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Abstract. Supervised pixel-based texture classification is usually per-
formed in the feature space. We propose to perform this task in (dis)simil-
arity space by introducing a new compression-based (dis)similarity mea-
sure. The proposed measure utilizes two dimensional MPEG-1 encoder,
which takes into consideration the spatial locality and connectivity of pix-
els in the images. The proposed formulation has been carefully designed
based on MPEG encoder functionality. To this end, by design, it solely
uses P-frame coding to find the (dis)similarity among patches/images.
We show that the proposed measure works properly on both small and
large patch sizes. Experimental results show that the proposed approach
significantly improves the performance of supervised pixel-based tex-
ture classification on Brodatz and outdoor images compared to other
compression-based dissimilarity measures as well as approaches performed
in feature space. It also improves the computation speed by about 40%
compared to its rivals.

1 Introduction

Texture images can be divided to two broad types: stationary that contains only
one texture type per image and nonstationary that consists of more than one
texture type per image [1]. The main application domain on stationary texture
images is supervised classification of each texture image into one class; whereas
on nonstationary texture images, there are two main application domains [1,2].
First, unsupervised texture segmentation that partitions the texture image into
disjoint regions of uniform texture. Second, pixel-based texture classification,
which is similar to texture segmentation in the sense that the given texture image
is segmented to uniform texture regions. The difference, however, is that in pixel
classification, the segmentation is performed using supervised techniques [2]. In
this paper, our focus is on supervised pixel classification and hence, we deal with
nonstationary texture types.

Common trend in literature on pixel-based texture classification is the com-
putation of some texture features for every pixel using its neighboring pixels



and a particular texture method [2-4]. However, as texture is a complicated
phenomenon, there is no definition that is agreed upon by the researchers in the
field [5,6]. This is one of the reasons that there are various feature-based tech-
niques in the literature, each of which tries to model one or several properties
of texture depending on the application in hand. The performance of each of
these features depends on the texture type and there is no single feature method
that performs well on all different texture types [2,3]. To avoid this problem,
textures can be represented in (dis)similarity space. In this approach, pairs of
texture patches are compared by a (dis)similarity measure reflecting their mutual
resemblance.

Among similarity measures in the literature, the metric based on the no-
tion of Kolmogorov complexity, i.e., so called normalized information distance
(NID) [7] has attracted the attention of many researchers. However, due to non-
computability of Kolmogorov complexity, it has been mainly approximated using
real-world compressors [8] introducing normalized compression distance (NCD).
NCD has attractive characteristics, e.g., it is parameter-free, i.e., does not use
any feature or background knowledge about the data; and it is quasi-universal,
(NID is universal, i.e., it minorizes all other distances, but NCD inherits this
from NID to some extent [8]).

NCD was originally defined on binary strings with the explanation that all
data types can be converted to binary strings. Many initial applications on which
NCD was applied successfully were based on 1D data such as in bioinformatics
or plagiarism detection. The extension of NCD application to 2D data such as
images, however, does not seem to be straightforward. While some researchers
linearize 2D data to represent them using 1D strings [9, 10], this causes the loss
of the spatial locality and connectivity of neighboring pixels. The effect of lin-
earization on the overall performance of NCD-based system has been empirically
investigated in [9] with this important conclusion: “images may not be fully ex-
pressible as a string, at least using current compression algorithms”. Using 2D
compressors such as JPEG and JPEG2000 for NCD on images led to contra-
dictory results in the literature: while [11] shows that using JPEG2000 on 2D
satellite images yields better results than converting images to 1D and using
string compressors, [9] and [12] show that JPEG and JPEG2000 does not work
well as compressors for computing NCD-based similarity measure on images.

