the primitive-based point of view, suggests the use of some
continuous lower level attributes, e.g., arousal and valence.
Theories behind the dimensional representation claim that
the space defined by those dimensions can subsume all the
categorical emotional states [39]–[41]. Therefore, depending
on the choice of affective qualities, the modeling problem can
be recognized as either classification, if the categorical point
of view is of interest, or regression, otherwise.

Acoustic LLDs are categorized by their domain of extrac-
tion. Those which are interpreted in the time and frequency do-

4Z is the set of nonnegative integers.

mains are respectively known as prosodic and spectral LLDs.
Among prosodic LLDs, pitch, speaking rate, jitter, shimmer,
and harmonics-to-noise ratio (HNR) are frequently applied
to emotional speech recognition. On the other hand, Mel
frequency cepstrum coefficients (MFCC), formant frequencies,
energy in different spectral bands (250-650 Hz and 1-4 kHz),
and spectral characteristics such as flux, entropy, variance,
skewness, and kurtosis, are among the most commonly-used
spectral LLDs [42]. A list of about forty LLDs, including
prosodic and spectral, has been recently set as a standard [42]–
[44], and it appears that the list has been adopted by the
research community [45]–[50]. Except for a very few stud-
ies [49]–[53], the recent research does not show a major
investigation for introduction of new LLDs.

On the statistical modeling side, various models and learn-
ing algorithms have been used to tackle the problem at
hand. Nonetheless, the literature of speech emotion recognition
leaves a vast amount of space for experiencing methods based
on dictionary learning, particularly those that can incorporate
multiple feature sets of different natures, known as multiview
dictionary learning. In this work, since we are using two
different types of features sets, that is the baseline features
of the AVEC 2012, and a set of features that are meant
for the analysis of the spectral bands of the speech signal,
the multiview dictionary learning approach makes a perfect
choice. As for the regression model, we have made use of the
lasso, due the sparsity of the linear regression coefficients that
it allows, which commonly gives way to a model with better
generalization capabilities, and more transparent interpretation
of the features space [53].

IV. EXPERIMENTAL RESULTS

In this section, first an overview of the emotional speech
database used in our experiments is provided, then our choice
of acoustic features is described followed by a brief description
of some state-of-the-art techniques with which the proposed
methods are compared. Eventually, the experiments and the
results are presented.

A. Dataset

Although dozens of emotional speech databases have been
collected in the past few years, not all could attract the
attention of the research community. SEMAINE, however, has
been one of the most well-received databases. A major part
of the recent studies on emotional speech recognition [42],
[45]–[57] have been conducted relying on the solid-SAL part
of the database. Since we have chosen to adopt the database
in our experiments, in this subsection, it will be introduced.

SEMAINE is recorded using three different sensitive ar-
tificial listener (SAL) interaction scenarios [58]: solid SAL,
semi-automatic SAL, and automatic SAL. 150 participants
(93 female and 57 male) have taken part in the recordings,
where their ages range from 22 to 60 (32.8±11.9). The aim
of SAL is to evoke strong emotional responses in a listener
by controlling the statements of an operator, i.e., the script is
predefined in this scenario. For this purpose, four agents are
introduced, and a user can decide which operator to talk to at
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any time. Each of those agents tries to simulate one of four
different emotions: happiness, sadness, anger, and sensibility.
Solid SAL [59], [60], on the other hand, is a similar scenario
to SAL, for which there is no predefined script given to the
operators. Instead, they are free to act as one of the four SAL
agents at any time. This is done for the sake of a more natural
face-to-face conversation.

