Learning an Affine Transformation
for Non-linear Dimensionality Reduction

Pooyan Khajehpour Tadavani! and Ali Ghodsi!»?

! David R. Cheriton School of Computer Science
2 Department of Statistics and Actuarial Science
University of Waterloo
Waterloo, Ontario, Canada

Abstract. The foremost nonlinear dimensionality reduction algorithms
provide an embedding only for the given training data, with no straight-
forward extension for test points. This shortcoming makes them unsuit-
able for problems such as classification and regression. We propose a
novel dimensionality reduction algorithm which learns a parametric map-
ping between the high-dimensional space and the embedded space. The
key observation is that when the dimensionality of the data exceeds its
quantity, it is always possible to find a linear transformation that pre-
serves a given subset of distances, while changing the distances of another
subset. Our method first maps the points into a high-dimensional fea-
ture space, and then explicitly searches for an affine transformation that
preserves local distances while pulling non-neighbor points as far apart
as possible. This search is formulated as an instance of semi-definite
programming, and the resulting transformation can be used to map out-
of-sample points into the embedded space.

Keywords: Machine Learning, Dimensionality Reduction, Data Mining

1 Introduction

Manifold discovery is an important form of data analysis in a wide variety of
fields, including pattern recognition, data compression, machine learning, and
database navigation. In many problems, input data consists of high-dimensional
observations, where there is reason to believe that the data lies on or near a low-
dimensional manifold. In other words, multiple measurements forming a high-
dimensional data vector are typically indirect measurements of a single underly-
ing source. Learning a suitable low-dimensional manifold from high-dimensional
data is essentially the task of learning a model to represent the underlying source.
This type of dimensionality reduction® can also be seen as the process of deriving
a set of degrees of freedom which can be used to reproduce most of the variability
of the data set.

3 In this paper the terms ‘manifold learning’ and ‘dimensionality reduction’ are used
interchangeably.

2 Learning an Affine Transformation for Non-linear Dimensionality Reduction

Several algorithms for dimensionality reduction have been developed based
on eigen-decomposition. Principal components analysis (PCA) [4] is a classi-
cal method that provides a sequence of the best linear approximations to the
given high-dimensional observations. Another classical method is multidimen-
sional scaling (MDS) [2], which is closely related to PCA. Both of these methods
estimate a linear transformation from the training data that projects the high-
dimensional data points to a low-dimensional subspace. This transformation can
then be used to embed a new test point into the same subspace, and conse-
quently, PCA and MDS can easily handle out-of-sample examples.

The effectiveness of PCA and MDS is limited by the linearity of the sub-
space they reveal. In order to resolve the problem of dimensionality reduction in
nonlinear cases, many nonlinear techniques have been proposed, including kernel
PCA (KPCA) [5], locally linear embedding (LLE) [6], Laplacian Eigenmaps [1],
and Isomap [12]. It has been shown that all of these algorithms can be formu-
lated as KPCA [3]. The difference lies mainly in the choice of kernel. Common
kernels such as RBF and polynomial kernels generally perform poorly in man-
ifold learning, which is perhaps what motivated the development of algorithms
such as LLE and Isomap.

The problem of choosing an appropriate kernel remained crucial until more
recently, when a number of authors [9-11, 13, 14] have cast the manifold learning
problem as an instance of semi-definite programming (SDP). These algorithms
usually provide a faithful embedding for a given training data; however, they
have no straightforward extension for test points®. This shortcoming makes them
unsuitable for supervised problems such as classification and regression.

In this paper we propose a novel nonlinear dimensionality reduction algo-
rithm: Embedding by Affine Transformation (EAT). The proposed method learns
a parametric mapping between the high-dimensional space and the embedding
space, which unfolds the manifold of data while preserving its local structure. An
intuitive explanation of the method is outlined in Section 2. Section 3 presents
the details of the algorithm followed by experimental results in Section 4.

