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Reinforcement Learning-Part 1



Reinforcement Learning

• Reinforcement Learning from Human Feedback (RLHF).
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Deep Reinforcement Learning

• Deep RL is a combination of RL and DL

• TD-Gammon is a game learning program consisting of a neural 
network that is able to teach itself to play backgammon solely by 
playing against itself and learning from the results. 

• Deep Q-Network (DQN) is the first deep reinforcement learning 
method proposed by DeepMind and used in Atari games.
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Alpha Go

• Alpha Go is a computer system developed by Google DeepMind that 
can play the game Go. 

• Google DeepMind’s Challenge Match, was a five-game Go match between 18-
time world champion Lee Sedol and AlphaGo played in 2016.

• AlphaGo won all but the fourth game.
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Alpha Go Zero

• Alpha Go. Zero is more powerful and is arguably the strongest Go 
player in history.

• Alpha Zero learns to play simply by playing against itself, starting completely 
from random play.
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Reinforcement Learning Definition

Wikipedia:

Reinforcement learning is an area of machine learning inspired by 
behavioural psychology, concerned with how software agents ought to 
take actions in an environment so as to maximize some notion of 
cumulative reward.

568



Reinforcements

• We use reinforcements to train animals

• Food: (Positive reinforcements)

• Hunger (Negative reinforcements)
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Tic-tac-toe
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Tic-tac-toe

• Environment

• Action

• State

• Reward
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Tic-tac-toe

• Environment
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Tic-tac-toe

• Environment

• Action
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Tic-tac-toe

• Environment

• Action

• State
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Tic-tac-toe

• Environment

• Action

• State

• Reward
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Markov Decision Process (MDP)

MDP is defined by a quintuple {𝑆𝑆,𝐴𝐴,𝑅𝑅,𝑃𝑃, 𝛾𝛾}.

• States: 𝑠𝑠 ∈ 𝑆𝑆

• Actions: a ∈ 𝐴𝐴

• Rewards: r ∈ 𝑅𝑅
• Reward model: Pr(𝑟𝑟𝑡𝑡|𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡)

• Transition model: Pr(𝑠𝑠𝑡𝑡|𝑠𝑠𝑡𝑡−1,𝑎𝑎𝑡𝑡−1)

• Discount factor: 0 ≤ 𝛾𝛾 ≤ 1
• Discounted: 𝛾𝛾 < 1 Undiscounted: 𝛾𝛾 = 1
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Markov Decision Process (MDP)

• States: 𝑠𝑠 ∈ 𝑆𝑆
• The set of all possible situations (𝑠𝑠) an agent can encounter.

• Actions: a ∈ 𝐴𝐴

• Rewards: r ∈ 𝑅𝑅
• Reward model: Pr(𝑟𝑟𝑡𝑡|𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡)

• Transition model: Pr(𝑠𝑠𝑡𝑡|𝑠𝑠𝑡𝑡−1,𝑎𝑎𝑡𝑡−1)

• Discount factor: 0 ≤ 𝛾𝛾 ≤ 1
• Discounted: 𝛾𝛾 < 1 Undiscounted: 𝛾𝛾 = 1
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Markov Decision Process (MDP)

• States: 𝑠𝑠 ∈ 𝑆𝑆
• The set of all possible situations (𝑠𝑠) an agent can encounter.

• Actions: a ∈ 𝐴𝐴
• The set of all possible moves (a) the agent can make.

• Rewards: r ∈ 𝑅𝑅
• Reward model: Pr(𝑟𝑟𝑡𝑡|𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡)

• Transition model: Pr(𝑠𝑠𝑡𝑡|𝑠𝑠𝑡𝑡−1,𝑎𝑎𝑡𝑡−1)

• Discount factor: 0 ≤ 𝛾𝛾 ≤ 1
• Discounted: 𝛾𝛾 < 1 Undiscounted: 𝛾𝛾 = 1
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Markov Decision Process (MDP)

• States: 𝑠𝑠 ∈ 𝑆𝑆
• The set of all possible situations (𝑠𝑠) an agent can encounter.

• Actions: a ∈ 𝐴𝐴
• The set of all possible moves (a) the agent can make.

