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Abstract

The problem of feature disentanglement has been explored in the literature, for
the purpose of image and video processing and text analysis. State-of-the-art
methods for disentangling feature representations rely on the presence of many
labeled samples. In this work, we present a novel method for disentangling fac-
tors of variation in data-scarce regimes. Specifically, we explore the application
of feature disentangling for the problem of supervised classification in a setting
where few labeled samples exist, and there are no unlabeled samples for use in
unsupervised training. Instead, a similar datasets exists which shares at least one
direction of variation with the sample-constrained datasets. We train our model
end-to-end using the framework of variational autoencoders and are able to ex-
perimentally demonstrate that using an auxiliary dataset with similar variation
factors contribute positively to classification performance, yielding competitive
results with the state-of-the-art in unsupervised learning.

1 Introduction
In machine learning, samples in a dataset originate via complicated processes driven by a number
of underlying factors. Individual factors lead to independent directions of variations in the observed
samples, while the accumulation of factors give rise to the rich structure characteristic of these
datasets. The underlying factors often interact in complicated and unpredictable ways, and appear
tightly entangled in the raw data. Being able to tease apart the effect of underlying factors is a
fundamental challenge in understanding these datasets.

For instance, a dataset containing images of natural scenery may be subject to variation in lighting
conditions, camera elevation, and the appearance of the scene itself. Controlling and restraining
variation at data acquisition time is difficult, and limits the number of acceptable samples in the
dataset. On the other hand, capturing annotations for every direction of variation is time-consuming
and infeasible. Therefore, designing methods that automatically learn to separate out underlying
factors (known and unknown) is relevant for many applications in machine learning.

One area that has enjoyed tremendous success for separating factors of variation is supervised learn-
ing. The representations learned here aim to satisfy a specific task that is driven by the explicit
labels in the dataset. Therefore, these representations are invariant to factors of variation that are
uninformative for solving the task at hand. For example, when identifying individuals in a school
yearbook, the identity of the person is paramount compared to their facial expression. Hence, a
simple method that simply discards the irrelevant variation in expression will perform really well.
Learning invariant representations, however, require many samples and comes at the cost of needing
to train a new model for a closely related task that depends on an alternative direction of variation.
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It would seem reasonable then to desire a strategy that captures all directions of variation in a single
model in a disentangled manner allowing one to infer all factors for a given sample in the absence
of labels for each factor.

Current state-of-the-art strategies for disentangling factors of variation mostly fall victim to the chal-
lenges in deep learning and rely on the presence of abundant data samples. In [5], the authors were
able to accurately separate out lighting, pose, and shape while sampling seemingly unlimitedly from
an auxiliary generative model that creates samples with different variations. The results presented in
[9, 7] also build upon datasets containing often hundreds of thousands of samples. Whereas [3, 11]
use very few samples in their training process, these methods are semi-supervised and have access
to unlabeled samples from the same dataset following the same statistical distribution.

In this work, we explore classification in a data-scarce scenario where not only are there few la-
beled samples available, there are also no unlabeled samples from which one could perform semi-
supervised training. These situations commonly arise in medical imaging datasets, e.g., pancreatic
cancer MRI images are scarce whereas breast cancer MRI images are abundant ([2] and references
therein). In such a situation, we ask whether one can employ a secondary dataset, with many sam-
ples, similar content, but different style, to improve the performance of a benchmark classification
model. What remains to be demonstrated is how to learn good intermediate representations that can
be shared across tasks and use the disentanglement process of the secondary dataset to effectively
disentangle the factors of variation in the primary dataset of interest. Essentially we are entangling
together the feature disentangling of two similar datasets. This is the focus of the work below.

2 Model Description

In this work, we consider a situation where we are given a labeled dataset, X , with limited number
of points. We denote the label variable by `. We also have access to another dataset Y with a larger
number of points that share the same categories as Y . However, the underlying distribution of the
datasets are different. Let us denote the distribution for X and Y by p(x) and p(y), respectively.
Suppose that our goal is to classify unseen data points that come from p(x), i.e. to maximize p(`|x).
Building a classifier that simply uses X can lead to low accuracy and overfitting, due to its small
size. Therefore we want to leverage the information of Y about the label variable and build a model
that can classify the points from p(x) with higher accuracy.