2 The Key Intuition

Kernel PCA first implicitly projects its input data into a high-dimensional fea-
ture space, and then performs PCA in that feature space. PCA provides a linear
and distance preserving transformation - i.e., all of the pairwise distances be-
tween the points in the feature space will be preserved in the embedded space.
In this way, KPCA relies on the strength of kernel to unfold a given manifold
and reveal its underlying structure in the feature space.

We present a method that, similar to KPCA, maps the input points into a
high-dimensional feature space. The similarity ends here, however, as we explic-
itly search for an affine transformation in the feature space that preserves only
the local distances while pulling the non-neighbor points as far apart as possible.

4 An exception is kernel PCA with closed-form kernels; however, closed-form kernels
generally have poor performance even on the training data.

Learning an Affine Transformation for Non-linear Dimensionality Reduction 3

In KPCA, the choice of kernel is crucial, as it is assumed that mapping
the data into a high-dimensional feature space can flatten the manifold; if this
assumption is not true, its low-dimensional mapping will not be a faithful rep-
resentation of the manifold. On the contrary, our proposed method does not
expect the kernel to reveal the underlying structure of the data. The kernel sim-
ply helps us make use of “the blessing of dimensionality”. That is, when the
dimensionality of the data exceeds its quantity, a linear transformation can span
the whole space. This means we can find a linear transformation that preserves
the distances between the neighbors and also pulls the non-neighbors apart; thus
flattening the manifold. This intuition is depicted in Fig. 1.

Fig. 1. A simple 2D manifold is represented in a higher-dimensional space. Stretching
out the manifold allows it to be correctly embedded in a 2D space.

3 Embedding by Affine Transformation (EAT)

We would like to learn an Affine transformation that preserves the distances
between neighboring points, while pulling the non-neighbor points as far apart
as possible. In a high dimensional space, this transformation looks locally like
a rotation plus a translation which leads to a local isometry; however, for non-
neighbor points, it acts as a scaling.

Consider a training data set of n d-dimensional points {x;}? ; C R9. We
wish to learn a d x d transformation matrix W which will unfold the underlying
manifold of the original data points, and embed them into {y;}! ; by:

y=WTx (1)

This mapping will not change the dimensionality of the data; y has the same
dimensionality as x. Rather, the goal is to learn W such that it preserves the
local structure but stretches the distances between the non-local pairs. After this
projection, the projected data points {y;}7 ; will hopefully lie on or close to a
linear subspace. Therefore, in order to reduce the dimensionality of {y;}!_,, one
may simply apply PCA to obtain the ortho-normal axes of the linear subspace.
In order to learn W, we must first define two disjoint sets of pairs:

S = {(i,j)| x; and x; are neighbors}
O ={(4,7)| x; and x; are non-neighbors}

4 Learning an Affine Transformation for Non-linear Dimensionality Reduction

The first set consists of pairs of neighbor points in the original space, for
which their pairwise distances should be preserved. These pairs can be identified,
for example, by computing a neighborhood graph using the K-Nearest Neighbor
(KNN) algorithm. The second set is the set of pairs of non-neighbor points,
which we would like to pull as far apart as possible. This set can simply include
all of the pairs that are not in the first set.

3.1 Preserving Local Distances

Assume for all (¢,7) in a given set S, the target distances are known as 7;;.
we specify the following cost function, which attempts to preserve the known
squared distances:

S (lyi -yl = 2) 2)
(1,7)€S

Then we normalize it to obtain®:

Brr=Y (||Yi;jy1||2 - 1)2 (3)

(i,9)€S

By substituting (1) into (3), we have:

3 ((Xinjxj)TWWT (XTJXJ)1>2 = Y (6hAs; -1)° ()

(i,)€S (i,5)€S

where 8;; = =% and A = WW is a positive semidefinite (PSD) matrix. It
ij
can be verified that:

JiTjA&-j = vec(A)Tvec(JijJiTj) = vec(A)Tvec(Aij) (5)

where vec() simply rearranges a matrix into a vector by concatenating its columns,
and A;; = 8;;6,;. For a symmetric matrix A we know:

vec(A) = Dgvech(A) (6)

where vech(A) is the half-vectorization operator, and Dy is the unique d? x d(d;)

duplication matrix. Similar to the vec() operator, the half-vectorization operator
rearranges a matrix into a vector by concatenating its columns; however, it stacks