• Rewards: r ∈ 𝑅𝑅
• Reward model: Pr(𝑟𝑟𝑡𝑡|𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡)

• Scalar feedback (r) received after executing an action in a state

• Transition model: Pr(𝑠𝑠𝑡𝑡|𝑠𝑠𝑡𝑡−1,𝑎𝑎𝑡𝑡−1)

• Discount factor: 0 ≤ 𝛾𝛾 ≤ 1
• Discounted: 𝛾𝛾 < 1 Undiscounted: 𝛾𝛾 = 1
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Markov Decision Process (MDP)

• States: 𝑠𝑠 ∈ 𝑆𝑆
• The set of all possible situations (𝑠𝑠) an agent can encounter.

• Actions: a ∈ 𝐴𝐴
• The set of all possible moves (a) the agent can make.

• Rewards: r ∈ 𝑅𝑅
• Reward model: Pr(𝑟𝑟𝑡𝑡|𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡)

• Scalar feedback (r) received after executing an action in a state

• Transition model: Pr(𝑠𝑠𝑡𝑡|𝑠𝑠𝑡𝑡−1,𝑎𝑎𝑡𝑡−1)
• The probability of moving to the next state (𝑠𝑠𝑡𝑡) from the current state-action 

• Discount factor: 0 ≤ 𝛾𝛾 ≤ 1
• Discounted: 𝛾𝛾 < 1 Undiscounted: 𝛾𝛾 = 1
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Markov Decision Process (MDP)

• States: 𝑠𝑠 ∈ 𝑆𝑆
• The set of all possible situations (𝑠𝑠) an agent can encounter.

• Actions: a ∈ 𝐴𝐴
• The set of all possible moves (a) the agent can make.

• Rewards: r ∈ 𝑅𝑅
• Reward model: Pr(𝑟𝑟𝑡𝑡|𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡)

• Scalar feedback (r) received after executing an action in a state

• Transition model: Pr(𝑠𝑠𝑡𝑡|𝑠𝑠𝑡𝑡−1,𝑎𝑎𝑡𝑡−1)
• The probability of moving to the next state (𝑠𝑠𝑡𝑡) from the current state-action 

• Discount factor: 0 ≤ 𝛾𝛾 ≤ 1
• A coefficient (0 ≤ 𝛾𝛾 ≤ 1) determining the present value of future rewards.
• Discounted: 𝛾𝛾 < 1 Undiscounted: 𝛾𝛾 = 1
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Markov Decision Process (MDP)

• At every time step 𝑡𝑡 = 0, 1, … , the agent is at state 𝑆𝑆𝑡𝑡.
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Markov Decision Process (MDP)

• At every time step 𝑡𝑡 = 0, 1, … , the agent is at state 𝑆𝑆𝑡𝑡.

• Takes an action 𝐴𝐴𝑡𝑡
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Markov Decision Process (MDP)

• At every time step 𝑡𝑡 = 0, 1, … , the agent is at state 𝑆𝑆𝑡𝑡.

• Takes an action 𝐴𝐴𝑡𝑡

• Transitions to a new state 𝑆𝑆𝑡𝑡+1, following the probability 𝑆𝑆𝑡𝑡+1~ 𝒫𝒫(� |𝑆𝑆𝑡𝑡 ,𝐴𝐴𝑡𝑡)
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Markov Decision Process (MDP)

• At every time step 𝑡𝑡 = 0, 1, … , the agent is at state 𝑆𝑆𝑡𝑡.

• Takes an action 𝐴𝐴𝑡𝑡

• Transitions to a new state 𝑆𝑆𝑡𝑡+1, following the probability 𝑆𝑆𝑡𝑡+1~ 𝒫𝒫(� |𝑆𝑆𝑡𝑡 ,𝐴𝐴𝑡𝑡)

• Obtains a reward 𝑅𝑅𝑡𝑡~ ℛ(� |𝑆𝑆𝑡𝑡 ,𝐴𝐴𝑡𝑡)
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Policy

• A policy 𝜋𝜋 is a mapping from states to actions, 

• 𝐴𝐴𝑡𝑡 = 𝜋𝜋(𝑆𝑆𝑡𝑡) (deterministic policy) 

