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Abstract
A generative model based on training deep ar-
chitectures is proposed. The model consists of
K networks that are trained together to learn the
underlying distribution of a given data set. The
process starts with dividing the input data into
K clusters and feeding each of them into a sepa-
rate network. After few iterations of training net-
works separately, we use an EM-like algorithm to
train the networks together and update the clus-
ters of the data. We call this model Mixture of
Networks. The provided model is a platform that
can be used for any deep structure and be trained
by any conventional objective function for dis-
tribution modeling. As the components of the
model are neural networks, it has high capabil-
ity in characterizing complicated data distribu-
tions as well as clustering data. We apply the al-
gorithm on MNIST hand-written digits and Yale
face datasets. We also demonstrate the clustering
ability of the model using some real-world and
toy examples.

1. Introduction
Deep architectures have shown excellent performance in
various tasks of learning including, but not limited to, clas-
sification and regression, dimension reduction, object de-
tection, and voice recognition. In this work, we focus on
another task, which is building a generative model. Gen-
erative models are used to characterize the underlying dis-
tribution of the data and then randomly generate samples
according to their estimation of the distribution. Recently,

use of deep architectures in the area of generative models
is very popular among researchers.

1.1. Related Works

A fundamental work on deep generative models has been
done by Hinton et al. (2006), where they introduced a
fast algorithm for unsupervised training of deep belief net-
works (DBNs), which are deep graphical models. In a re-
cent work by Salakhutdinov (2015), a comprehensive re-
view over this model is presented. Built upon this model,
Lee et al. (2009) presented a similar network with convo-
lutional layers. They introduced probabilistic max-pooling
technique and constructed a translation-invariant model. In
(Ranzato et al., 2011), another generative model based on
DBNs was presented, which was used for image feature ex-
traction. Unsupervised deep representation learning tech-
niques have been used in (Bengio et al., 2013) to build
a generative model that can exploit high-level features to
generate high-quality samples.

Two important and recent classes of deep generative mod-
els are generative adversarial networks (GANs) (Good-
fellow et al., 2014) and variational auto-encoders (VAE)
(Kingma & Welling, 2014). GANs are trained based on
solving a minimax problem to generate samples that are not
distinguishable from the samples in the training sets. Based
on the variational inference concept, VAEs are designed for
fast training and having explicit expression for posterior
probability of the latent variable. Many recent advance-
ments in the area of deep generative models are based on
these two models (Radford et al., 2016; Chen et al., 2016;
Denton et al., 2015; Sønderby et al., 2016).

Different types of neural networks have been used to work
as a generative model for different applications. In (Gregor
et al., 2015), inspired by a human vision system, Recur-
rent Neural Networks (RNNs) are trained for generating
images. (Dai et al., 2014) proposed a method for training
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Convolutional Neural Networks (CNNs) for this purpose.
In (Dosovitskiy et al., 2015), authors trained a deep neural
network in a supervised way to be able to generate images
of different objects given their names, locations, and angles
of view.

In almost all of these works, the probability distribution of
the output of the networks do not have a well-structured
form. So, we have limited ability to extend these models
and build a mixture model based on them. In mixture of ex-
pert models (Xu et al., 1995; Waterhouse et al., 1996), we
have networks as the component of a mixture of discremi-
native models, where we assume some specific probability
distribution on the output of the networks (i.e. Gaussian).
However, such assumption for generative models, where
the output of the network is very high-dimensional, is not
practical.

1.2. Contribution

In this work, we introduce an algorithm for training mixture
of generative models, which consists of deep networks as
its components. Instead of using the whole training dataset
to train one single network, our model is based on train-
ing multiple smaller networks by clusters of data. All the
above-mentioned models can be components of this work
to build a generative mixture model. The proposed method
works under the assumption that components of a mixture
model do not provide a closed form expression for the prob-
ability distribution of their output. We provide an algo-
rithm which is inspired by expectation maximization (EM)
to overcome this challenge.

There are multiple advantages for the proposed algorithm
compared to its predecessors, including:

• The accuracy of the output samples is higher, as each
network is trained only with similar data points.