® (2) corresponds to the assumption that noise is additive while (3) captures a mul-
tiplicative error, ie. if |ly; — y;||> = 7 + €ij, where e;; is additive noise, then
I?

clearly €i; = (|lyi —y;lI> — 7’%)2; however, if ||y: — y;||> = 775 + €ij X 7.3, then

€ij = (||y1:7y1||2 — 1) . The latter one makes the summation terms comparable.
ij

Learning an Affine Transformation for Non-linear Dimensionality Reduction 5

the columns from the principal diagonal downwards in a column vector. In other
words, a symmetric matrix of size d will be rearranged to a column vector of
size d? by the vec() operator, whereas vech() will stack it into a column vector
of size @. This can significantly reduce the number of unknown variables,
especially when d is large. Dy is a unique constant matrix. For example, for a

2 x 2 symmetric matrix A we have:

100
010
vec(A) = 010 vech(A)
001
Since both A and A;; are symmetric matrices, we can rewrite (5) using vech()
and reduce the size of the problem:
JZ-TJ-AJZ-]- = vech(A) "D Dgvech(A;;) = vech(A)T€;; (7)

where &;; = DI Dgvech(A;;). Using (7), we can reformulate (4) as:

Err = Z (vech(A)T€;; —1)* = vech(A) T Quech(A) — 2vech(A)Tp + S| (8)

(i,7)€S
where Q = Z €Z‘j§;l;' and p= Z &i;, and |S| in (8) denotes the num-
(3,5)€S (3,5)€S

ber of elements in S, which is constant and can be dropped from the optimization.
Now, we can decompose the matrix Q using the singular value decomposition
technique to obtain:

Q=UAU" (9)
If rank(Q) = r, then U is a @ x r matrix with r orthonormal basis
vectors. We denote the null space of Q by U. Any vector of size @, including

vector vech(A), can be represented using the space and the null space of Q:

vech(A) = Ua + UB (10)

«a and B are vectors of size r and (‘i(dTH) — r) respectively. Since Q is the

T

summation of £;;&;;, and p is the summation of §;;, it is easy to verify that p is

ijs

in the space of Q and therefore ﬁTp = 0. Substituting (9) and (10) in (8), the
objective function can be expressed as:

vech(A)"T (Quech(A) —2p) = a' (Aa —2U"p) (11)

The only unknown variable in this equation is @. Hence, (11) can be solved

in closed form to obtain:

a=A"'U'p (12)

6 Learning an Affine Transformation for Non-linear Dimensionality Reduction

Interestingly, (11) does not depend on 8. This means that the transformation
A which preserves the distances in S (local distances) is not unique. In fact, there
is a family of transformations in the form of (10) that preserve local distances
for any value of B. In this family, we can search for the one that is both positive
semi-definite, and increases the distances of the pairs in the set O as much as
possible. The next section shows how the freedom of vector 8 can be exploited
to search for a transformation that satisfies these conditions.

3.2 Stretching the Non-Local Distances

We define the following objective function which, when optimized, attempts to
maximize the squared distances between the non-neighbor points. That is, it
attempts to maximize the squared distances between x; and x; if (4,j) € O.

_ |lyi — y,ll?
Z’j

Similar to the cost function Err in the previous section, we have:

T
o= 3 (252 wwr (223
Tij Tij

(,7)€0O (14)
= Z JiTjAJij = Z vech(A)T€;; = vech(A)Ts
(3,5)€0 (4,5)€0O
where s = Z &ij. Then, the optimization problem is:
(i,5)€0O
max vech(A)Ts (15)

A=0

Recall that vech(A) = Ua + UB, and a is already determined from (12). So
the problem can be simplified as:

7T
max B'U's (16)

Clearly if Q is full rank, then the matrix U (i.e. the null space of Q) does
not exist and therefore, it is not possible to stretch the non-local distances.
However, it can be shown that if the dimensionality of the data is more than its
quantity, Q is always rank deficient, and U exists. The rank of Q is at most |S|,
which is due to the fact that Q is defined in (8) as a summation of |S| rank-one
matrices. Clearly, the maximum of |S] is the maximum possible number of pairs
ie. W; however the size of Q is W.