• 𝐴𝐴𝑡𝑡 = 𝜋𝜋(� |𝑆𝑆𝑡𝑡) (stochastic policy). 
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Markov Decision Process (MDP)

• Mathematical Formulation of the Objective:
• Find a policy 𝜋𝜋 such that the long-term reward of the agent is maximized.
• 𝜋𝜋∗ = argmax

𝜋𝜋
∑𝑡𝑡=0ℎ 𝛾𝛾𝑡𝑡𝐸𝐸𝜋𝜋[𝑟𝑟𝑡𝑡]

• Policy:
• A policy 𝜋𝜋 dictates the agent's action in each state.
• The objective is to determine an optimal policy 𝜋𝜋∗ that maximizes expected 

long-term rewards.
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Examples of Deterministic and Stochastic 
Policies

Deterministic Policy:
Scenario: Robot in a maze.
Policy: At a junction, turn right. At a dead-end, turn around.
Characteristic: No randomness, fixed actions.

Stochastic Policy:
Scenario: Marketing strategy for customer interactions (state).
Policy: For a sports product browser, 70% chance to suggest related items, 20% 
for fitness services, 10% for supplements.
Characteristic: Actions based on probabilities, varied responses.
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Bellman’s Equation

Definition:
The Bellman equation is a fundamental recursive formula in reinforcement 
learning that calculates the optimal value of a current state by considering all 
possible future states. It balances the immediate reward with the maximum 
expected future rewards.
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Bellman’s Equation in Action

1.Morning Choices:
1. Visit the museum (low cost, informative).
2. Go to the amusement park (high cost, fun-filled).

2.Considering the Afternoon:
1. If you choose the museum, you'll have more time and money left for other 

activities.
2. The amusement park is more expensive and time-consuming, leaving less 

flexibility for the rest of the day.

3.Decision-Making:
• Balancing immediate rewards with future possibilities
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Bellman’s Equation in Action

1.Quantify Outcomes:
1. Assign values to the outcomes (e.g., enjoyment, cost, time).
2. Museum: 40 points (savings on time and money, educational value).
3. Amusement Park: 50 points (thrills and fun, higher cost, less time for other 

activities).
2.Consider Future Rewards:

1. Estimate the remaining day's potential with either choice.
2. Museum: Extra time and money could lead to 30 more points (e.g., visiting a park, 

enjoying a nice meal).
3. Amusement Park: Fewer resources might limit you to 10 more points (e.g., a quick 

street food dinner).
3.Calculate Total Value:

1. Museum: 40 (immediate) + 0.9 x 30 (future) = 67 points.
2. Amusement Park: 50 (immediate) + 0.9 x 10 (future) = 59 points.
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Bellman’s Equation
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Value Iteration
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State-Value VS Optimal State-Value 
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Policy Iteration
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Modified Policy Iteration
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Markov Decision Process

• Definition 
• States: 𝑠𝑠 ∈ 𝑆𝑆
• Actions: a ∈ 𝐴𝐴
• Rewards: r ∈ 𝑅𝑅
• Transition model: Pr(𝑠𝑠𝑡𝑡|𝑠𝑠𝑡𝑡−1,𝑎𝑎𝑡𝑡−1)
• Reward model: Pr(𝑟𝑟𝑡𝑡|𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡)
• Discount factor: 0 ≤ 𝛾𝛾 ≤ 1

• Goal: find optimal policy 𝜋𝜋∗ such that 
𝜋𝜋∗ = argmax

𝜋𝜋
∑𝑡𝑡=0ℎ 𝛾𝛾𝑡𝑡𝐸𝐸𝜋𝜋[𝑟𝑟𝑡𝑡]
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Reinforcement Learning

• Definition 
• States: 𝑠𝑠 ∈ 𝑆𝑆
• Actions: a ∈ 𝐴𝐴
• Rewards: r ∈ 𝑅𝑅
• Transition model: Pr(𝑠𝑠𝑡𝑡|𝑠𝑠𝑡𝑡−1,𝑎𝑎𝑡𝑡−1)
• Reward model: Pr(𝑟𝑟𝑡𝑡|𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡)
• Discount factor: 0 ≤ 𝛾𝛾 ≤ 1

