
Lecture 12

Reinforcement Learning-Part 1

Reinforcement Learning

• Reinforcement Learning from Human Feedback (RLHF).

564

Deep Reinforcement Learning

• Deep RL is a combination of RL and DL

• TD-Gammon is a game learning program consisting of a neural
network that is able to teach itself to play backgammon solely by
playing against itself and learning from the results.

• Deep Q-Network (DQN) is the first deep reinforcement learning
method proposed by DeepMind and used in Atari games.

565

Alpha Go

• Alpha Go is a computer system developed by Google DeepMind that
can play the game Go.

• Google DeepMind’s Challenge Match, was a five-game Go match between 18-
time world champion Lee Sedol and AlphaGo played in 2016.

• AlphaGo won all but the fourth game.

566

Alpha Go Zero

• Alpha Go. Zero is more powerful and is arguably the strongest Go
player in history.

• Alpha Zero learns to play simply by playing against itself, starting completely
from random play.

567

Reinforcement Learning Definition

Wikipedia:

Reinforcement learning is an area of machine learning inspired by
behavioural psychology, concerned with how software agents ought to
take actions in an environment so as to maximize some notion of
cumulative reward.

568

Reinforcements

• We use reinforcements to train animals

• Food: (Positive reinforcements)

• Hunger (Negative reinforcements)

569

Tic-tac-toe

570

Tic-tac-toe

• Environment

• Action

• State

• Reward

571

Tic-tac-toe

• Environment

572

Tic-tac-toe

• Environment

• Action

573

Tic-tac-toe

• Environment

• Action

• State

574

Tic-tac-toe

• Environment

• Action

• State

• Reward

575

Markov Decision Process (MDP)

MDP is defined by a quintuple {𝑆𝑆,𝐴𝐴,𝑅𝑅,𝑃𝑃, 𝛾𝛾}.

• States: 𝑠𝑠 ∈ 𝑆𝑆

• Actions: a ∈ 𝐴𝐴

• Rewards: r ∈ 𝑅𝑅
• Reward model: Pr(𝑟𝑟𝑡𝑡|𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡)

• Transition model: Pr(𝑠𝑠𝑡𝑡|𝑠𝑠𝑡𝑡−1,𝑎𝑎𝑡𝑡−1)

• Discount factor: 0 ≤ 𝛾𝛾 ≤ 1
• Discounted: 𝛾𝛾 < 1 Undiscounted: 𝛾𝛾 = 1

576

Markov Decision Process (MDP)

• States: 𝑠𝑠 ∈ 𝑆𝑆
• The set of all possible situations (𝑠𝑠) an agent can encounter.

• Actions: a ∈ 𝐴𝐴

• Rewards: r ∈ 𝑅𝑅
• Reward model: Pr(𝑟𝑟𝑡𝑡|𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡)

• Transition model: Pr(𝑠𝑠𝑡𝑡|𝑠𝑠𝑡𝑡−1,𝑎𝑎𝑡𝑡−1)

• Discount factor: 0 ≤ 𝛾𝛾 ≤ 1
• Discounted: 𝛾𝛾 < 1 Undiscounted: 𝛾𝛾 = 1

577

Markov Decision Process (MDP)

• States: 𝑠𝑠 ∈ 𝑆𝑆
• The set of all possible situations (𝑠𝑠) an agent can encounter.

• Actions: a ∈ 𝐴𝐴
• The set of all possible moves (a) the agent can make.

• Rewards: r ∈ 𝑅𝑅
• Reward model: Pr(𝑟𝑟𝑡𝑡|𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡)

• Transition model: Pr(𝑠𝑠𝑡𝑡|𝑠𝑠𝑡𝑡−1,𝑎𝑎𝑡𝑡−1)

• Discount factor: 0 ≤ 𝛾𝛾 ≤ 1
• Discounted: 𝛾𝛾 < 1 Undiscounted: 𝛾𝛾 = 1

578

Markov Decision Process (MDP)

• States: 𝑠𝑠 ∈ 𝑆𝑆
• The set of all possible situations (𝑠𝑠) an agent can encounter.

• Actions: a ∈ 𝐴𝐴
• The set of all possible moves (a) the agent can make.