• After training the model, users can decide the category
of data they want to generate, instead of randomly
generating samples.

• The model, like other mixture models, can be used as
a clustering method.

In the next section, the general idea of mixture models is
shortly overviewed. Then, we describe the steps of the al-
gorithm in detail. At last, the performance of the proposed
algorithm is evaluated, both as a clustering and a generative
model.

2. Background: Mixture Models and EM
Mixture models are used to estimate the probability distri-
bution of a given sample set where the overall distribution

consists of several components. For the case of parametric
mixture model, distribution of components are presumed
to have some parametric form. Let θ denote the param-
eter set of a mixture model that has K components, i.e.
θ = {θ1, θ2, ..., θK}, where θj represents the parameters
of jth component. For example, if the components are as-
sumed to be Gaussian, then θj = {µj ,Σj}. A popular
way to estimate θj’s is using the Expectation Maximiza-
tion (EM) algorithm. In the expectation (E) step of the EM
algorithm, the membership probability of each data point
is calculated for all components. In fact, it is the posterior
probability over the mixture components. Let mij be the
probability of being a member of the jth component given
the ith data point, xi, i.e.:

mij = P (j|xi, θj) (1)

In the Maximization (M) step of the EM, the parameters of
each component are updated using the membership proba-
bilities. Each point contributes to updating the component
parameters based on its component membership probabil-
ity. To optimize the parameters, the E-step and M-step are
consecutively taken until the algorithm converges to a local
optimum or the maximum number of iterations is reached.

3. Mixture of Networks
Inspired by the mixture models, we propose a combined
generative and clustering algorithm. The learning process
is completely unsupervised. Components of our model
are constructed by networks. Neural networks have shown
strong capabilities in estimating the distribution of compli-
cated datasets. In fact, there is no constraint on the form
of the distribution for components, e.g. Gaussian, Poisson,
etc. Therefore, there is no parameter θj for the components
to describe the distribution explicitly. Instead, the parame-
ters of our model are the weights in the networks that intro-
duce an implicit probability distribution at the output of the
networks. We denote the set of weights of the jth network
by wj .

We train multiple networks using the training data set. Sim-
ilar to the EM algorithm, updating the network weights is
based on membership probabilities. This means that we
would like the points with high membership probability to
an specific network to play significant role in further train-
ing that network. Therefore, the effect of different data
points for updating the parameters of each network will be
different. Each network tries to characterize one part of a
multi-modal distribution function of the training data. In
this section, we describe a mechanism that involves two
steps of training and takes this problem into account.
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3.1. Steps of the training

Step 1: The process starts with clustering the training set
into K partitions using a simple and hard-decision clus-
tering algorithm, e.g. k-means. By hard-decision, we
mean the algorithm will assign data point xi to exactly
one cluster with probability one and to the rest of the clus-
ters with probability zero. The knee method (Salvador &
Chan, 2004) can be used to determine the number of clus-
ters. Suppose X is the training set with N data points
X = {x1,x2, ...,xN} in RD, and X j represents the jth
cluster in this set, X = {X 1;X 2; ...;XK}. The cluster-
ing algorithm will divide the distribution of the training
data into K parts. Each of these parts contains similar data
points and has a smoother behavior compared to the origi-
nal distribution of the whole data set.

Each cluster of the data is used to train one network, i.e. the
jth network is trained by the jth cluster. Therefore, there
will beK networks. The structures of the networks, i.e. the
number of layers and number of neurons in each layer, are
identical. But, as we train networks with different subsets
of the training set, parameters of the networks will be dif-
ferent. The ultimate goal for the networks is to minimize
their defined cost function by adjusting their parameters.
The cost function is a measure of dissimilarity between the
training set and generated sample sets of a network. Let us
denote the cost function for the jth network by Cj . w∗j is
the optimum value for the jth network’s parameters if and
only if:

w∗j = arg min
wj

Cj(Xj , Y (wj)) (2)

where Y (wj) is the set of samples generated by jth net-
work. Mini-batch stochastic gradient descent (SGD) is
used for training to find a local optimum for wj .