• Goal: find optimal policy 𝜋𝜋∗ such that 
𝜋𝜋∗ = argmax

𝜋𝜋
∑𝑡𝑡=0ℎ 𝛾𝛾𝑡𝑡𝐸𝐸𝜋𝜋[𝑟𝑟𝑡𝑡]
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Model Free

• Given a policy 𝜋𝜋, how can we estimate 𝑉𝑉𝜋𝜋(𝑠𝑠) without 
transition model? 
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Monte Carlo Estimation for State-Value 
Function
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Monte Carlo Estimation for State-Value 
Function

601



Monte Carlo Estimation for State-Value 
Function• Let 𝐺𝐺𝑘𝑘 be a one-trajectory Monte Carlo target 

𝐺𝐺𝑘𝑘 = ∑𝑡𝑡 𝛾𝛾𝑡𝑡𝑟𝑟𝑡𝑡
(𝑘𝑘)

• Approximate value function 

𝑉𝑉𝑛𝑛𝜋𝜋 𝑠𝑠 ≈ 1
𝑛𝑛(𝑠𝑠)

∑𝑘𝑘=1
𝑛𝑛(𝑠𝑠)𝐺𝐺𝑘𝑘

= 1
𝑛𝑛 𝑠𝑠

(𝐺𝐺𝑛𝑛 𝑠𝑠 + ∑𝑘𝑘=1
𝑛𝑛 𝑠𝑠 −1 𝐺𝐺𝑘𝑘)

= 1
𝑛𝑛 𝑠𝑠

𝐺𝐺𝑛𝑛 𝑠𝑠 + 𝑛𝑛 𝑠𝑠 − 1 𝑉𝑉𝑛𝑛−1𝜋𝜋 𝑠𝑠

= 𝑉𝑉𝑛𝑛−1𝜋𝜋 𝑠𝑠 + 1
𝑛𝑛 𝑠𝑠

𝐺𝐺𝑛𝑛 𝑠𝑠 − 𝑉𝑉𝑛𝑛−1𝜋𝜋 𝑠𝑠

• Incremental update
𝑉𝑉𝑛𝑛𝜋𝜋 𝑠𝑠 ← 𝑉𝑉𝑛𝑛−1𝜋𝜋 𝑠𝑠 + 𝛼𝛼𝑛𝑛(𝐺𝐺𝑛𝑛 − 𝑉𝑉𝑛𝑛−1𝜋𝜋 (𝑠𝑠))

1/𝑛𝑛(𝑠𝑠)
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Incremental update

𝑉𝑉𝑛𝑛𝜋𝜋 𝑠𝑠 ← 𝑉𝑉𝑛𝑛−1𝜋𝜋 𝑠𝑠 + 𝛼𝛼𝑛𝑛(𝐺𝐺𝑛𝑛 − 𝑉𝑉𝑛𝑛−1𝜋𝜋 (𝑠𝑠))

Temporal Difference (TD) evaluation 
𝑉𝑉𝑛𝑛𝜋𝜋 𝑠𝑠 ← 𝑉𝑉𝑛𝑛−1𝜋𝜋 𝑠𝑠 + 𝛼𝛼𝑛𝑛 𝑟𝑟 + 𝛾𝛾𝑉𝑉𝑛𝑛−1𝜋𝜋 (𝑠𝑠′ − 𝑉𝑉𝑛𝑛−1𝜋𝜋 (𝑠𝑠))
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Incremental update

𝑉𝑉𝑛𝑛𝜋𝜋 𝑠𝑠 ← 𝑉𝑉𝑛𝑛−1𝜋𝜋 𝑠𝑠 + 𝛼𝛼𝑛𝑛(𝐺𝐺𝑛𝑛 − 𝑉𝑉𝑛𝑛−1𝜋𝜋 (𝑠𝑠))

Temporal Difference (TD) evaluation 
𝑉𝑉𝑛𝑛𝜋𝜋 𝑠𝑠 ← 𝑉𝑉𝑛𝑛−1𝜋𝜋 𝑠𝑠 + 𝛼𝛼𝑛𝑛 𝑟𝑟 + 𝛾𝛾𝑉𝑉𝑛𝑛−1𝜋𝜋 (𝑠𝑠′ − 𝑉𝑉𝑛𝑛−1𝜋𝜋 (𝑠𝑠))