An alternative approach is using MPEG encoders as 2D compressors in NCD.
The main advantage of MPEG compared to JPEG encoder is that while JPEG
is designed for compressing one image, MPEG encodes frames of images and
hence, by concatenating two images as two frames, they can be compressed
in reference to each other which is desired in NCD. In this paper, we propose a
novel formulation based on MPEG encoder for measuring (dis)similarity between
images/patches. We will show that this new measure works well on both small
and large patch sizes. Introducing this new measure in this paper, we will also
show that the results of pixel-based texture classification can be significantly
improved compared to other NCD-based approaches in the literature.



2 Compression-Based Dissimilarity Measure

In this section, we first briefly review the concept of NID and NCD and then
provide the formulation for our proposed approach. Some illustrative results are
then presented to show the effectiveness of the proposed approach on both small
and large patch sizes.

2.1 Normalized Compression Distance

The normalized compression distance (NCD) [8] is an approximation for nor-
malized information distance (NID) [7], a universal parameter-free similarity
measure based on Kolmogorov complexity that minorizes all other distance mea-
sures [7].

To understand the definition of the NID, we need to define two notations:
K (z) and K (z|y). The former is the Kolmogorov complexity of string «, which is
defined as the length of the shortest binary program to compute x on a universal
computer such as universal Turing machine, whereas the latter is the conditional
Kolmogorov complexity, which is defined as the length of a shortest program to
compute z if y is provided as an auxiliary input for the reference [7]. The NID
is defined as
max (K (a]y)., K (s]2)) "

max{K(x), K(y)}

Since Kolmogorov complexity is a noncomputable measure, the NID defined
in (1) is computed by approximating Kolmogorov complexity using a compressor
denoted by C' as follows [8]

NID(z,y) =

min{C(zy), C(yz)} — min{C(z), C(y)}

Nepw = max{C(@), C(u)} | (2>

where xy means that the strings « and y are concatenated. To have more insight
into (2), we consider the case that C(y) > C(z)! and the compressor is symmetric
such that C(xy) = C(yx). In this case, we can rewrite (2) as NCD(z,y) =

%, which means that the NCD distance between = and y is improvement

on compressing y using x (the numerator, which is also denoted as C(y|z)) over
compressing y by its own (the denominator) [8]. This interpretation will help to
explain our proposed measure later in next subsection.

2.2 Proposed Distance Measure

Since we are using MPEG-1 encoder in our proposed (dis)similarity measure, we
first provide some description on how this encoder works. MPEG-1 is a 2D en-
coder and thus, it takes into account the spatial locality and connectivity of the
neighboring pixels in images for compression. MPEG-1 was originally designed

! The opposite condition can be interpreted similarly as NCD distance defined in (2)
is symmetric.



for compressing movies based on three different coding schemes, i.e., intra-frame
(I-frame) coding, predictive frame (P-frame) coding (also called inter-frame cod-
ing), and bidirectional frame (B-frame) coding [13]. I-frame coding is performed
on individual frames without reference to other frames using discrete cosine
transform (DCT). P-frame codes a frame in reference to the previous one by
using a block matching algorithm for motion estimation and using DCT on the
residual. Finally, B-frame coding compresses a frame with reference to its next
and previous frames. To utilize MPEG-1 as compressor in compression-based
similarity measures, patches/images are considered as two successive frames and
compressed using MPEG-1 encoder. This avoids the need to linearize the im-
ages that causes the loss of spatial locality as explained in Section 1. Since there
are only two frames (two images whose similarity are to be computed), B-frame
coding is not utilized.