Algorithm 1 Training jth network by hard-decision clus-
ters

- Initialize the network parameter wj randomly
for t = 1 to T1 do

- Divide Xj randomly into b mini batches of size B.
for i = 1 to b do

- Choose the ith mini batch of Xj

- Generate B output samples by the jth network us-
ing random input
- Update the network parameters

wj ← wj − α
∂Cj
∂wj

(3)

end for
end for

Algorithm 1, describes the steps of the training of jth net-
work using the jth cluster. The input of the network is a

p-dimensional vector whose elements are drawn indepen-
dently from a uniform distribution. The parameters of the
networks are initialized randomly. Parameter α in (3) is the
learning rate. The training process is done for T1 epochs
of each cluster. Let ŵj denote the parameters of network j
after this step of training.

Step 2: After step 1, the output of the networks tend to
be similar to their input datasets, which are clusters of the
training set. Now, we propose an iterative model that works
like the mixture models. It involves a process in which
we further train the networks and cluster the training data
set together. Clustering in this step is soft-decision, i.e.
point i belongs to cluster j with membership probability
mij ∈ [0, 1]. Training the networks is also affected by
these probabilities and different points will contribute dif-
ferently in updating the parameters of the networks. How-
ever, instead of making any assumption on the distribution
of the model’s components, we propose an updating algo-
rithm that is based on the output of trained networks in pre-
vious iterations. This means that if a data point is simi-
lar to the current outputs of one network, then it will have
a high level of contribution in updating the parameters of
that network in the next iteration. Note that in step 2 of
the algorithm, the whole training set is used to train each
network.

To calculate the membership probabilities, we should have
the probability distribution function for each component or
network. As we did not impose such constraint on our
model, we use kernel similarity between the data points
and the generated samples of each network. In order to
do this measurement, we generate S samples by each of
the networks. Y j = Y (ŵj) = {yj

1,y
j
2, ...,y

j
S} represents

the set of samples generated by jth network. Let `ij denote
similarity of data point xi to the samples in Y j . Then:

`ij = p(xi|ŵj) =
1

S

S∑
r=1

k(xi,y
j
r) (4)

The kernel that we use here is Gaussian.

The membership probability also needs the prior probabil-
ity over each component, which is denoted by πj . The ini-
tial value of πj in step 2 is: πj = |Xj |/N . Here, the mem-
bership probability is interpreted as the probability that net-
work j has produced data point xi, and is given by:

mij =
`ijπj∑K

k=1 `ikπk
(5)

Note that we should have
∑K

r=1mir = 1. Value of the
prior probabilities after the first iteration in this step is up-
dated by: πj = (

∑N
i=1mij)/N . Similar to the EM algo-

rithm, we want the effect of point xi in updating parame-
ters of network j (ŵj) to be proportional to mij . To do so,
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we multiply the membership probabilities to the learning
rate of the SGD algorithm. If a membership is high, then
the learning rate will be high and the effect of that point
will be high. If the membership probability is low and near
zero, the learning rate will be near zero and the algorithm
will not update the network parameters based on that point.

Lets call `i = {`i1, `i2, ..., `iK} the likelihood vector as-
signed to the ith data point. Suppose that likelihood of all
points for all networks are stored in an N ×K matrix L .
Each row of this matrix is corresponding to one point in
the training set. Using the above procedure, this matrix is
updated iteratively (after using each epoch to update all net-
works parameters). The initial value of likelihood matrix is
obtained by generating S samples using each of the trained
networks in the step 1.