• Rewards: r ∈ 𝑅𝑅
• Reward model: Pr(𝑟𝑟𝑡𝑡|𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡)

• Scalar feedback (r) received after executing an action in a state

• Transition model: Pr(𝑠𝑠𝑡𝑡|𝑠𝑠𝑡𝑡−1,𝑎𝑎𝑡𝑡−1)

• Discount factor: 0 ≤ 𝛾𝛾 ≤ 1
• Discounted: 𝛾𝛾 < 1 Undiscounted: 𝛾𝛾 = 1

579

Markov Decision Process (MDP)

• States: 𝑠𝑠 ∈ 𝑆𝑆
• The set of all possible situations (𝑠𝑠) an agent can encounter.

• Actions: a ∈ 𝐴𝐴
• The set of all possible moves (a) the agent can make.

• Rewards: r ∈ 𝑅𝑅
• Reward model: Pr(𝑟𝑟𝑡𝑡|𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡)

• Scalar feedback (r) received after executing an action in a state

• Transition model: Pr(𝑠𝑠𝑡𝑡|𝑠𝑠𝑡𝑡−1,𝑎𝑎𝑡𝑡−1)
• The probability of moving to the next state (𝑠𝑠𝑡𝑡) from the current state-action

• Discount factor: 0 ≤ 𝛾𝛾 ≤ 1
• Discounted: 𝛾𝛾 < 1 Undiscounted: 𝛾𝛾 = 1

580

Markov Decision Process (MDP)

• States: 𝑠𝑠 ∈ 𝑆𝑆
• The set of all possible situations (𝑠𝑠) an agent can encounter.

• Actions: a ∈ 𝐴𝐴
• The set of all possible moves (a) the agent can make.

• Rewards: r ∈ 𝑅𝑅
• Reward model: Pr(𝑟𝑟𝑡𝑡|𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡)

• Scalar feedback (r) received after executing an action in a state

• Transition model: Pr(𝑠𝑠𝑡𝑡|𝑠𝑠𝑡𝑡−1,𝑎𝑎𝑡𝑡−1)
• The probability of moving to the next state (𝑠𝑠𝑡𝑡) from the current state-action

• Discount factor: 0 ≤ 𝛾𝛾 ≤ 1
• A coefficient (0 ≤ 𝛾𝛾 ≤ 1) determining the present value of future rewards.
• Discounted: 𝛾𝛾 < 1 Undiscounted: 𝛾𝛾 = 1

581

Markov Decision Process (MDP)

• At every time step 𝑡𝑡 = 0, 1, … , the agent is at state 𝑆𝑆𝑡𝑡.

582

Markov Decision Process (MDP)

• At every time step 𝑡𝑡 = 0, 1, … , the agent is at state 𝑆𝑆𝑡𝑡.

• Takes an action 𝐴𝐴𝑡𝑡

583

Markov Decision Process (MDP)

• At every time step 𝑡𝑡 = 0, 1, … , the agent is at state 𝑆𝑆𝑡𝑡.

• Takes an action 𝐴𝐴𝑡𝑡

• Transitions to a new state 𝑆𝑆𝑡𝑡+1, following the probability 𝑆𝑆𝑡𝑡+1~ 𝒫𝒫(� |𝑆𝑆𝑡𝑡 ,𝐴𝐴𝑡𝑡)

584

Markov Decision Process (MDP)

• At every time step 𝑡𝑡 = 0, 1, … , the agent is at state 𝑆𝑆𝑡𝑡.

• Takes an action 𝐴𝐴𝑡𝑡

• Transitions to a new state 𝑆𝑆𝑡𝑡+1, following the probability 𝑆𝑆𝑡𝑡+1~ 𝒫𝒫(� |𝑆𝑆𝑡𝑡 ,𝐴𝐴𝑡𝑡)

• Obtains a reward 𝑅𝑅𝑡𝑡~ ℛ(� |𝑆𝑆𝑡𝑡 ,𝐴𝐴𝑡𝑡)

585

Policy

• A policy 𝜋𝜋 is a mapping from states to actions,

• 𝐴𝐴𝑡𝑡 = 𝜋𝜋(𝑆𝑆𝑡𝑡) (deterministic policy)

• 𝐴𝐴𝑡𝑡 = 𝜋𝜋(� |𝑆𝑆𝑡𝑡) (stochastic policy).