𝑉𝑉𝜋𝜋 𝑠𝑠 = 𝐸𝐸 𝑟𝑟 𝑠𝑠,𝜋𝜋 𝑠𝑠 + 𝛾𝛾 ∑𝑠𝑠′ Pr 𝑠𝑠′ 𝑠𝑠,𝜋𝜋 𝑠𝑠 𝑉𝑉𝜋𝜋 𝑠𝑠′

≈ 𝑟𝑟 + 𝛾𝛾𝑉𝑉𝜋𝜋(𝑠𝑠′)
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Temporal Difference Evaluation

• Incremental update
𝑉𝑉𝑛𝑛𝜋𝜋 𝑠𝑠 ← 𝑉𝑉𝑛𝑛−1𝜋𝜋 𝑠𝑠 + 𝛼𝛼𝑛𝑛 𝑟𝑟 + 𝛾𝛾𝑉𝑉𝑛𝑛−1𝜋𝜋 (𝑠𝑠′ − 𝑉𝑉𝑛𝑛−1𝜋𝜋 (𝑠𝑠))

• Theorem: if 𝛼𝛼𝑛𝑛 is appropriately decreased with the number of times a 
state is visited, then 𝑉𝑉𝑛𝑛𝜋𝜋(𝑠𝑠) converges to correct value 

• Sufficient conditions for 𝛼𝛼𝑛𝑛:
(1) ∑𝑛𝑛 𝛼𝛼𝑛𝑛 → ∞ (2) ∑𝑛𝑛(𝛼𝛼𝑛𝑛)2 < ∞

• Often 𝛼𝛼𝑛𝑛 𝑠𝑠 = ⁄1 𝑛𝑛(𝑠𝑠)
• Where 𝑛𝑛 𝑠𝑠 = # of times 𝑠𝑠 is visited 
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Intuitively

• instead of trying to calculate total future reward, TD simply tries to 
predict the combination of immediate reward and its own reward 
prediction at the next moment in time. 

• when the next moment comes,  the new prediction is compared 
against what it was expected to be. (temporal difference)

• use this “temporal difference” to adjust the old prediction toward the 
new prediction. 
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Temporal Difference Evaluation

Tdevaluation(𝜋𝜋,𝑉𝑉𝜋𝜋)
• Repeat 

• Execute 𝜋𝜋(𝑠𝑠)
• Observe 𝑠𝑠′and 𝑠𝑠
• Update counts: 𝑛𝑛 𝑠𝑠 ← 𝑛𝑛 𝑠𝑠 + 1
• Learning rate: 𝛼𝛼 ← ⁄1 𝑛𝑛(𝑠𝑠)
• Update value: 𝑉𝑉𝜋𝜋 𝑠𝑠 ← 𝑉𝑉𝜋𝜋 𝑠𝑠 + 𝛼𝛼 𝑟𝑟 + 𝛾𝛾𝑉𝑉𝜋𝜋 𝑠𝑠′ − 𝑉𝑉𝜋𝜋 𝑠𝑠
𝑠𝑠 ← 𝑠𝑠′

• Until convergence of 𝑉𝑉𝜋𝜋

• Return 𝑉𝑉𝜋𝜋
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State-action value 𝑄𝑄𝜋𝜋(𝑠𝑠,𝑎𝑎)

• Instead of evaluating the state value, 𝑉𝑉𝜋𝜋(𝑠𝑠), evaluate the state-action 
value, 𝑄𝑄𝜋𝜋(𝑠𝑠, 𝑎𝑎)

𝑄𝑄𝜋𝜋 𝑠𝑠,𝑎𝑎 : the value of executing 𝑎𝑎 followed by 𝜋𝜋
𝑄𝑄𝜋𝜋 𝑠𝑠,𝑎𝑎 = 𝐸𝐸 𝑟𝑟 𝑠𝑠, 𝑎𝑎 + 𝛾𝛾 ∑𝑠𝑠′ Pr 𝑠𝑠′ 𝑠𝑠, 𝑎𝑎 𝑉𝑉𝜋𝜋(𝑠𝑠′)