Q is rank deficient when d > n. To make sure that Q is rank deficient,
one can project the points into a high-dimensional space, by some mapping ¢();
however, performing the mapping is typically undesirable (e.g. the features may
have infinite dimension), so we employ the well-known kernel trick [8], using
some kernel K(x;,x;) function that computes the inner products between the
feature vectors without explicitly constructing them.

Learning an Affine Transformation for Non-linear Dimensionality Reduction 7

3.3 Kernelizing the Method

In this section, we show how to extend our method to non-linear mappings of
data. Conceptually, the points are mapped into a feature space by some non-
linear mapping ¢(), and then the desired transformation is learned in that space.
This can be done implicitly through the use of kernels.

The columns of the linear transformation W can always be re-expressed as
linear combinations of the data points in the feature space, W = X{2. Therefore,
we can rewrite the squared distance as:

-|2 X; — XJ)TWWT(XZ - X;j)

lyi — (
= (x; — x5) TX.Q.QTXT(Xl - X;j)
= (
= (

17
X; X—XTX).Q.QT(XTXl XTx;) 17)

X" x; — XTx)TAX x; — XTx;)

where A = 2027. We have now expressed the distance in terms of a matrix to
be learned, A, and the inner products between the data points which can be
computed via the kernel, K.

lyi = vi* = (KX, %) = K(X, %) TAK(X, %:) = K(X, ;)

= (K; - K;)TAK; - K;) (18)

where K; = K(X, x;) is the 4z, column of the kernel matrix K. The optimization
of A then proceeds just as in the non-kernelized version presented earlier, by
substituting X and W by K and {2 respectively.

3.4 The Algorithm

The training procedure of Embedding by Affine Transformation (EAT) is sum-
marized in Alg.1. Following it, Alg.2 explains how out-of-sample points can be
mapped into the embedded space. In these algorithms, we suppose that all train-
ing data points are stacked into the columns of a d x n matrix X. Likewise, all
projected data points {y; }?; are stacked into the columns of a matrix Y and the
d’ x m matrix Z denotes the low-dimensional representation of the data. In the
last line of Alg.1, the columns of C are the eigenvectors of YY ' corresponding
to the top d’ eigenvalues which are calculated by PCA.

After the training phase of EAT, we have the desired transformation W for
unfolding the latent structure of the data. We also have C from PCA, which
is used to reduce the dimensionality of the unfolded data. As a result, we can
embed any new point x by using the algorithm shown in Alg.2.

4 Experimental Results

In order to evaluate the performance of the proposed method, we have conducted
several experiments on synthetic and real data sets.

8 Learning an Affine Transformation for Non-linear Dimensionality Reduction

Alg. 1 EAT - Training
Input: X, and d’
Output: Z, and linear transformations W (or £2) and C

—

: Compute a neighborhood graph and form the sets S and O

: Choose a kernel function and compute the kernel matrix K

: Calculate the matrix Q, and the vectors p and s, based on K, § and O
: Compute U and A by performing SVD on Q such that Q = UAU"
cLeta=A"1UTp

: Solve the SPD problem rg&g(ﬂTﬁTs), where vech(A) = Ua + UB

: Decompose A = WW ' (or in the kernelized version A = 2027)

: Compute Y = WX = 2TK

: Apply PCA to Y and obtain the final embedding Z = CTY

~ O 0o S U W N

Alg. 2 EAT - Embedding

Input: out-of-sample example x4x1, and the transformations W (or £2) and C
Output: vector zy4 1 which is a low-dimensional representation of x

1: Compute Kx = K(.,x)
2:Lety = W'x =02TK,
3: Compute z = C'y

To emphasize the difference between the transformation computed by EAT
and the one that PCA provides, we designed a simple experiment on a synthetic
data set. In this experiment we consider a three-dimensional V-shape manifold
illustrated in the top-left panel of Fig. 2. We represent this manifold by 1000
uniformly distributed sample points, and divide it into two subsets: a training
set of 28 well-sampled points, and a test set of 972 points. EAT is applied to
the training set, and then the learned transformation is used to project the test
set. The result is depicted in the top-right panel of Fig. 2. This image illustrates
Y = WTX, which is the result of EAT in 3D before applying PCA. It shows that
the third dimension carries no information, and the unfolding happens before
PCA is applied to reduce the dimensionality to 2D.