586

Markov Decision Process (MDP)

• Mathematical Formulation of the Objective:
• Find a policy 𝜋𝜋 such that the long-term reward of the agent is maximized.
• 𝜋𝜋∗ = argmax

𝜋𝜋
∑𝑡𝑡=0ℎ 𝛾𝛾𝑡𝑡𝐸𝐸𝜋𝜋[𝑟𝑟𝑡𝑡]

• Policy:
• A policy 𝜋𝜋 dictates the agent's action in each state.
• The objective is to determine an optimal policy 𝜋𝜋∗ that maximizes expected

long-term rewards.

587

Examples of Deterministic and Stochastic
Policies

Deterministic Policy:
Scenario: Robot in a maze.
Policy: At a junction, turn right. At a dead-end, turn around.
Characteristic: No randomness, fixed actions.

Stochastic Policy:
Scenario: Marketing strategy for customer interactions (state).
Policy: For a sports product browser, 70% chance to suggest related items, 20%
for fitness services, 10% for supplements.
Characteristic: Actions based on probabilities, varied responses.

588

Bellman’s Equation

Definition:
The Bellman equation is a fundamental recursive formula in reinforcement
learning that calculates the optimal value of a current state by considering all
possible future states. It balances the immediate reward with the maximum
expected future rewards.

589

Bellman’s Equation in Action

1.Morning Choices:
1. Visit the museum (low cost, informative).
2. Go to the amusement park (high cost, fun-filled).

2.Considering the Afternoon:
1. If you choose the museum, you'll have more time and money left for other

activities.
2. The amusement park is more expensive and time-consuming, leaving less

flexibility for the rest of the day.

3.Decision-Making:
• Balancing immediate rewards with future possibilities

590

Bellman’s Equation in Action

1.Quantify Outcomes:
1. Assign values to the outcomes (e.g., enjoyment, cost, time).
2. Museum: 40 points (savings on time and money, educational value).
3. Amusement Park: 50 points (thrills and fun, higher cost, less time for other

activities).
2.Consider Future Rewards:

1. Estimate the remaining day's potential with either choice.
2. Museum: Extra time and money could lead to 30 more points (e.g., visiting a park,

enjoying a nice meal).
3. Amusement Park: Fewer resources might limit you to 10 more points (e.g., a quick

street food dinner).
3.Calculate Total Value:

1. Museum: 40 (immediate) + 0.9 x 30 (future) = 67 points.
2. Amusement Park: 50 (immediate) + 0.9 x 10 (future) = 59 points.

591

Bellman’s Equation

592

Value Iteration

593

State-Value VS Optimal State-Value

594

Policy Iteration

595

Modified Policy Iteration

596

Markov Decision Process

• Definition
• States: 𝑠𝑠 ∈ 𝑆𝑆
• Actions: a ∈ 𝐴𝐴
• Rewards: r ∈ 𝑅𝑅
• Transition model: Pr(𝑠𝑠𝑡𝑡|𝑠𝑠𝑡𝑡−1,𝑎𝑎𝑡𝑡−1)
• Reward model: Pr(𝑟𝑟𝑡𝑡|𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡)
• Discount factor: 0 ≤ 𝛾𝛾 ≤ 1

• Goal: find optimal policy 𝜋𝜋∗ such that
𝜋𝜋∗ = argmax

𝜋𝜋
∑𝑡𝑡=0ℎ 𝛾𝛾𝑡𝑡𝐸𝐸𝜋𝜋[𝑟𝑟𝑡𝑡]

597

Reinforcement Learning

• Definition
• States: 𝑠𝑠 ∈ 𝑆𝑆
• Actions: a ∈ 𝐴𝐴
• Rewards: r ∈ 𝑅𝑅
• Transition model: Pr(𝑠𝑠𝑡𝑡|𝑠𝑠𝑡𝑡−1,𝑎𝑎𝑡𝑡−1)
• Reward model: Pr(𝑟𝑟𝑡𝑡|𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡)
• Discount factor: 0 ≤ 𝛾𝛾 ≤ 1

• Goal: find optimal policy 𝜋𝜋∗ such that
𝜋𝜋∗ = argmax

𝜋𝜋
∑𝑡𝑡=0ℎ 𝛾𝛾𝑡𝑡𝐸𝐸𝜋𝜋[𝑟𝑟𝑡𝑡]

598

Model Free

• Given a policy 𝜋𝜋, how can we estimate 𝑉𝑉𝜋𝜋(𝑠𝑠) without
transition model?