• Optimal policy 𝜋𝜋′:
𝜋𝜋′ 𝑠𝑠 = argmax

𝑎𝑎
𝑄𝑄𝜋𝜋(𝑠𝑠, 𝑎𝑎)
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Bellman’s Equation

• Optimal state value function 𝑉𝑉∗(𝑠𝑠)
𝑉𝑉∗ 𝑠𝑠 = 𝐸𝐸 𝑟𝑟 𝑠𝑠, 𝑎𝑎 + 𝛾𝛾 ∑𝑠𝑠′ Pr(𝑠𝑠′|𝑠𝑠,𝑎𝑎)𝑉𝑉∗ 𝑠𝑠′

• Optimal state-action value function 𝑄𝑄∗ 𝑠𝑠, 𝑎𝑎
𝑄𝑄∗ 𝑠𝑠, 𝑎𝑎 = 𝐸𝐸 𝑟𝑟 𝑠𝑠, 𝑎𝑎 + 𝛾𝛾 ∑𝑠𝑠′ Pr 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 max

𝑎𝑎′
𝑄𝑄∗(𝑠𝑠′,𝑎𝑎′)

where 𝑉𝑉∗ 𝑠𝑠 = max
𝑎𝑎

𝑄𝑄 (𝑠𝑠, 𝑎𝑎)

𝜋𝜋∗ 𝑠𝑠 = argmax 𝑄𝑄 (𝑠𝑠, 𝑎𝑎)
𝑎𝑎
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Monte Carlo 

• Let 𝐺𝐺𝑛𝑛𝑎𝑎 be a one-trajectory Monte Carlo target 

𝐺𝐺𝑛𝑛𝑎𝑎 = �𝑟𝑟0
(𝑛𝑛)

𝑎𝑎

+ ∑𝑡𝑡=1 𝛾𝛾𝑡𝑡𝑟𝑟𝑡𝑡
(𝑛𝑛)

𝜋𝜋
• Alternate between 

• Policy Evaluation
𝑄𝑄𝑛𝑛𝜋𝜋 𝑠𝑠,𝑎𝑎 ← 𝑄𝑄𝑛𝑛−1𝜋𝜋 𝑠𝑠,𝑎𝑎 + 𝛼𝛼𝑛𝑛 𝐺𝐺𝑛𝑛𝑎𝑎 − 𝑄𝑄𝑛𝑛−1𝜋𝜋 𝑠𝑠,𝑎𝑎

• Policy Improvement 
𝜋𝜋′ 𝑠𝑠 ← argmax

𝑎𝑎
𝑄𝑄𝜋𝜋(𝑠𝑠,𝑎𝑎)
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Temporal Difference 

• Approximate Q-function: 
𝑄𝑄 𝑠𝑠, 𝑎𝑎 = 𝐸𝐸 𝑟𝑟 𝑠𝑠, 𝑎𝑎 + 𝛾𝛾 ∑𝑠𝑠′ Pr 𝑠𝑠′ 𝑠𝑠, 𝑎𝑎 max

𝑎𝑎′
𝑄𝑄 (𝑠𝑠′,𝑎𝑎′)

≈ 𝑟𝑟 + 𝛾𝛾 max
𝑎𝑎′

𝑄𝑄 (𝑠𝑠′,𝑎𝑎′)

• TD

𝑄𝑄𝑛𝑛 𝑠𝑠, 𝑎𝑎 ← 𝑄𝑄𝑛𝑛−1 𝑠𝑠, 𝑎𝑎 + 𝛼𝛼𝑛𝑛 𝑟𝑟 + 𝛾𝛾max
𝑎𝑎′

𝑠𝑠′,𝑎𝑎′ − 𝑄𝑄𝑛𝑛−1 𝑠𝑠, 𝑎𝑎
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Q-Learning
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Exploration vs. Exploitation

Exploration:
• Definition: Taking random actions to discover new paths and outcomes.
• Advantage: Uncovers new possibilities and avoids local optima.
• Disadvantage: May lead to immediate suboptimal rewards.

Exploitation:
• Definition: Choosing actions that promise the highest reward based on 

current knowledge.
• Advantage: Maximizes short-term rewards and makes use of known 

information.
• Disadvantage: Risks missing out on potentially better options.
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