Despite the relatively young age of the database, it has been
a target of various studies already. The main reasons for the
attraction towards the SEMAINE are first [42] and second [61]
audio/visual emotion challenge (AVEC), which have set the
solid SAL part of the database as the benchmark. For the
sake of these challenges, four dimensions were used: arousal,
expectation, power, and valence. Our study is conducted based
on the fully-continuous sub-challenge (FCSC) of the AVEC
2012. For the FCSC, the features are extracted at 0.5 second
intervals, considering only the spoken parts of the record-
ings [61]. To extract features from the spoken parts of the
speech signal, we have used the same timing as provided by
the baseline features. In other words, each instant in the SED
features vector corresponds to an instant in the baseline feature
vector, where the two are extracted from the same window.
According to the settings of this challenge, three subsets of the
database were used for the training, development, and testing
purposes. Since the labels of the test subset were not released
to the public, our experiments are performed based on the other
two subsets. That is to say, for each experiment, a model is
trained using the training set, and it is evaluated using the
development set. To be more specific, all training and tuning
the parameters are performed on the training set, during which
the development set is remained unseen. The performance of
the systems is eventually evaluated on the development set,
which serves as the test set in the experiments. The number
of samples in the training and development sets are 10806 and
9312, respectively. This number of samples comes from 31 and
32 different interaction sessions, for training and developments
sets, respectively.

B. Audio Features

Different acoustic low-level descriptors (LLDs), also re-
ferred to as low-level descriptors, have been employed for the
emotional recognition of speech. In the following, a review of
the spectral energy distribution is provided, followed by a brief
introduction of the baseline features of the AVEC 2012 [61]. In
the previous works [53], [62], we have observed the efficiency
of the spectral energy distribution as a set of features for
analyzing emotional speech, in this work we have decided
to combine those with the prevalently used set of features.
Farther in this study, we show how the addition of this set of
features improves the prediction accuracy of the overall model.

1) Spectral energy distribution (SED): Spectral energy dis-
tribution (SED) is comprised of a set of components, where
each component represents the relative energy of the signal in
a specific band of the spectrum [53], [62]. For a speech signal
x[n], the definition of the component i is as follows.

SEDix =

N∑
k=1

[H[k − Ui]−H[k − Li]]g(X[k])2, (9)
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Fig. 1: (a) A speech signal (b) SED component for q = 1, and
(c) SED component for q = 0.25, where q is the normalizing
factor as introduced in (10).

where X[k] is the discrete Fourier transform of x[n]; H[k] is
the unit step function (a.k.a. the Heaviside step function); Li
and Ui indicate the lower and upper bounds of the component
in the spectrum; and g(.) is a normalizing function, the use of
which is discussed in the remainder of this section. In this
equation, N denotes the number of samples of the signal,
which by principle equals the length of the signal times its
sampling frequency.

Fig. 1a and 1b show an arbitrary speech signal and the
SED components of the signal, respectively. In Fig. 1b,
the normalizing function g(.) is assumed to be the identity
function, therefore the SED components form a binned power
spectrum of the speech signal.

Regardless of how informative each of the components is,
they can take arbitrarily large or small values. In other words,
although some intervals appear to carry a relatively minor part
of the energy of the signal, they can play a role as important
as that of the others, if not more so. Therefore, as a natural
solution, we normalize the Fourier transform of the signal
over the spectrum by incorporating the function g(.) in the
definition of the SED:

g(X[k]) = Xq[k]; 0 < q ≤ 1. (10)

The reason why q is set to take values from (0, 1] is because
we normalize the amplitude of the speech signal to take values
between zero and one; since this property will be preserved
by the discrete Fourier transform, raising to the power of q
inflates X[k]. Fig. 1c shows the effect of this normalization on
SED components. This is similar to the idea of log spectrum,
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however, this provides a degree of freedom, i.e., q, that could
be set through cross-validation, given the problem of interest.

As for the parameter setting of SED, except the maximum
value of the higher bound on the spectrum, which is dictated
by the sampling frequency (Nyquist theorem), the length of
each interval and the power q have to be set according to the
modeling criteria.

For the purpose of our experiments, extraction of SED
components is done from non-overlapping 100 ms windows
of speech signal. The spectral interval length is set to 100 Hz.
They cover from 0 to 8 kHz. The value of q is selected as
0.2. These parameters are all chosen based on a line search.
The min, max, median, mean, and standard deviation of the
features are used as the statistics computed over the windows
of the speech signal. The dimensionality of this SED feature
set is 400.