The bottom-left and bottom-right panels of Fig. 2 show the results of PCA
and KPCA, when applied to the whole data set. PCA computes a global distance
preserving transformation, and captures the directions of maximum variation in
the data. Clearly, in this example, the direction with the maximum variation
is not the one that unfolds the V-shape. This is the key difference between the
functionality of PCA and EAT. Kernel PCA does not provide a satisfactory
embedding either. Fig. 2 shows the result that is generated by an RBF kernel;
we experimented KPCA with a variety of popular kernels, but none were able
to reveal a faithful embedding of the V-shape.

Unlike kernel PCA, EAT does not expect the kernel to reveal the underlying
structure of data. When the dimensionality of data is higher than its quantity, a
linear transformation can span the whole space. This means we can always find
W to flatten the manifold.

Learning an Affine Transformation for Non-linear Dimensionality Reduction 9

V-Shape Manifold

EAT Embedding

Kernel-PCA Embedding

o‘."'1
rd

/
¢

Fig. 2. A V-shape manifold, and the results of EAT, PCA and kernel PCA.

When the original dimensionality of data is high (d > n, e.g. for images), EAT
does not need a kernel in principal; however, using a linear kernel reduces the
computational complexity of the method . In all of the following experiments,
we use a linear kernel when the original dimensionality of data is high (e.g. for
images), and RBF in all other cases. In general EAT is not that sensitive to the
type of kernel. We will discuss the effect of kernel type and its parameter(s) later
in this section.

The next experiment is on a Swiss roll manifold, depicted in the bottom-left
panel of Fig. 3. Although Swiss roll is a three-dimensional data set, it tends to
be one of the most challenging data sets due to its complex global structure. We
sample 50 points for our training set, and 950 points as an out-of-sample test set.
The results of Maximum Variance Unfolding (MVU), Isomap, and EAT 7 are
presented in the first row of Fig. 3. The second row shows the projection of the
out-of-sample points into a two-dimensional embedded space. EAT computes a
transformation that maps the new data points into the low-dimensional space.
MVU and Isomap, however, do not provide any direct way to handle out-of-
sample examples. A common approach to resolve this problem is to learn a
non-parametric model between the low and high dimensional spaces.

5 In the kernelized version, W is n x n but in the original version it is d x d. Thus,
Computing W in the kernelized form is less complex when d > n.

" In general, Kernel PCA fails to unfold the Swiss roll data set. LLE generally pro-
duces a good embedding, but not on small data sets (e.g. the training set in this
experiment). For this reason we do not demonstrate their results.

10 Learning an Affine Transformation for Non-linear Dimensionality Reduction

Training Data MVU (Training Data) IsoMap (Training Data) EAT (Training Data)

MVU (Test Data) IsoMap (Test Data) EAT (Test Data)
s
3
5 T3 25
2 2
2 15
1 1
0s. 1 05
o
o o
1 05
Bl -1
2
15
2
3 2
-3 s 25
% L. . os .
2 - o 1 2 2 1 o 1 2 1 a 1

Fig. 3. A Swiss roll manifold, and the results of different dimensionality reduction
methods: MVU, Isomap, and EAT. The top row demonstrates the results on the train-
ing set, and the bottom row shows the results of the out-of-sample test set.