599

Monte Carlo Estimation for State-Value
Function

600

Monte Carlo Estimation for State-Value
Function

601

Monte Carlo Estimation for State-Value
Function• Let 𝐺𝐺𝑘𝑘 be a one-trajectory Monte Carlo target

𝐺𝐺𝑘𝑘 = ∑𝑡𝑡 𝛾𝛾𝑡𝑡𝑟𝑟𝑡𝑡
(𝑘𝑘)

• Approximate value function

𝑉𝑉𝑛𝑛𝜋𝜋 𝑠𝑠 ≈ 1
𝑛𝑛(𝑠𝑠)

∑𝑘𝑘=1
𝑛𝑛(𝑠𝑠)𝐺𝐺𝑘𝑘

= 1
𝑛𝑛 𝑠𝑠

(𝐺𝐺𝑛𝑛 𝑠𝑠 + ∑𝑘𝑘=1
𝑛𝑛 𝑠𝑠 −1 𝐺𝐺𝑘𝑘)

= 1
𝑛𝑛 𝑠𝑠

𝐺𝐺𝑛𝑛 𝑠𝑠 + 𝑛𝑛 𝑠𝑠 − 1 𝑉𝑉𝑛𝑛−1𝜋𝜋 𝑠𝑠

= 𝑉𝑉𝑛𝑛−1𝜋𝜋 𝑠𝑠 + 1
𝑛𝑛 𝑠𝑠

𝐺𝐺𝑛𝑛 𝑠𝑠 − 𝑉𝑉𝑛𝑛−1𝜋𝜋 𝑠𝑠

• Incremental update
𝑉𝑉𝑛𝑛𝜋𝜋 𝑠𝑠 ← 𝑉𝑉𝑛𝑛−1𝜋𝜋 𝑠𝑠 + 𝛼𝛼𝑛𝑛(𝐺𝐺𝑛𝑛 − 𝑉𝑉𝑛𝑛−1𝜋𝜋 (𝑠𝑠))

1/𝑛𝑛(𝑠𝑠)
602

Incremental update

𝑉𝑉𝑛𝑛𝜋𝜋 𝑠𝑠 ← 𝑉𝑉𝑛𝑛−1𝜋𝜋 𝑠𝑠 + 𝛼𝛼𝑛𝑛(𝐺𝐺𝑛𝑛 − 𝑉𝑉𝑛𝑛−1𝜋𝜋 (𝑠𝑠))

Temporal Difference (TD) evaluation
𝑉𝑉𝑛𝑛𝜋𝜋 𝑠𝑠 ← 𝑉𝑉𝑛𝑛−1𝜋𝜋 𝑠𝑠 + 𝛼𝛼𝑛𝑛 𝑟𝑟 + 𝛾𝛾𝑉𝑉𝑛𝑛−1𝜋𝜋 (𝑠𝑠′ − 𝑉𝑉𝑛𝑛−1𝜋𝜋 (𝑠𝑠))

603

Incremental update

𝑉𝑉𝑛𝑛𝜋𝜋 𝑠𝑠 ← 𝑉𝑉𝑛𝑛−1𝜋𝜋 𝑠𝑠 + 𝛼𝛼𝑛𝑛(𝐺𝐺𝑛𝑛 − 𝑉𝑉𝑛𝑛−1𝜋𝜋 (𝑠𝑠))

Temporal Difference (TD) evaluation
𝑉𝑉𝑛𝑛𝜋𝜋 𝑠𝑠 ← 𝑉𝑉𝑛𝑛−1𝜋𝜋 𝑠𝑠 + 𝛼𝛼𝑛𝑛 𝑟𝑟 + 𝛾𝛾𝑉𝑉𝑛𝑛−1𝜋𝜋 (𝑠𝑠′ − 𝑉𝑉𝑛𝑛−1𝜋𝜋 (𝑠𝑠))