In order to accelerate the learning process, we use mini-
batch SGD here, as well. We need to define mini-batch
membership. The membership of mini-batch bi of size B
for the jth network is defined as mbi,j = P (j|ŵj , {xr ∈
bi}) and:

mbi,j =
p({xr ∈ bi}|ŵj)πj

K∑
k=1

p({xr ∈ bi}|ŵk)πk

=

πj
∏

xr∈bi
`rj

K∑
k=1

πk
∏

xr∈bi
`rk

(6)

For training the network j using bi, the learning rate is
multiplied to mbi,j . According to (6), mbi,j contains the
effect of B points together. However, these B points do
not necessarily have similar likelihood vectors. So, the
multiplication in (6) can mix the effect of important and
non-important points for training an specific network. To
solve this issue we should somehow put points which are
important for training a network together. A systematic so-
lution is to rearrange the rows of the likelihood matrix L
at each iteration of the step 2, such that the first N1 rows
have the maximum likelihood in their first columns, the
next N2 rows have the maximum likelihood in their second
columns, and so on. Where Nj = |{xi|`ij ≥ `ik , ∀k 6=
j}| and obviously

∑K
k=1Nk = N . The process is similar

to the bootstrap sampling. The corresponding data points
to the rows of L are also rearranged in the same way.

Algorithm 2 summarizes the described procedure in the
step 2. Rearranging data set X in this algorithm refers to
the procedure stated above. Note that dividing the data into
mini-batches is not random in the step 2. The whole pro-
cess of this step is done for T2 epochs or iterations.

After this step, the training process is finished. Now we
have a hyper-network consists of K small networks with
similar structures but different parameters. To generate
samples randomly using the hyper-network, one of the net-
works is randomly chosen based on the priors. That is,
the jth network is chosen by probability πj . To generate a

Algorithm 2 Training networks using soft-decision clus-
ters

- Initialize likelihood matrix L based on the clusters in
Step 1
for t = 1 to T2 do

- Rearrange data set X
- Divide X into bNB c mini-batches of size B.
- Compute the mini-batch memberships.
for j = 1 to K do

Choose jth network
for i = 1 to bNB c do

- Choose ith mini-batch of X
- Generate B samples by jth network
- Update the network parameters

ŵj ← ŵj −mbi,j × β
∂Cj
∂ŵj

(7)

end for
end for
- Update the likelihood matrix L

end for

sample from a specific cluster, the corresponding network
should be picked manually. Then using a random input, the
selected network generates the desired sample.

A feature that distinguishes this model from the previous
unsupervised generative models is its capability to gener-
ate a specific type of sample. For example, if the networks
are trained over a set of face images with different expres-
sions, then it can be used to generate a face in a special
category (age, expression, illumination, and etc.), e.g. ”a
laughing old man”, instead of generating samples randomly
and waiting for our desired output. This can have many ap-
plications including automatic visualization of text.

3.2. Maximum Mean Discrepancy as the cost function

The proposed structure in this paper can be trained by any
conventional objective function at the output (for exam-
ple the objective in (Dosovitskiy et al., 2015)). However,
here we use the maximum mean discrepancy (MMD), in-
troduced by Gretton et al. (2006), because of its simplic-
ity and effectiveness. MMD was also used in two recent
works (Dziugaite et al., 2015; Li et al., 2015). Therefore,
the model parameters are learned based on minimizing the
distance between the distribution of the samples generated
by the network and samples from the training set, using
MMD.

Suppose x has distribution p and y has distribution q. Let
F be a class of functions. The squared population MMD is:

MMD2(F , p, q) =
[

sup
f∈F

(
Ex[f(x)]−Ey[f(y)]

)]2
. (8)
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If F is a class of functions in the unit ball in a universal
Reproducing Kernel Hilbert-Space (RKHS), then MMD is
zero if and only if p = q (Gretton et al., 2012). In this case,
MMD can also be written in the form of a continuous kernel
in that RKHS.

However, in our applications, the underlying pdf of the
sample sets are unknown. Suppose we have two sample
sets X = {x1,x2, ...,xM} and Y = {y1,y2, ...,yN}.
The unbiased empirical estimation of the squared MMD,
according to (Gretton et al., 2012), for these two sets is
given as:

MMD2(F ,X ,Y )= 1
M(M−1)

M∑
i=1

M∑
j 6=i

k(xi,xj)

+ 1
N(N−1)

N∑
i=1

N∑
j 6=i

k(yi,yj)− 2
MN

M∑
i=1

N∑
j=1

k(xi,yj)

(9)
We will use Gaussian kernel here too.

