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Matrix Forms:

» Words in sequence: X = [xq, ..., x,] € R9*"

» Queries: Q = [q1, ..., qn] € RPX"

> Keys: K = |ky,..., k| € RPX"

> Values: V = |vy,...,v,] € RT™*"
Projection:

> Queries: q; = W] x;

> Keys: ki = W)/ x;

> Values: v; = W) x;
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Similarity Measures:
» Inner product: g ki = x" Wo(Wi)" x;
» Acts like a kernel matrix, measuring similarity.

Attention Computation:
. - _ 1 AT
» / := attention(Q, K, V) = Vsoftmax (\/ﬁQ K)



Transformer
Attention Is All You Need (2017)
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Encoder

The encoder part of the transformer embeds the input sequence of n
words X € R*" into context vectors with the attention mechanism.
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Encoder

» The encoder consists of two main components: Self-Attention and
Feedforward Neural Network (FFN).
> Self-Attention:
» Input: Matrix X
» Linear Transformations to generate Query (Q), Key (K), and Value
(V') matrices:

Q=WIX, K=WIX, V=WX

» Compute attention output Z using the formula:

-
/Z = V'softmax (Q K)
\/ﬁ

» Residual Connection:
X+7Z

» Normalization:
(X + 2)
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Multi-Headed Attention

Q= W3'X
Ki= WE'X
Vi = WL’ X
/7 = Vsoftmax (\% QlTKl)
Qn= W' X
K, = Wh'X
Vy = WE' X

7, = Vsoftmax (# QhTKh)
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Multi-Headed Attention
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Multi-Headed Attention
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Structure of the Feed Forward Network

» Linear Layer 1
» RelU Activation
» Linear Layer 2

FFN(x) = W, max(0, W, X + by) + b

Two linear transformations with RelLU activation in between.
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» The Feed Forward Network (FFN) is applied independently to each
position in the input sequence.

» Despite individual processing, all positions share the same set of
weights and biases in the FFN.

» Key Points:
» Shared parameters ensure consistency in processing across all
positions.

» Enables the model to generalize learnings from one position to all
positions.

» Facilitates parallel processing of the sequence, enhancing
computational efficiency.



Global vs Local

e Attention Mechanism:

* Global Understanding: Captures relationships among different
positions in the sequence.

* Context Aggregation: Spreads relevant information across the
sequence, enabling each position to see a broader context.
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Global vs Local

e Attention Mechanism:

* Global Understanding: Captures relationships among different
positions in the sequence.

* Context Aggregation: Spreads relevant information across the
sequence, enabling each position to see a broader context.

* Feed-Forward Networks (FFN):

* Local Processing: While attention looks across the entire sequence,
FFN zooms back in to process each position independently.

* Individual Refinement: Enhances the representation of each position
based on its own value, refining the information gathered so far.
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e Attention Mechanism - Classroom Discussion:

* Interactions: Students (positions) in a classroom engaging in a
discussion, sharing ideas, and interacting.

e Teacher's Role: The teacher (attention mechanism) observes who is
interacting with whom, gaining a global understanding of the
discussion dynamics.



A Classroom Analogy

e Feed-Forward Network - Individual Assessment:

* Teacher's Role: The teacher (FFN) interacts with each student
(position) independently, assessing their understanding and
knowledge.

* Independent Processing: Each student is evaluated individually, akin
to how the FFN processes each position independently.

e Outcome: Enhanced understanding and refined representation of
each student's performance, akin to the FFN refining representations
at each position.
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A Classroom Analogy

e Synergy of Attention and FFN:

* Holistic Understanding: The combination of global interaction
observation (attention) and individual assessment (FFN) provides a
holistic understanding of both group dynamics and individual
performances.

* Balanced Processing: A balanced approach to processing global
relationships and local, position-specific information, leading to richer
representations and enhanced learning.
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If the output of the FFN is denoted by R, then a residual connection is
established from the output of the previous layer (X + Z) to the output
of the FFN, resulting in (X + Z) + R.This will be normalized

((X + Z) + R)to form the output of the encoder. ——
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Figure: Jesse Vig
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Transformer
Attention Is All You Need (2017)
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Decoder

« Masked self attention.
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Qutput
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Qutput

D e C O d e r Pmbatbilities
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« Masked self attention.
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Decoder

 Cross Attention

* Cross attention allows each position in
one sequence to attend over all
positions in another sequence.

*Query (Q): Originates from a position in the
first sequence, i.e. the output of a previous
layer in the decoder.

*Memory Keys (K) and Values (V): Both come
from all positions in the second sequence, i.e.
the output of the encoder.
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Decoder

 Masked self attention.

* Cross attention layer is like what attention
does in sequence-to-sequence models.
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Decoder

 Masked self attention.

* Cross attention attention layer is like what
attention does in sequence-to-sequence
models.

* |t helps the decoder emphasize on
relevant parts of the input.
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Decoder

Masked self attention.

Cross attention attention layer is like what
attention does in sequence-to-sequence
models.

It helps the decoder emphasize on
relevant parts of the input.

The same feed-forward network is applied
to each position.
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From Feedforward Network
to Word Prediction

Linear Projection:
*Primary Role: Adjusting dimensionality.

*The linear layer serves to change the
dimensionality of the feedforward
network's output to match the size of the
vocabulary.

*This ensures that the output has a
dimension corresponding to every word in
the dictionary.
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From Feedforward

Network

to Word Prediction

Softmax Activation:

*This function transforms the linear layer's

output into pro
*Representing t

nabilities.
ne likelihood of a

respective word being the next word in

the sequence.
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Positional Encoding

* Problem: no recurrence and no convolution, the model has no sense
of the sequence.

505



Positional Encoding

* Problem: no recurrence and no convolution, the model has no sense
of the sequence.

* We need a way to account for the order of the tokens in the
sequence.

506



Positional Encoding

* Problem: no recurrence and no convolution, the model has no sense
of the sequence.

* We need a way to account for the order of the tokens in the
sequence.

» Solution: Adds a vector accounting for the position to each input
embedding.
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Positional Encoding
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Positional Encoding
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Positional Encoding
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Positional Encoding Visualization
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Binary representation
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