𝑉𝑉𝜋𝜋 𝑠𝑠 = 𝐸𝐸 𝑟𝑟 𝑠𝑠,𝜋𝜋 𝑠𝑠 + 𝛾𝛾 ∑𝑠𝑠′ Pr 𝑠𝑠′ 𝑠𝑠,𝜋𝜋 𝑠𝑠 𝑉𝑉𝜋𝜋 𝑠𝑠′

≈ 𝑟𝑟 + 𝛾𝛾𝑉𝑉𝜋𝜋(𝑠𝑠′)

604

Temporal Difference Evaluation

• Incremental update
𝑉𝑉𝑛𝑛𝜋𝜋 𝑠𝑠 ← 𝑉𝑉𝑛𝑛−1𝜋𝜋 𝑠𝑠 + 𝛼𝛼𝑛𝑛 𝑟𝑟 + 𝛾𝛾𝑉𝑉𝑛𝑛−1𝜋𝜋 (𝑠𝑠′ − 𝑉𝑉𝑛𝑛−1𝜋𝜋 (𝑠𝑠))

• Theorem: if 𝛼𝛼𝑛𝑛 is appropriately decreased with the number of times a
state is visited, then 𝑉𝑉𝑛𝑛𝜋𝜋(𝑠𝑠) converges to correct value

• Sufficient conditions for 𝛼𝛼𝑛𝑛:
(1) ∑𝑛𝑛 𝛼𝛼𝑛𝑛 → ∞ (2) ∑𝑛𝑛(𝛼𝛼𝑛𝑛)2 < ∞

• Often 𝛼𝛼𝑛𝑛 𝑠𝑠 = ⁄1 𝑛𝑛(𝑠𝑠)
• Where 𝑛𝑛 𝑠𝑠 = # of times 𝑠𝑠 is visited

605

Intuitively

• instead of trying to calculate total future reward, TD simply tries to
predict the combination of immediate reward and its own reward
prediction at the next moment in time.

• when the next moment comes, the new prediction is compared
against what it was expected to be. (temporal difference)

• use this “temporal difference” to adjust the old prediction toward the
new prediction.

606

Temporal Difference Evaluation

Tdevaluation(𝜋𝜋,𝑉𝑉𝜋𝜋)
• Repeat

• Execute 𝜋𝜋(𝑠𝑠)
• Observe 𝑠𝑠′and 𝑠𝑠
• Update counts: 𝑛𝑛 𝑠𝑠 ← 𝑛𝑛 𝑠𝑠 + 1
• Learning rate: 𝛼𝛼 ← ⁄1 𝑛𝑛(𝑠𝑠)
• Update value: 𝑉𝑉𝜋𝜋 𝑠𝑠 ← 𝑉𝑉𝜋𝜋 𝑠𝑠 + 𝛼𝛼 𝑟𝑟 + 𝛾𝛾𝑉𝑉𝜋𝜋 𝑠𝑠′ − 𝑉𝑉𝜋𝜋 𝑠𝑠
𝑠𝑠 ← 𝑠𝑠′

• Until convergence of 𝑉𝑉𝜋𝜋

• Return 𝑉𝑉𝜋𝜋

607

608

State-action value 𝑄𝑄𝜋𝜋(𝑠𝑠,𝑎𝑎)

• Instead of evaluating the state value, 𝑉𝑉𝜋𝜋(𝑠𝑠), evaluate the state-action
value, 𝑄𝑄𝜋𝜋(𝑠𝑠, 𝑎𝑎)

𝑄𝑄𝜋𝜋 𝑠𝑠,𝑎𝑎 : the value of executing 𝑎𝑎 followed by 𝜋𝜋
𝑄𝑄𝜋𝜋 𝑠𝑠,𝑎𝑎 = 𝐸𝐸 𝑟𝑟 𝑠𝑠, 𝑎𝑎 + 𝛾𝛾 ∑𝑠𝑠′ Pr 𝑠𝑠′ 𝑠𝑠, 𝑎𝑎 𝑉𝑉𝜋𝜋(𝑠𝑠′)