In this approach, a high-dimensional test data point x is mapped to the
low dimensional space in three steps: (i) the k nearest neighbors of x among
the training inputs (in the original space) are identified; (ii) the linear weights
that best reconstruct x from its neighbors, subject to a sum-to-one constraint,
are computed; (iii) the low-dimensional representation of x is computed as the
weighted sum (with weights computed in the previous step) of the embedded
points corresponding to those k neighbors of x in the original space. In all of
the examples in this paper, the out-of-sample embedding is conducted using this
non-parametric model except for EAT, PCA, and Kernel PCA which provide
parametric models. It is clear that the out-of-sample estimates of MVU and
Isomap are not faithful to the Swiss roll shape, especially along its border.

Now we illustrate the performance of the proposed method on some real data
sets. Fig. 4 shows the result of EAT when applied to a data set of face images.
This data set consists of 698 images, from which we randomly selected 35 as the
training set and the rest are used as the test data. Training points are indicated
with a solid blue border.

The images in this experiment have three degrees of freedom: pan, tilt, and
brightness. In Fig. 4, the horizontal and vertical axes appear to represent the
pan and tilt, respectively. Interestingly, while there are no low-intensity images
among the training samples, darker out-of-sample points appear to have been
organized together in the embedding. These darker images still maintain the
correct trends in the variation of pan and tilt across the embedding. In this
example, EAT was used with a linear kernel.

Learning an Affine Transformation for Non-linear Dimensionality Reduction 11

Embedded Train and Test Images in 2D

Fig. 4. The result of manifold learning with EAT (using a linear kernel) on a data set
of face images.

In another experiment , we conducted an experiment on a subset of the
Olivetti image data set [7]. Face images of three different persons are used as
the training set, and images of a fourth person are used as the out-of-sample
test examples. The results of MVU, LLE, Isomap, PCA, KPCA, and EAT are
illustrated in Fig. 5. Different persons in the training data are indicated by
red squares, green triangles and purple diamonds. PCA and Kernel PCA do
not provide interpretable results even for the training set. The other methods,
however, separate the different people along different chains. Each chain shows
a smooth change between the side view and the frontal view of an individual.

The key difference between the algorithms is the way they embed the images
of the new person (represented by blue circles). MVU, LLE, Isomap, PCA, and
Kernel PCA all superimpose these images onto the images of the most similar
individual in the training set, and by this, they clearly lose a part of information.
This is due to the fact, that they learn a non-parametric model for embedding
the out-of-samples. EAT, however, embeds the images of the new person as a
separate cluster (chain), and maintains a smooth gradient between the frontal
and side views.

Finally, we attempt to unfold a globe map (top-left of Fig. 6) into a faithful
2D representation. Since a complete globe is a closed surface and thus cannot be
unfolded, our experiment is on a half-globe. A regular mesh is drawn over the
half-globe (top-right of Fig. 6), and 181 samples are taken for the training set.
EAT is used to unfold the sampled mesh and find its transformation (bottom-
right of Fig. 6).

12 Learning an Affine Transformation for Non-linear Dimensionality Reduction

.553 (1= B g,ua
'@_ﬁ_@@lﬁ ﬁ‘ =

{5
ﬁgg‘a @g

LLE IsoMap

MVU EAT

c

@ 8

(=N &
)

nosmsng qeft " g

AR adds L I AT

Fig. 5. The results of different dimensionality reduction techniques on a data set of
face photos. Each color represents the pictures of one of four individuals. The blue
circles show the test data (pictures of the fourth individual).

Learning an Affine Transformation for Non-linear Dimensionality Reduction 13

Note that it is not possible to unfold a globe into a 2D space while preserv-
ing the original local distances; in fact, the transformation with the minimum
preservation error is the identity function. So rather than preserving the local
distances, we define Euclidean distances based on the latitude and longitude of
the training points along the surface of the globe; then the 2D embedding be-
comes feasible. This is an interesting aspect of EAT: it does not need to operate
on the original distances of the data, but can instead be supplied with arbitrary
distance values (as long as they are compliant with the desired dimensionality
reduction of the data).

Our out-of-sample test set consists of 30,000 points as specified by their 3D
position with respect to the center of the globe. For this experiment we used an
RBF kernel with ¢ = 0.3. Applying the output transformation of EAT results
in the 2D embedding shown in the bottom-left of Fig. 6; color is used to denote
elevation in these images. Note that the pattern of the globe does not change
during the embedding process, which demonstrates that the representation of
EAT is faithful. However, the 2D embedding of the test points is distorted at
the sides, which is due to the lack of information from the training samples in
these areas.