3.3. Making the Algorithm Faster and More Effective

Our results show that the batch membership can be very
small for most of the batches. So, for each step of training
of the networks, we only use the batches that have member-
ship probability more than a threshold (in our experiments
0.001) and do not use the rest of the batches that have neg-
ligible batch memberships. This way, the training process
will be much faster.

In (Ramdas et al., 2015), authors have shown that the power
of kernel-based methods, such as MMD, for two-sample
test problem drops polynomially with increasing dimen-
sions. This suggests that a dimension reduction is helpful
as a data pre-processing step for high-dimension datasets.
Using an autoencoder is a solution here. We train an au-
toencoder separately using the complete training dataset.
The networks in this scenario should be trained using a low-
dimensional version of data. At the output of the genera-
tive networks, the decoder part of the autoencoder is used
to map the data back into the original space. The hard-
decision clustering in the first step of our algorithm can be
either performed on the original data or its low-dimensional
version.

4. Experiment Results
To highlight the clustering capability of the proposed algo-
rithm, we first apply it on synthetic toy datasets and real-
world datasets. Then, we apply the algorithm on two real-
world datasets: MNIST hand-written digits dataset and the
Yale Face Database. In all of these experiments, the com-
ponents of the model are fully-connected networks with
multiple layers. Input to the networks is a random vector
with elements drawn independently from uniform distribu-

tion in [−1, 1]. The number of layers, number of hidden
units in each layer, and the dimension of random input de-
pend on the dataset. The activation function for all hidden
layers is ReLU and sigmoid for the output layer. All hy-
per parameters of the model are set by validation. For each
dataset, we keep a portion of data points only for validation.
This portion is not used for training. The validation set is
also used to prevent overfitting. We continue the training
until the average log-likelihood of the validation set is sat-
urated.

4.1. Performance as a clustering algorithm

4.1.1. TOY DATASETS

In this section, we use three small toy datasets to visual-
ize the clustering performance of the algorithm. We call
these datasets two-moon, moon-circle, and two-circle. The
first two datasets have 4000 data points and the last one has
4500 data points. All datasets have two dimensions. The
datasets are first divided into two parts using k-means and
then fed to the model. The model has two networks. We
used similar structure for the networks for all datasets. The
networks has 3 hidden layers with 32, 128, and 32 hidden
units. The input to the network is 2-dimensional. For all of
the experiments T1 = 30, T2 = 200, and B = 100.

Fig. 1 shows the results of these experiments. As we
can see, the algorithm could learn the model parameters to
identify the natural clusters. This shows that the algorithm
can successfully characterize the distribution of data clus-
ters. Conventional mixture models, such as Gaussian mix-
ture model, obviously fail to identify these clusters for two-
moon and moon-circle. Clustering algorithms based on
similarity matrices, such as spectral clustering, could have
also identified clusters, but they do not possess the genera-
tive aspect of our model. Besides, these algorithms usually
include an eigen-decomposition step, which is very com-
putationally expensive when it comes to clustering large
datasets.

4.1.2. REAL-WORLD DATASETS

Here, we also evaluate the clustering performance of the
algorithm for some real-world datasets based on cluster-
ing purity (CP). CP is defined for a labeled dataset as
a measure of matching between classes and clusters. If
{C1, C2, ..., CL} are L classes of a dataset X of size N ,
then a clustering algorithm, A, which divides X into K
clusters {X1, X2, ..., XK} has CP(A, X) as:

CP(A, X) =
1

N

K∑
j=1

max
i
|Ci ∩Xj |. (10)

Note that we specify the final clusters by assigning each
point to the cluster with highest membership probability.
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Figure 1. (a), (b), and (c) represent three different datasets. The
left figure shows the initial clustering by k-means and the right
figure shows the final clusters using the proposed method as well
as the contour of membership probability and its isolines.

Table 1 shows the results of clustering for four different
datasets. 1) COIL-20: 32 × 32 images of 20 different
objects from different angels. Dataset has 72 images in
each class. 2) Reuters-10K: Reuters dataset (GLewis & Li,
2004), contains 810000 English news stories in different
categories. We followed the same procedure in (Xie et al.,
2016) to obtain 10000 samples from this set in 4 categories.
3) USPS: This dataset contains 16 × 16 images of hand-
written digits. 4) Isolet: This is from UCI repository and
contains the spoken alphabet letter from different individ-

uals. Other statistics of the datasets are mentioned in the
table. Number of clusters for these experiments are chosen
to be equal to number of classes.