• Optimal policy 𝜋𝜋′:
𝜋𝜋′ 𝑠𝑠 = argmax

𝑎𝑎
𝑄𝑄𝜋𝜋(𝑠𝑠, 𝑎𝑎)

609

Bellman’s Equation

• Optimal state value function 𝑉𝑉∗(𝑠𝑠)
𝑉𝑉∗ 𝑠𝑠 = 𝐸𝐸 𝑟𝑟 𝑠𝑠, 𝑎𝑎 + 𝛾𝛾 ∑𝑠𝑠′ Pr(𝑠𝑠′|𝑠𝑠,𝑎𝑎)𝑉𝑉∗ 𝑠𝑠′

• Optimal state-action value function 𝑄𝑄∗ 𝑠𝑠, 𝑎𝑎
𝑄𝑄∗ 𝑠𝑠, 𝑎𝑎 = 𝐸𝐸 𝑟𝑟 𝑠𝑠, 𝑎𝑎 + 𝛾𝛾 ∑𝑠𝑠′ Pr 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 max

𝑎𝑎′
𝑄𝑄∗(𝑠𝑠′,𝑎𝑎′)

where 𝑉𝑉∗ 𝑠𝑠 = max
𝑎𝑎

𝑄𝑄 (𝑠𝑠, 𝑎𝑎)

𝜋𝜋∗ 𝑠𝑠 = argmax 𝑄𝑄 (𝑠𝑠, 𝑎𝑎)
𝑎𝑎

610

Monte Carlo

• Let 𝐺𝐺𝑛𝑛𝑎𝑎 be a one-trajectory Monte Carlo target

𝐺𝐺𝑛𝑛𝑎𝑎 = �𝑟𝑟0
(𝑛𝑛)

𝑎𝑎

+ ∑𝑡𝑡=1 𝛾𝛾𝑡𝑡𝑟𝑟𝑡𝑡
(𝑛𝑛)

𝜋𝜋
• Alternate between

• Policy Evaluation
𝑄𝑄𝑛𝑛𝜋𝜋 𝑠𝑠,𝑎𝑎 ← 𝑄𝑄𝑛𝑛−1𝜋𝜋 𝑠𝑠,𝑎𝑎 + 𝛼𝛼𝑛𝑛 𝐺𝐺𝑛𝑛𝑎𝑎 − 𝑄𝑄𝑛𝑛−1𝜋𝜋 𝑠𝑠,𝑎𝑎

• Policy Improvement
𝜋𝜋′ 𝑠𝑠 ← argmax

𝑎𝑎
𝑄𝑄𝜋𝜋(𝑠𝑠,𝑎𝑎)

611

Temporal Difference

• Approximate Q-function:
𝑄𝑄 𝑠𝑠, 𝑎𝑎 = 𝐸𝐸 𝑟𝑟 𝑠𝑠, 𝑎𝑎 + 𝛾𝛾 ∑𝑠𝑠′ Pr 𝑠𝑠′ 𝑠𝑠, 𝑎𝑎 max

𝑎𝑎′
𝑄𝑄 (𝑠𝑠′,𝑎𝑎′)

≈ 𝑟𝑟 + 𝛾𝛾 max
𝑎𝑎′

𝑄𝑄 (𝑠𝑠′,𝑎𝑎′)

• TD

𝑄𝑄𝑛𝑛 𝑠𝑠, 𝑎𝑎 ← 𝑄𝑄𝑛𝑛−1 𝑠𝑠, 𝑎𝑎 + 𝛼𝛼𝑛𝑛 𝑟𝑟 + 𝛾𝛾max
𝑎𝑎′

𝑠𝑠′,𝑎𝑎′ − 𝑄𝑄𝑛𝑛−1 𝑠𝑠, 𝑎𝑎

612

Q-Learning

613

Exploration vs. Exploitation

Exploration:
• Definition: Taking random actions to discover new paths and outcomes.
• Advantage: Uncovers new possibilities and avoids local optima.
• Disadvantage: May lead to immediate suboptimal rewards.

Exploitation:
• Definition: Choosing actions that promise the highest reward based on

current knowledge.
• Advantage: Maximizes short-term rewards and makes use of known

information.
• Disadvantage: Risks missing out on potentially better options.

614