Fig. 6. Unfolding a half-globe into a 2D map by EAT. A half-sphere mesh is used for
training. Color is used to denote elevation. The out-of-sample test set comprises 30,000
points from the surface of Earth.

14 Learning an Affine Transformation for Non-linear Dimensionality Reduction

4.1 The Effect of Type and Parameters of the Kernels

The number of bases corresponding to a particular kernel matrix is equal to
the rank of that matrix. If we use a full rank kernel matrix (i.e. rank(K) = n),
then the number of bases is equal to the number of data points and a linear
transformation can span the whole space. That is, it is always possible to find
a transformation W that perfectly unfolds the data as far as the training data
points are concerned. For example, an identity kernel matrix can perfectly unfold
any training data set; but it will fail to map out-of-sample points correctly,
because it cannot measure the similarity between the out-of-sample points and
the training examples. In other words, using a full rank kernel is a sufficient
condition in order to faithfully embed the training points. But if the correlation
between the kernel and the data is weak (an extreme case is using the identity
matrix as a kernel), EAT will not perform well for the out-of-sample points.

We define r = %(K) Clearly » = 1 indicates a full rank matrix and r < 1
shows a rank deficient kernel matrix K. The effect of using different kernels on
the Swiss roll manifold (bottom-left of Fig. 3) are illustrated in Fig. 7.

deg=3 deg=4 deg=35 deg =6 deg =7 deg =38
deg =2 r=10.238 r=10.417 r=0.667 r=0.929 r=1 r=1
LT 0.119 2 5 5 2 2 5
1 1 1 1 1 1
05 0 0 0 0 0 0
0 1 1 1 1 1 I
2 2 2 2 2 2
05
3 3 3 3 3 3
. 4 4
3T 0 o3 4 4 4 “

5 5 5 ;

o Mo 1 o Yo o e
c=0.1 =03 c=0.6 o=0.38 c=1 c=2 c=3
r=1 r=1 r=1 r=1 r=1 r=10.917 s r=075

®
2 2 2 2 2 2 z
1 1] 1 1] ! Q
0 0 0 0 0 n 0 M
q 1 1 -1 1 1 1
3 2 2 2 2 2 2
[
3 3 3 3 3 3 3 10°
" 2 10 17"
T o0 4 4 0 1 1 0 1 4 0 1 4 0 1 A4 0 1

Fig. 7. The effect of using different kernels for embedding a Swiss-roll manifold. Poly-
nomials of different degrees are used in the first row, and in the second row RBF kernels
with different o values map the original data to the feature space.

Learning an Affine Transformation for Non-linear Dimensionality Reduction 15

Two different kernels are demonstrated. In the first row polynomial kernels
of different degrees are used, and the second row shows the result of RBF kernels
which have different values for their variance parameter o. The dimensionality
of the feature spaces of the low degree polynomial kernels (deg = 2,3) is not
high enough; thus they do not produce satisfactory results. Similarly, in the
experiment with RBF kernels, when ¢ is high, EAT is not able to find the
desired affine transformation in the feature space to unfold the data (e.g. the
rightmost-bottom result).

The leftmost-bottom result is generated by an RBF kernel with a very small
value assigned to o. In this case, the kernel is full rank and consequently r = 1.
The training data points are mapped perfectly as expected but EAT fails to
embed the out-of-sample points correctly. Note that with such a small o the
resulted RBF kernel matrix is very close to the identity matrix, so over-fitting
will happen in this case. Experiments with a wide variety of other kernels on
different data sets show similar results. Based on these experiments, we suggest
that an RBF kernel can be used for any data set. The parameter o should
be selected such that (i) the kernel matrix is full rank or close to full rank
(r &= 1), and (ii) the resulting kernel is able to measure the similarity between
non-identical data points (o is not too small). This method is not sensitive to
type of kernel. For an RBF kernel a wild range of values for ¢ can be safely used,
as long as the conditions (i) and (ii) are satisfied. When the dimensionality of
the original data is more than or equal to the number of the data points, there
is no need for a kernel, but one may use a simple linear kernel to reduce the
computational complexity®.