2) AVEC 2012 audio baseline features: The baseline fea-
tures provided by the AVEC 2012 [61] have the dimensionality
of 1841, consisting of 25 energy and spectral-related LLDs
× 42 functionals, 6 voice-related LLDs × 32 functionals, 25
delta coefficients of the voice-related LLDs × 19 functionals,
and 10 voiced/unvoiced durational features. The details of the
features and functionals are provided in [61, Tables 4 and 5].

C. Comparison to the State of the Art

In this subsection, the explanation is provided for four ap-
proaches in the literature, with which our results are compared.
These four approaches are two from dictionary learning and
sparse representation literature, one from a recently published
paper in multiview emotion recognition, and the AVEC 2012
baseline system [61] as described in the following paragraphs.

1) Unsupervised k-means: Although k-means is known as
a clustering approach and hence, an unsupervised technique,
in dictionary learning and sparse representation (DLSR) liter-
ature, it has been used in both unsupervised and supervised
paradigms [18], [19]. In this context, if k-means is applied
to all training samples on all classes, it is considered as an
unsupervised dictionary. However, if the cluster centers are
computed on the training samples of each class using k-
means separately, eventually composed into one dictionary, the
dictionary obtained is supervised, and the approach is called
supervised k-means, which is belonging to one dictionary per
class category of SDL approaches mentioned in Section I.
Supervised k-means is designed for discrete labels and it
cannot be extended to continuous labels which is the case
in speech emotion recognition application using dimensional
affects. Hence, here, unsupervised k-means has been used as
one of the dictionary learning approaches to be compared with
the proposed approach.

For multiview learning using k-means, the feature sets are
first fused and then submitted to the k-means for computing
the dictionary. The sparse coefficients are learned using (2).
Since the dictionary is not orthogonal in this case, unlike the
proposed approach, (2) can be only computed using iterative
approaches and it does not have closed-form solution.

2) Discriminative K-SVD: To provide a comparison with
the supervised dictionary learning (SDL) approaches in the

literature, as mentioned in Section I, not all the proposed
SDL methods in the literature are extendible to continuous
labels. For example, all of the SDL methods in category 1
mentioned in Section I, i.e., one dictionary per class category,
need discrete class labels and none of them can be applied
to continuous labels. Among the SDL approaches in the
literature, we have chosen the discriminative K-SVD (DK-
SVD) [25] approach that jointly learns the dictionary and a
linear classifier in one optimization problem. Although DK-
SVD was originally proposed for classification problem, i.e.,
for discrete labels, it can be easily extended to regression
problems (for continuous labels). It is sufficient to replace
the discrete labels in the formulation provided in [25] with
continuous labels, all other steps remain unchanged.

To implement multiview DK-SVD, the same as multiview
k-means, the features from single views are fused and then
submitted to the DK-SVD formulation provided in [25].

3) Cross-Modal Factor Analysis (CFA): The proposed mul-
tiview SDL approach in this paper is a supervised multiview
technique as the class labels are included in the learning
process. There are, however, unsupervised approaches in the
literature that perform multiview analysis by including the
correlation among the views into the learning process with-
out taking into account the class labels. Cross-modal factor
analysis (CFA) [63] is one of these approaches, which has
recently been introduced in the context of multiview emotion
recognition [64]. CFA is an unsupervised approach that in-
cludes the relationship between the two views by minimizing
the `2 norm distance between the projected points into two
orthogonal subspaces.

Subsequently, the projected data points into the coupled
subspaces are computed and concatenated to jointly represent
the data. They are eventually submitted to a regressor for its
training using the training set, and subsequently predicting the
dimension of an unknown emotion. Unlike other approaches
discussed in this paper, CFA does not lead to a sparse
representation.

4) AVEC 2012 Baseline System: The AVEC 2012 baseline
system [61] is comprising of baseline features submitted to
support vector machines regression (SVR). Here, the original
baseline feature set is used with a dimensionality of 1841 fea-
tures, whereas in previous three approaches, the dimensionality
is determined by the dictionary size (in unsupervised k-means
and DK-SVD) or the number of components in the jointly
learned subspaces (in CFA), which is far less than the original
feature set size in our experiments (maximum 64).