We compared the performance of the algorithm with 4
other algorithms. k-means, which is used as the initial
clustering for our method as well. The other three algo-
rithms are based on spectral clustering. NCut is the clas-
sic spectral clustering, which assigns cluster labels to the
data points by running k-means on the eigenvectors of the
Laplacian matrix of dataset graph. Local linear approach
for data clustering (LLC) (Wu & Schlkopf, 2006), assigns
cluster labels to each data point based on linear combi-
nation of the kernel similarity between that point and its
neighbors. Finally, local discriminant models and global
integration (LDMGI) (Yang et al., 2010), which introduces
a novel method for the learning Laplacian matrix by em-
ploying manifold structure and local discriminant informa-
tion. LDMGI is designed specially for image clustering.
We run experiments 10 times to obtain the results in the
table. As we can see, the proposed algorithm achieves the
best or near-best results for different datasets.

4.2. Performance as a generative model

4.2.1. MNIST DATASET

Samples of MNIST set are 28× 28 images of hand-written
digits. The dataset consists of 60000 training samples and
10000 test samples. We use 5000 samples in the training
set for validation and the rest for training networks.

We first train an autoencoder, which maps the original data
to a 32-dimension space. Although, the knee method sug-
gested 12 clusters here, we divided the training set into
10 clusters using k-means to see if we can capture each
class by a single network. So, we will have 10 networks
to be trained. The networks have 4 hidden layers with
64, 256, 256, and 512 units. Input of the networks is 12-
dimensional. Each network is first trained by Algorithm 1
using its corresponding cluster for 30 epochs (T1 = 30).
Then using Algorithm 2, the data points membership prob-
abilities and network parameters are updated up to T2 =
200 iterations. Batch size for both steps is 100. We use

Table 1. Comparison of clustering purity (%) for different datasets. The bold numbers show the best results among these algorithms.
d = dimensionality of the original space, n = dataset size, p = dimensionality of the low-dimensional dataset using autoencoder, L = #
of classes

Dataset d n p L k-means NCut LLC LDMGI Mix. of Nets Networks Structure

COIL-20 1024 1440 32 20 62.3±3.1 68.4±5.3 67.5±5.1 75.3±4.9 77.6±3.1 10-16-256-256-512-32
Reuters-10K 2000 10000 128 4 53.1±2.8 59.3±4.2 57.1±3.9 43.2±3.7 63.1±4.2 12-64-256-512-512-128
USPS 256 9298 32 10 64.9±3.6 73.4±6.3 70.1±3.9 80.5±5.6 78.3±3.7 10-16-256-256-512-32
Isolet 7797 617 32 26 63.7±2.8 65.7±3.4 69.3±2.7 68.8±3.6 71.3±3.0 12-32-256-256-512-32
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Figure 2. (a) Top: Samples generated randomly by the hyper-network using the cluster priors. The right most column shows samples
from the training set which are nearest-neighbors of their adjacent images in the low-dimension space. This column is added to show
that the generated samples are not merely a copy of the training samples. Bottom: Examples of digits of different classes that are
mis-clustered by k-means and NCut but mixture of networks clustered them correctly. (b) For each of these 10 sub-images only one
networks has been chosen to generate data. For each sub-image we generate two data points with different shapes (top-left corner and
bottom-right corner) using two different random inputs. By traversing on an straight line in the latent space we obtain the other data
points in the sub-image. As we can see, this shows that the model learns a proper mapping between the latent space and the data space.
(c) Digits is each row are generated using one network. Digits in each of the last two columns are generated by giving identical input to
different networks.

weight decay as regularization to improve the generaliza-
tion of the model.