Now, if we want to use MPEG-1 as compressor for (dis)similarity measure, we
need to use proper formulation based on how MPEG-1 works. To this end, based
on the description provided above on MPEG-1 encoder and also the explanation
provided on (2) at the end of Subsection 2.1, we would like to propose our new
dissimilarity measure considering these two points: First, we utilize MPEG-1 for
the computation of C(x|y) (the conditional compression of = given y) using only
P-frame coding and bypass I-frame coding as it does not provide any information
on the similarity of « and y and we denote it using Cp(x|y). Since the P-frame
coding indicates the differences between two frames, which is essential in finding
the (dis)similarity between them, we encode it with maximum resolution, i.e.,
minimum quantization scale, which is one in MPEG-1 (quantization scale for I-
frame does not have any effect as I-frame coding is bypassed). Second, we notice
that because the second image/patch is compressed in reference to the first one,
Cp(zly) (also C(z]y)) is not symmetric. However, if both = and y are from the
same distribution (class), we expect Cp(z|y) to be close to C,(y|x) (because z
and y are from the same class and it does not make very much difference whether
we compress x in respect to y or y in respect to z), while if z and y are from
different distributions (classes), Cp(z|y) and Cp(y|z) should be largely different.
Hence, we propose our new measure as follows

Culaly) — Gyl
N9 = o T CGly) ®)

where the absolute of the difference is taken in the numerator to ensure positive
distances. C'(z|z) + C(y|y) is used as the normalizing factor. In C(z|z) and
C(yly), since both frames are the same, P-frame coding generates zero (the
difference between two frames is zero). Thus, C(x|z) is equivalent to C(x) in (3).
However, since in MPEG-1 encoder, there are at least two frames, we use C'(z|x)
notation instead of C(x). I-frame quantization scale can be maximized in this
case. The proposed distance is symmetric and nonnegative.

Although MPEG-1 has been also used in [14] for dissimilarity measure, our
proposed measure is different in following aspects. Firstly, Our proposed for-
mulation is different from what they have proposed. Their distance measure is



defined as follows Claly) + Clule)

zly) + C(y|z
where C(z|y) is computed based on both I- and P-frames coding, while in our
approach, it is computed solely based on P-frame coding (denoted by Cp(.|.)).
Secondly, in (4), the compression is maximized by using large quantization scales
for both I- and P-frames coding through MPEG-1 external parameters to pre-
fer compressibility over image quality [14]. In our approach, since P-frame is
essential in finding the (dis)similarity between two frames, we encode it with
maximum resolution. Thirdly, our proposed measure performs properly on both
small and large patches while do i (z,y) cannot represent dissimilarity between
small patches properly. This is explained more in next subsection.

2.3 Illustrative Results

To better realize how dck (x,y) works, we have computed the distances among
patches of 17x17, 33x33, 65x65, and 129x129 extracted from two texture im-
ages of Brodatz, i.e., D4 (Fig. 1la) and D5 (Fig. 1f) as shown in Fig. 1b-le. As
can be seen, the distances computed (300 patches per class) among patches are
normalized to the interval of [0, 1] to ease the comparison and displayed using
color code. We expect to see smaller distances among patches extracted from the
same class, i.e., in ¢; — ¢;,1 = 1,2 areas and larger distances among the patches
extracted from two different classes, i.e., in ¢; — ¢j,4,5 = 1,2 & ¢ # j areas
(see Fig. 1b as reference). However, except for large patch size of 129x129, this
behavior cannot be observed in Fig. 1b-le. This problem can be also seen for
any other texture pair and the main reason is explained next.

The major problem with dog (z,y) defined in (4) is that it compresses the
concatenated patches based on both I- and P-frames. This is while only P-frame
coding is based on the (dis)similarity of patches and I-frame coding is performed
using DCT solely based on the frequency contents of a patch/image. This causes
that for small patch sizes, where the compression based on P-frame is still limited
(due to small search region) comparing to I-frame coding, the distances mainly
be dominated by I-frame coding, i.e., frequency contents and distributions of the
first frame. Hence, the patches from the texture class that have low frequency
contents show lower distances (in this case D5; one can investigate this by taking
the Fourier transform of both textures and looking at their spectrum). This is
while in this example, due to more homogeneity of D4, we expect lower distances
among the patches extracted from D4, i.e., in region ¢; — ¢;.