D. Implementation Details
Two feature sets described above have been used, i.e., SED

and baseline features, as the two views v and w for a speech
emotion recognition (SER) system based on the multiview
SDL proposed earlier in this paper. Hence, the two views are
X(v) ∈ R400×N and X(w) ∈ R1841×N , where N is 10806 in
the training set (which is used for both training and tuning the
parameters) and 9312 in the development set (which serves as
the test set) for the FCSC part of the dataset in the experiments.

There are four dimensional affects, i.e., arousal (A), ex-
pectation (E), power (P), and Valance (V), as the continuous
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response variables to be predicted. Hence, a regressor is to
be deployed in the SER system. The lasso regressor and
its GLMNET5 implementation are used in all approaches
except for DK-SVD that learns its own linear regressor and
AVEC 2012 baseline system that deploys a SVR. The sparsity
parameter of the lasso regressor has been optimized over the
training set by a 10-fold cross validation. As for the SVR,
a linear-kernel is used in the experiments and the trade-off
parameter (C∗) of the SVR is tuned by a line search over
the set of values of {10−5, 10−4, 10−3, 10−2, 10−1}, and by
5-fold cross validation on the training set.

An RBF kernel is used over the response variable in
each dimension, which serves as the kernel over the target
values (L) to compute Φ in Algorithms 2 and 3. The kernel
width of the RBF kernel has been set by using a self-
tuning approach similar to what is explained in [65], i.e.,
σi = 1

Ntrain

∑
j 6=i d(yi, yj), which is the average (Euclidean)

distance between a response variable and all others. The
training set is used to compute the dictionary. The optimal
value of the regularization parameter in soft thresholding (λ∗)
for the proposed multiview dictionary learning methods, which
controls the level of sparsity, has been computed by 10-fold
cross-validation on the training set. The λ∗ is then used to
compute the coefficients for both training and test sets6.

In all experiments, the data in each view is normalized such
that each feature is mapped to the range of [0,1]. As suggested
in [61], the performance of the SER system is evaluated using
Pearson’s correlation coefficient (rs) for each session:

rs =

∑Ns
i=1(ysi − µys)(ŷsi − µŷs)√∑Ns

i=1(ysi − µys)
2

√∑Ns
i=1(ŷsi − µŷs)

2

, (11)

where, Ns is the total number of data samples in a session; ys
and ŷs represent the actual and predicted dimensional affects
in a session, respectively; µys and µŷs are the means of those
values.

The correlation between the predicted and actual values
is calculated for each session according to (11). However,
since sessions are of different lengths, the contribution of each
session in the total correlation should be different. Therefore,
to calculate the overall correlation coefficient (r), we have used
the weighted average of session correlations, where sessions’
lengths are used as for the weights:

r =
1

N

S∑
i=1

lsirsi (12)

where N is the total length of sessions (which is equivalent
to the total number of data samples), lsi and rsi are the length
and the correlation coefficient of session i, respectively, and
S is the total number of sessions.

E. Results and Discussions

The correlation coefficients (r) for HSIC-based SDL at
single view (Algorithm 1) and also for the proposed multi-

5http://www-stat.stanford.edu/∼tibs/glmnet-matlab/.
6One λ∗ is computed for each data point in the training set. However, the

averaged λ∗ over the whole training set is used to compute the coefficients
on the training and test sets as it yields better generalization.

view SER systems (Algorithms 2 and 3) and rival multiview
approaches computed over the two feature sets, i.e., SED
and baseline features, are reported in Fig. 2 for the arousal,
expectation, power, and valence dimensions at four dictionary
sizes, i.e., 8, 16, 32, and 64. The average over all four
dimensions of learning time (including the time required to
learn the dictionary and coefficients, the tuning time for
the sparsity coefficient of the regressor, and also the time
for training the regressor) as well as recall (test) time are
provided in Table I. Since there is no dictionary associated
with the AVEC 2012 baseline system, the results related to
this approach are separately provided in Table II. The p values
for the statistical test of significance (paired t-test) performed
pairwise between the proposed multiview approaches and all
single view or rival approaches are reported in Table III.