Our approach to address this problem is to disentangle the features in X and Y that contribute in
predicting the label variable (i.e., content) from the features that contribute to the style of X and
Y . Consider the graphical model in Fig. 1a. We assume there are two pairs of latent variables
that describe each of x and y. Based on this figure, suppose that z1 and z2 generate samples in
dataset X and z3 and z4 generated samples in dataset Y . If we assume that z2 and z4 are the latent
variables that carry all the information about the label variable ` then p(`|z2) = p(`|z4). Considering
the same prior distributions over z2 and z4, i.e. N (0, I), we can guarantee the disentanglement
of latent features by asserting that p(z2|`) = p(z4|`). However, these posteriors are intractable.
To approximate them we use the framework of variational inference where p(z2|`) and p(z4|`) are
approximated by q(z2|x, `) and q(z4|y, `), respectively. Therefore, by matching these approximating
distribution, we guarantee that only z2 and z4 carry information regarding the label ` (i.e., content)
and therefore are disentangled from z1 and z3 respectively which represent style.
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Figure 1: (a) Graphical models of the method. (b) Network structure of the method
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All the conditional distributions on the graphical models in Fig. 1a are parameterized by the neu-
ral networks depicted in Fig. 1b. The joint model here builds on earlier work in [10] where an
autoencoder and a discriminator were trained in the framework of contractive discriminative analy-
sis for semi-supervised learning. Here, we use the variational autoencoding [4] approach to jointly
train two networks that simultaneously extract shared discriminative features present in the primary
and secondary datasets. This architecture is reminiscent of Domain Separation Networks [1]. The
proposed JADE model, however, focuses on a shared classifier for improved classification and joint
disentanglement instead of a shared encoder and decoder.

The variational lower bound on the joint distribution of the observations is:

log p(x, `) ≥ L(x, `) = E q(z1|x)
q(z2|x,`)

[
log p(x|z1, z2)

]
+ Eq(z2|x,`)

[
log p(`|z2)

]
−KL

(
q(z1|x) ‖ p(z1)

)
− KL

(
q(z2|x, `) ‖ p(z2))

)
log p(y, `) ≥ L(y, `) = E q(z3|y)

q(z4|y`)

[
log p(x|z3, z4)

]
+ Eq(z4|y,`)

[
log p(`|z4)

]
−KL

(
q(z3|x) ‖ p(z3)

)
− KL

(
q(z4|x, `) ‖ p(z4))

)
(1)

We would like to maximize the sum over the above lower bounds. The approximating distributions
are from exponential family (Gaussian) and to match them we assume that for the samples that are
from the same class in the two datasets, we want to minimize KL

(
q(z2|x, `) ‖ q(z4|y, `)

)
. Given

this condition, the overall objective of the model is:

max
Θ
L(x, `) + L(y, `)− KL

(
q(z2|x, `) ‖ q(z4|y, `)

)
(2)

where Θ represents the entire parameter set of neural networks.

3 Experiments
Datasets: Our framework addresses the problem of performing supervised classification in data-
scarce regimes where there exists a secondary dataset that has at least one direction of variation in
common with the primary sample-constrained dataset. In our experiments we emulate this scenario
with commonly used datasets such as MNIST [6] and SVHN [8]. Because MNIST is relatively easier
to learn, even with very few samples, we select SVHN as the sample-constrained primary dataset that
is difficult to learn, and use the entirety of MNIST as the secondary dataset. These datasets differ in
appearance and style: whereas MNIST is gray-scale and comes in 28× 28 pixel images, SVHN has
three color channels and comes in 32× 32 pixel images. However, both datasets represent the same
content (i.e., digit values) across different styles. This similarity in content of both datasets is what
makes MNIST a good secondary dataset to boost SVHN’s supervised classification performance.

Model Comparison: To evaluate the performance of our framework, we first develop a benchmark
for supervised classification of SVHN. Here, we choose a relatively powerful convolutional neu-
ral network (CNN) architecture combined with a multi-layer perceptron (MLP) as the supervised
classification model. The CNN architecture comprises of 4 layers of 3 × 3 spatial convolutions
({64, 96, 64, 8} filters respectively) followed by ReLU and interspersed with 3 layers of 2× max-
pooling. The MLP contains 3 blocks of 500-dimensional fully connected layers, followed by ReLU
and Dropout (p = 0.5) layers [12]. A 10-dimensional bottleneck layer was placed in between the
CNN and the MLP to encourage only important features from being retained. A final softmax layer
is present at the end of the network for 10-way classification. The loss for this model is measured
using categorical cross-entropy. This architecture is referred to as single classifier (i.e., benchmark).

A simple extension of above setup is a model that jointly trains SVHN and MNIST on a shared
MLP classifiers using features extracted from separate CNN feature extractors, one per dataset. The
CNN used for SVHN and the MLP follow the same architecture as the benchmark above. The
CNN architecture for MNIST comprises of 3 layers of 3 × 3 spatial convolutions ({32, 32, 16}
filters respectively) followed by ReLU and interspersed with 3 layers of 2× max-pooling. A 10-
dimensional bottleneck layer was placed in between the CNN for MNIST and the shared MLP to
capture the latent features of MNIST. Feature-extracted samples from both datasets are fed into the
shared MLP in alternation and trained jointly. The loss of the system is the sum of the categorical
cross-entropy losses for both datasets on the shared classifier. This setup is called paired classifier.
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Table 1: Classification error rates for SVHN on limited data: 100 samples per each class. Error rates calculated
using the entirety of SVHN’s test set. Results of our experiments are averaged over 3 runs. We observe
improved SVHN classification performance without sacrificing near state-of-the-art performance on MNIST.