5 Conclusion

We presented a novel dimensionality reduction method which, unlike other promi-
nent methods, can easily embed out-of-sample examples. Our method learns a
parametric mapping between the high and low dimensional spaces, and is per-
formed in two steps. First, the input data is projected into a high-dimensional
feature space, and then an affine transformation is learned that maps the data
points from the feature space into the low dimensional embedding space. The
search for this transformation is cast as an instance of semi-definite programming
(SDP), which is convex and always converges to a global optimum. However, SDP
is computationally intensive, which can make it inefficient to train EAT on large
data sets.

Our experimental results on real and synthetic data sets demonstrate that
EAT produces a robust and faithful embedding even for very small data sets. It
also shows that it is successful at projecting out-of-sample examples. Thus, one
approach for handling large data sets with EAT would be to downsample the
data by selecting a small subset as the training input and embedding the rest of
the data as test examples.

8 An RBF kernel can be used for this case as well.

16

Learning an Affine Transformation for Non-linear Dimensionality Reduction

Another feature of EAT is that it treats the distances between the data

points in three different ways. One can preserve a subset of the distances (set
S), stretch another subset (set O) and leave the third set (pairs that are not in
S and O) unspecified. This is in contrast with methods like MVU that preserve
local distances but stretch any non-local pairs. This property means that EAT
could be useful for semi-supervised tasks where only partial information about
similarity and dissimilarity of points is known.

References

10.

11.

12.

13.

14.

Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding
and clustering. In: Proceedings NIPS (2001)

Cox, T., Cox, M.: Multidimensional Scaling. Chapman Hall, Boca Raton, 2nd edn.
(2001)

Ham, J., Lee, D., Mika, S., B., S.: A kernel view of the dimensionality reduction
of manifolds. In: International Conference on Machine Learning (2004)

Jolliffe, I.: Principal Component Analysis. Springer-Verlag, New York (1986)
Mika, S., Scholkopf, B., Smola, A., Miiller, K.R., Scholz, M., Réatsch, G.: Kernel
PCA and de-noising in feature spaces. In: Kearns, M.S., Solla, S.A., Cohn, D.A.
(eds.) Proceedings NIPS 11. MIT Press (1999)

Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embed-
ding. Science 290, 2323-2326 (2000)

Samaria, F., Harter, A.: Parameterisation of a Stochastic Model for Human Face
Identification. In: Proceedings of 2nd IEEE Workshop on Applications of Computer
Vision (1994)

Scholkopf, B., Smola, A.: Learning with Kernels. MIT Press, Cambridge, Mas-
sachusetts (2002)

Shaw, B., Jebara, T.: Minimum volume embedding. In: Meila, M., Shen, X. (eds.)
Proceedings of the Eleventh International Conference on Artificial Intelligence and
Statistics March 21-24, 2007, San Juan, Puerto Rico. vol. 2 of JMLR: W&CP, pp.
460-467 (March 2007)

Shaw, B., Jebara, T.: Structure preserving embedding. In: Bottou, L., Littman, M.
(eds.) Proceedings of the 26th International Conference on Machine Learning. pp.
937-944. Omnipress, Montreal (June 2009)

Song, L., Smola, A.J., Borgwardt, K.M., Gretton, A.: Colored maximum variance
unfolding. In: NIPS (2007)

Tenenbaum, J.: Mapping a manifold of perceptual observations. In: Advances in
Neural Information Processing Systems 10. pp. 682—687 (1998)

Weinberger, K.Q., Saul, L.K.: Unsupervised learning of image manifolds by
semidefinite programming. In: Proc. of the IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR-04). vol. II, pp. 988-995 (2004)

Weinberger, K., Sha, F., Zhu, Q., Saul, L.: Graph Laplacian regularization for
large-scale semidefinite programming. Advances in neural information processing
systems 19, 1489 (2007)