As can be seen in Fig. 2, both proposed multiview ap-
proaches (MV1 and MV2) benefit from the complementary
information in two-view features sets. The performance of
the single-view system based on the SED is usually infe-
rior to the one based on the baseline feature set. However,
combining these two representations using one of the pro-
posed multiview approaches discussed earlier leads to higher
correlation coefficients in all dimensions (except for MV1 in
expectation dimension). The results of statistical significance
test (Table III) show that both MV1 and MV2 significantly
outperform (p < 0.05) single view method based on SED
features . Moreover, MV2 significantly outperforms the other
single view method, which is using baseline features.

For the purpose of comparing the proposed multiview SDL
methods with the AVEC 2012 baseline system, if we take the
average of correlation coefficient over all dimensions and dic-
tionary sizes, MV1 and MV2 achieve an average performance
of 15.27% and 16.17%, respectively, whereas the average
correlation coefficient over all four dimensions for the AVEC
2012 baseline system is 14.8%, which is less than (although
not significant according to Table III) the performance of the
proposed methods. Also, since original baseline features, i.e.,
1841 features, are used in the AVEC 2012 baseline system,
the dimensionality is much higher than the dictionary learning
approaches (maximum 64). Consequently, the computational
time for both learning and recalling are much longer than all
other approaches. For example, the average recall time over
all dimensions for the AVEC 2012 baseline system (665 s) is
more than 10000 times longer than the same for the proposed
MV1 (0.057) and MV2 (0.062 s).

Furthermore, the proposed MV2 significantly (see Table III)
outperforms other multiview approaches in the literature. Also,
the performance of the proposed MV1 is significantly better
than MV DK-SVD. Supervised multiview methods, i.e., mul-
tiview DK-SVD, MV1, and MV2 particularly benefit from
the information in target values’ information (dimensional
affects) at small dictionary size as can be observed from the
results at the dictionary size of 8 in Fig. 2. For example,
for power dimensional affect, MV1 performs about twice
as good as the unsupervised multiview techniques, i.e., k-
means and CFA. By increasing the dictionary size, how-
ever, the unsupervised multiview approaches can capture the
underlying correlation among the single view feature sets,
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Fig. 2: The percentage of correlation coefficient (r) of the speech expression recognition (SER) systems based on single-view
(SV) and multiview (MV) learning approaches. MV1 and MV2 are the multiview SDL techniques based on Algorithms 2
and 3, respectively as discussed in Section II-C. The results are shown at four different dictionary sizes for (a) arousal, (b)
expectation, (c) power, (d) valence, and (e) average over all dimensional affects.
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TABLE I: The average learning time (including the time required for learning the dictionary and the coefficients, tuning the
sparsity parameter for the lasso regressor, and eventually training the regressor using tuned parameters) and recall time (both
in seconds) for the single-view and multiview SER systems . The computation time is averaged over all the dimensional affects
for each method. The results are reported for four dictionary sizes 8, 16, 32, and 64.

Dictionary Size
Approach 8 16 32 64

Learning Time

SV-SED 35 42 73 199
SV-Baseline 82 98 206 490
MV k-means 149 267 731 2168
CFA 139 139 139 139
MV DK-SVD 359 736 1400 4965
Proposed MV1 104 125 192 384
Proposed MV2 78 88 119 302

Recall Time

SV-SED 0.022 0.026 0.027 0.038
SV-Baseline 0.037 0.042 0.043 0.064
MV k-means 4.687 14.786 51.829 170.346
CFA 0.034 0.022 0.028 0.037
MV DK-SVD 0.673 1.056 2.334 7.391
Proposed MV1 0.047 0.048 0.064 0.069
Proposed MV2 0.061 0.060 0.061 0.065

TABLE II: The percentage of correlation coefficient (r), learning, and recall time (in seconds) for the AVEC 2012 baseline
system using the baseline features and a support vector machine regression (SVR) with linear kernel.