We repeated the whole process of training ten times. Using
k-means, the initial value of CP on the low dimensional
version of the data is 59.2±3.1. After applying our metho,d
CP goes up to 80.3±4.2, which is close to the state-of-the-
art clustering methods on MNIST according to (Xie et al.,
2016).

Fig. 2, shows the samples generated by our model. An
evaluation measure that is commonly used for generative
models is the average log-likelihood of the test set, also
known as Parzen estimation. We generated 10000 samples
randomly by the model and fit a Gaussian Parzen Window.
We report our model’s average log-likelihood of the test set
for MNIST as 308± 2.8. Table 2, shows a comparison be-
tween different methods in terms of average log-likelihood.
However, based on (Theis et al., 2015), this evaluation for
generative models can be misleading, as samples gener-
ated by a naive methods may achieve higher log-likelihood,
even compared to the data used for training the generative
model.

Table 2. Average log-likelihood using Parzen window for Differ-
ent generative models on MNIST dataset DBN: Deep Belief Net-
work, Stacked CAE: Stacked Contractive Auto-Encoder, Deep
GSN: Deep Generative Stochastic Network (Bengio et al., 2014),
GAN: Generative Adversarial Network, GMMN+AE: Generative
Moment Matching Network with Autoencoder, Mixture of Net-
works: Our model.

MODEL AVERAGE LOG-LIKELIHOOD

DBN 138 ± 2
STACKED CAE 121 ± 1.6
DEEP GSN 214 ± 1.1
GAN 225 ± 2
GMMN+AE 282 ± 2
MIXTURE OF NETWORKS 308 ± 2.8

4.2.2. FACE DATASET

The other training set we used is the Cropped Extended
Yale Face Database B (Lee et al., 2005; Georghiades et al.,
2001). The dataset contains 2414 near frontal images of 38
individuals under different illuminations. The size of each
image is 32 × 32. We use 214 data points for validation
and the rest for training. Using autoencoder dimension is
reduced from 1024 to 128. We employ k-means to partition
the low-dimension data into four clusters. This number is
actually suggested by the knee stability method. Then, Al-
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Figure 3. Top: Samples generated by the hyper-network using
cluster priors. The right most column shows samples from the
training set which are nearest-neighbors of their adjacent images
in the low-dimension space. Bottom: Images generated by net-
works corresponding to each cluster. Each row is generated by
one network. We can see the difference in the generated images
which comes from different illuminations. The inputs to the net-
works for generating each of the last two columns are identical
for all networks.

gorithms 1 and 2 are applied to the four networks, consec-
utively. The networks have 4 hidden layers with 32, 128,
256, and 512 units. For this dataset, the random input is 10-
dimensional and T1 = 10 and T2 = 100. The mini batches
in both steps of the algorithm contain 120 samples.

Results of the simulations are demonstrated in Fig. 3. Net-
works produce images in different categories. Categories
of data captured by clusters are based on lighting of the im-
ages (front lighting, sides lighting, and no lighting). We
can also see the smooth changes in the faces when we pick
one network and traverse in the latent space. This shows
that the networks have learned a proper mapping between
the latent space and the real image space.

5. Conclusion and Future work
We proposed an algorithm for developing a generative
model using deep architectures. The algorithm has shown
advantages compared to the previous generative models,
which allows generating and clustering with high accuracy.
The efficiency of applying the algorithm on MNIST hand-
written digits and the Yale Face Database has been exam-
ined, and results support our idea.

It will be specially interesting if a small subset of data is
labeled, or when a user has clusters a small portion of data
for us and we want to cluster the rest of the data accord-
ingly. In this situation the accuracy of clustering and, con-
sequently, the generative model will increase significantly.
One application of this setting is when a hand-written text
corpus is given to the model. If we label a small portion of
the characters of the corpus and force the algorithm to fol-
low the same rule for clustering the rest of the data, then we
can build networks that can mimic handwriting. A related
work can be found in (Kingma et al., 2014). Another direc-
tion can be employing the Convolutional Neural Networks,
which have shown great performance in vision tasks, in-
stead of fully-connected networks. Then, combining the
result by a natural language processing (NLP) model can
be interesting. We can convert human language (text or
voice) into picture, automatically.
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