Method SVHN (1000 samples) MNIST (45K samples)
VAE (M1+M2) [3] 36.02±0.10 -
Siddharth et al. [11] 28.71±2.38 -
Single Classifier (benchmark) 32.31±1.56 -
Paired Classifier 30.17±2.77 0.82±0.05
JADE (proposed) 29.08±0.92 0.72±0.03

Finally, the proposed model (outlined in Fig. 1b) extends upon the previous two methods by adding a
decoder network to reconstruct the 10-dimensional latent representations from each of the CNN fea-
ture extractors. To encourage disentanglement of features in the latent space, and to perform factor
separation in a way that the MLP classifier is only given content-related features (i.e., digit values),
we increase the size of the latent spaces from 10 to 20 dimensions. However, only 10 of the latent
dimensions resulting from each CNN are passed into the shared MLP, essentially keeping consistent
with the previous method in terms of classifier capacity. All 20 latent dimensions are used to re-
construct the inputs via a decoder that identically mirrors the corresponding CNN (2× up-sampling
layers used in place of 2× max-pooling). Losses are defined in Section 2. Due to the autoencoding
structure of this model, we refer to it as JADE: Joint Autoencoders for Dis-Entanglement.

Discussion: The results of our experiments have been presented in Table 1. Here we compare the
results of the single classifier (i.e., benchmark model), paired classifier, and proposed model (JADE)
alongside those from Kingma et al. [3] and Siddharth et al. [11]. It is worth pointing out that the
former 3 models are trained only on 1000 labeled sample from SVHN, whereas the cited models use
the remainder of the SVHN training dataset in an unsupervised fashion. We, on the other hand, use
all of the MNIST dataset to train the paired classifier in JADE.

These results demonstrate that when dealing with sample-constrained regimes without unlabeled
samples, one can use a similar dataset with at least one shared direction of variation to improve
classification performance. This can be seen when comparing the performance of a single classifier
(32.31±01.56) with that of a paired classifier (30.17±02.77). On top of this, we see that the JADE
model which learns to jointly disentangle SVHN and MNIST features performs even better than the
former methods, sitting at 29.08±00.92. This is in line with our hypothesis that only the directions of
variation shared between MNIST and SVHN (i.e., content) will contribute positively to classification
performance on SVHN, and other factors of variation should be disentangled.

We hypothesize that actively attempting to disentangle variation factors (i.e., in JADE) is better than
allowing the network to attempt to discard uninformative factors (i.e., paired classifier) given the
sample-constrained regime. To assert that the JADE setup is indeed disentangling variation factors,
we conduct the following simple experiment: observe the variation in latent space values as different
types of samples are passed into the network. In Fig. 2a, we have shown how latent activations
change when the SVHN CNN is fed with 500 samples from the same class (i.e., same content but
varying style). These activations are shown for the 20 latent parameters (of which only 10 are passed
into the MLP classifier, and all used for reconstruction) across 10 classes of digits in MNIST. We
observe that in this setup where content is fixed, the normalized variance of the latent variables that
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Figure 2: (a) variance normalized activations of latent space parameters, averaged over 500 random samples
from each of 10 classes in SVHN; when content is fixed, the part of the latent space that feeds into the classifier
exhibits weaker variance in activations compared to the part of the latent space that seemingly represents style
over the 500 samples. (b) variance normalized activations of latent space parameters for 2500 random samples
from SVHN spanning various style and content; all 20 latent space parameters fire for random splits of the data.
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are fed into the MLP classifier is much lower than the variance of latent variables that are solely
used for reconstruction. In Fig. 2b, we observe an interesting and complementary phenomena when
we pass in 2500 randomly selected test samples into the SVHN CNN. Here, both the style and the
content vary between input samples, and we observe that all 20 latent parameters are active given
the varying input. These observations suggest that JADE is able to successfully disentanglement
content and style in low-data SVHN using the help of MNIST as an auxiliary similar dataset.

4 Conclusion and Future Work

In this work, we explore the application of feature disentangling for the problem of supervised
classification in a setting where few labeled samples exist, and there are no unlabeled samples for
use in unsupervised training. Instead, a similar datasets exists which shares at least one direction of
variation with the sample-constrained datasets. We train our model end-to-end using the framework
of variational autoencoders and experimentally demonstrated that using a secondary dataset with
similar content to SVHN leads to improvements in supervised classification performance.

Given the autoencoding structure of the proposed framework, a reasonable next step is to explore us-
ing an ensemble of auxiliary datasets, say one for content and another for style, to augment not only
the classification power of the system, but also its reconstruction and generation ability. Currently,
reconstruction quality is lacking as samples are being generated using the limited samples. Finally,
an exciting extension of the JADE framework is cross-task or cross-modality data synthesis, e.g.,
learning a joint representation that captures high-level concepts for all modalities of the same object
allows for bi-directional generation of missing modalities from the remaining modalities [13].
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