Arousal Expectation Power Valence Average over All Dimensions

Correlation Coefficient 19.9 23.1 8.7 7.5 14.8
Learning Time 15684 27941 14676 20743 19761
Recall Time 497 959 499 706 665

hence their performance approaches those of the supervised
multiview techniques. Nevertheless, the main advantage of
better performance at small dictionary sizes is much lower
computational cost, as increasing the number of dictionary
atoms also increases the computational time. On the other
hand, between the two supervised approaches, while the
proposed multiview approaches provide a closed-form solution
for both the dictionary and coefficients, multiview DK-SVD
optimization problem is nonconvex and the solution has to
be performed iteratively and alternately for the dictionary
and coefficients [25] using an iterative algorithm such as K-
SVD [66]. This has two main disadvantages, first, it increases
the computation time, and second, the algorithm may get stock
in a local minimum solution. The latter disadvantage of DK-
SVD algorithm explains its poor performance in expectation
dimension for the dictionary sizes of 16, 32, and 64. Moreover,
in average, the performance of DK-SVD is far behind the
proposed MV1 and MV2. Not to mention that it is learning
time is the longest after AVEC 2012 baseline system, as
tuning its parameters is very time consuming, and makes this
approach unsuitable in the applications where online learning
is required.

In terms of the complexity of methods, the proposed mul-
tiview approaches are the least complex as their solution is
closed form for both the dictionary and coefficients. Although
learning the dictionary and coefficients does not have to be
done iteratively and alternately for the MV k-means method,
neither the dictionary nor the coefficients can be learned in
closed form, which makes both learning and recalling time
for this method relatively long (see Table I). As can be seen

in Table I, the proposed MV1 and MV2 are computation-
ally much more efficient than the other two dictionary-based
multiview approaches, i.e., k-means and DK-SVD. Although
CFA also offers a closed-form solution using singular value
decomposition, unlike MV1 and MV2, it does not lead to a
sparse representation in the subspaces.

Both CFA and proposed multiview approaches can be
kernelized. The formulation for the kernelized CFA has been
provided in [64]. A kernelized version of HSIC-based SDL
was proposed in [18]. The extension to multiview learning
is straightforward and leads to similar algorithms as in Al-
gorithms 2 and 3. However, the kernelized version of the
proposed multiview approach will lead to a sparse represen-
tation, which is an advantage for the approach compared to
the kernelized CFA. The proposed MV1 and MV2 approaches
can be easily extended to more than two views as shown in
Algorithms 2 and 3. This is not the case for the extension of the
CFA to more than two views as the correlation between every
two views has to be computed pairwise using an optimization
problem given in [64]. However, this may not lead to unique
solutions for the subspaces.

Considering that MV1 and MV2 achieve an average corre-
lation coefficient over all dictionary sizes and dimensions of
15.27% and 16.17%, respectively reveals higher performance
of MV2 compared to MV1 in average. If we also take into
account the computation time, that is learning time for MV2
is faster than MV1, MV2 seems to be the more favorable of
the two.

As a final remark, it is worth to mention that MV2 learns
the dictionary and coefficients in the two views independently,
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TABLE III: Tests of statistical significance (paired t-test) between proposed multiview methods (MV1 or MV2) and single
view or rival multiview approaches. p-values are shown for the proposed MV methods vs. the single view or rival approach.
∗ denotes p < 0.05; ∗∗ denotes p < 0.01; ∗∗∗ denotes p < 0.001.

SV-SED SV-Baseline MV k-means CFA MV DK-SVD AVEC 2012 Baseline System

MV1 0.000∗∗∗ 0.853 0.495 0.054 0.035∗ 0.641
MV2 0.000∗∗∗ 0.000∗∗∗ 0.010∗ 0.007∗∗ 0.016∗ 0.164

and only fuses the features in the space of leaned dictionaries
at the final stage. This is expected to be useful when the two
views are independent or not very much correlated. If this is
not the case, learning the dictionary in a fused space of two
views might be beneficial, as the dictionary learned can share
the common properties of both views. This can be especially
useful for small dictionary sizes.