Fig. 1g-1j shows the distances among the same patches used for dox to
illustrate the effectiveness of the proposed distance on finding the (dis)similarities
among texture pairs. It can be seen that the distances are consistently small
among the patches of the same class for all patch sizes and also the distances
among the patches extracted from D4, which is a more homogeneous texture
than D5, are smaller. This behavior is consistent on other texture pairs as our
experiments indicate (not shown here due to space limit).
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Fig. 1: The distances computed on patches extracted from (a) D4 and (f) D5 of
Brodatz album. (b) to (e) distances computed on various patch sizes as indicated
in the figures using dox and (g) to (j) using proposed measure (dy).

3 Experimental Setup and Results

The effectiveness of the proposed similarity measure is shown in the application
of supervised pixel-based classification on nonstationary texture images, i.e.,
texture images consisting of several different texture areas. In this application,
there is a trade-off between the patch sizes at smooth areas and on the borders.
While large patch size at the uniform texture areas improves the performance of
classification (as more information is included to identify the textures correctly),
small patch sizes are more desired on the borders to prevent mixing textures from
two different classes.

Here, the distances are first computed on 200 patches per class with the size
of 17x17 extracted from the training images. These are used to train a support
vector machine (SVM) with linear kernel ki, = di,.d}, (di, is the distance matrix
computed on the patches extracted from the training set). This kernel is p.s.d.
as it is obtained using an inner product. The optimal cost function (C*) of the
SVM is tuned in a 5-fold cross-validation on the training set. Then the patches
of the same size are extracted from the test image and the distances among these
patches and the training patches are computed using the proposed approach. A
linear kernel is computed subsequently using kis = dis.d}, (dis is the computed
distances from the test to training patches), which is used in the trained SVM.

Data used is the same as what is used in [2]. It is consisting of some texture
composites from Brodatz and some outdoor images. The test images are shown
on the first column of Fig. 2. The results are compared to two other distance mea-
sures using dcox and NCD approach and also to two feature-based approaches
published in [2] that yield the best results on these texture images, i.e., local
binary pattern (LBP§"?) and MeasTex (Gabor, 5NN) (refer to Table 3 of [2]).
To get rid of the speckle-noise type in final classification, the same as in [2], a
median filter with the same size as the patch sizes (17x17 in this case) is applied
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Fig.2: The results of supervised pixel-based texture classification on Brodatz

and outdoor images. (a, f, k, and p) test images; (b, g, 1, and q) ground truth;
(¢, h, m, and r) proposed method; (d, i, n, and s) dc; (e, j, 0, and t) NCD.
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Table 1: The classification rate (%) compared among the proposed method and
other distance- or feature-based approaches. The results on LBP (local binary
pattern) and MeasTex (Gabor, 5NN) methods are based on what is reported in
[2] for the same images.

Approach Test Images
Fig. 2a Fig. 2f Fig. 2k Fig. 2p

Proposed 89.5 83.2 75.8 72.3
dek 82.1 74.0 750 716
dncp 83.3 733 753 714
LBP{ [2] 85.4 775 694 379
MeasTex (Gabor,

SNN) [2] 83.7 705 685 55.1

to the final classified pixels. The results are shown quantitatively in Table 1 and
qualitatively in Fig. 2. As can be seen, our results are significantly better than
other distance-based approaches and also from what is reported in [2].

4 Discussion and Conclusion

In this paper, we have proposed a new compression-based distance measure using
MPEG-1 encoder that takes into account the spatial locality and connectivity of



pixels in images. The proposed measure computes distances based on P-frame
coding and can properly find the distances on both small and large patch sizes,
unlike d¢x which works only on large patches. By bypassing the I-frame coding,
which is not necessary in the computation of distances anymore (except for the
case that the patches are the same), our method improves the performance in
terms of speed by 40% compared to the dog. The effectiveness of the proposed
measure was shown on supervised pixel-based texture classification for both tex-
ture images from Brodatz and outdoor images yielding a significantly improved
performance.
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