V. CONCLUSION

In this paper, a multiview supervised dictionary learning
was proposed for multiview representation analysis of speech
emotion recognition. Two different multiview methods were
proposed: fusing the feature sets in the original space, and
learning one dictionary and corresponding coefficients in
this fused space (MV1), or learning one dictionary and the
corresponding coefficients in each view, and then fusing the
representations in the learned dictionary spaces (MV2). It is
shown that both methods benefit from the complementary
information in multiple views. However, MV2 learns in the
space of each view independently from others, whereas MV1
learns in the space of all views simultaneously.

The relative performance of the two proposed multiview
SDL approaches was demonstrated in speech emotion recogni-
tion (SER). In average, it was shown that MV2 outperforms the
MV1 method. However, both proposed multiview approaches
could capture the complementary information in both views
to improve the performance over single views. In terms of
computational cost, the learning time for the MV2 is shorter
than the same for MV1 in SER application. But their average
recall time is almost the same. The MV2 also provides one
additional parameter to tune, which is the relative dictionary
sizes in multiple views. This additional parameter gives higher
flexibility to this approach as it can be tuned over the training
set to achieve higher performance. To avoid spending too
much time on tuning this parameter, the relative size of the
dictionaries in multiple views can be selected based on the
relative performance of their corresponding single views, and
assigning more dictionary atoms to those views with higher
performance in the single view.

APPENDIX A
CONNECTION BETWEEN TWO PROPOSED MULTIVIEW

METHODS

The approach provided in Method 2 can be considered as
a special case of Method 1. To better realize how these two
approaches are related, U in Method 1 can be considered to
be of the special form as follows

U =

[
U(v) 0
0 U(w)

]
. (13)

Considering this form of U, it is easy to show:
1) The constraint given in (4) is equivalent to two constraints

given in (7) and (8):

U>U = Il

⇒
[
U(v) 0
0 U(w)

]> [
U(v) 0
0 U(w)

]
= Il

⇒

[
U(v)>U(v) 0

0 U(w)>U(w)

]
=

[
Il1 0
0 Il2

]
, (14)

where Il is a l × l identity matrix and l = l1 + l2.
From the last equality in (14), it is easy to conclude the
constraints given in (7) and (8), i.e., U(v)>U(v) = Il1 and
U(w)>U(w) = Il2 , where the dimensionality of the identity
matrices is explicitly shown in the subscripts to prevent
confusion. Consequently, this means that the dictionaries
learned by the two methods are the same for the special
form of U given in (13).

2) The coefficients α obtained from Method 1 will also be

equivalent to the coefficients α =

[
α(v)

α(w)

]
computed using

Method 2. This can be shown by using the formulation
given in (2), the special form of U given in (13), and by

recalling that X =

[
X(v)

X(w)

]
as follows7,8:

‖X−Uα‖2F + λ‖α‖1

=

∥∥∥∥[X(v)

X(w)

]
−
[
U(v) 0
0 U(w)

] [
α(v)

α(w)

]∥∥∥∥2
F
+ λ

∥∥∥∥[α(v)

α(w)

]∥∥∥∥
1

=

∥∥∥∥[X(v)

X(w)

]
−
[

U(v)α(v)

U(w)α(w)

]∥∥∥∥2
F
+ λ

∥∥∥∥[α(v)

α(w)

]∥∥∥∥
1

.

(15)

The bottom line of (15) is effectively consisting of two
formulations, i.e., ‖X(v)−U(v)α(v)‖2F+λ‖α(v)‖1 for view
v and ‖X(v) −U(w)α(w)‖2F + λ‖α(w)‖1 for view w. This
shows that for the special form of U given in (13), the
coefficients computed using Method 1 are the same as those
computed using Method 2.

In summary, it can be concluded that by adding an ad-
ditional constraint on U as provided in (13), Methods 1
and 2 yield the same results, i.e., the same dictionary and
coefficients. This special form, effectively, decouples the com-
putation of the dictionary and coefficients over two views.

7U is used instead of D in (2) as the dictionary elements are the columns
of U.

8Here, `1-norm is used over a matrix, and it is meant that `1-norms over
each column of the matrix are summed such as what is used in (2).
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