Lecture 13

Reinforcement Learning-Part 2

Q-Learning

e value iteration (MDP)
V(s) « maxR(s) +y Xy Pr(s’[s,a) V(s')
a

* Q-Learning (RL)
Q(s,a) < Q(s,a) + afr + ymax Q(s",a") = Q(s,)]

617

Important functions

* Policy: a = m(s)

* Value function: V(s) € R

* Q-function: Q(s,a) € R

618

Q-function Approximation

Let

We need to approximate ()(s,a). The function (s, a) could be a linear
or a nonlinear function. It can be represented as an approximation given

by:
Qs a) = g(x;w)

where ¢(-) is a function parameterized by w and x represents the feature
vector.

619

Gradient Q-learning

* Minimize squared error between Q-value estimate and target
* Recall: Q(s,a) < Q(s,a) + a[r +ymax, Q(s',a’) — Q(s,a)]
* Q-value estimate: Q,, (s, a)

* Target: 7 + y max Oy (s, a’)
a

e Loss function:

Err(w) = % [Qw(s,a) —r — ymax Qp (s, a')]?

e Gradient

OErr

_ o (! Al dQw(s.a)
o = |Qw(s,a) =1 —ymax Qg(s’,a')]

ow

620

Gradient Q-learning

Initialize w and w
Observe the current state s
Loop

Select action a
Receive immediate reward
Observe new state s’

OErr ;1 00y (s, a)
T |Qw(s,a) =7 —ymax Qp(s’, a)]| —
dErr
W WwW—a
ow

s« s’

621

Instability in Deep Q-Learning

The expression:

} 0Q (s, a)

[Qw(sj a) —r—ry max Qu(s', ') ow

a
may diverge during training, leading to instability in learning.
Solutions to Stabilize Training:
1. Dual Network Approach:
» Use two separate networks: one for (0, (s, @) and another for
r —ymaxy Qg(s’,d).
2. Experience Replay:

» Store previous experiences and sample from this memory for
learning.

622

Use two networks

* Q-network and Target network should be different.

623

Experience replay

* Store previous experiences (s, a, s’, 1) into a buffer and sample a mini-batch
of previous experiences at each step to learn by Q-learning

624

* Playing Atari with Deep Reinforcement Learning

* Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis
Antonoglou, Daan Wierstra, and Martin Riedmiller

e Human-level play in many Atari video games

Deep Q-Network for Atari

Fully cgnnected

-

Fully connected

Convg lution

Convg'lution

iND ot

9..............'......0

-ti-olcta-Ealltnllt-o

e B

.\

o..l...l...\l....l..'.‘.'.li-

-

D D

unumﬂ:n nun.Dn___.,_ﬂ r_.n,n uuq ~guonoEg [= =lals & le]

NP

626

i I 1 I I I liil?l
0 100 200 300 400 S00 600 1.000

* Q-learning
* Model-free value-based method

e Policy gradient
* Model-free policy-based method

Deterministic policy vs Stochastic Policy
* Deterministic policy a = m(s)

* Stochastic policy ., (als) = Pr(als)

629

Discrete vs Continuous

Discrete actions
exp(h(s,a;w))
2., exp(h(s,a’;w))

my(als) =

630

Supervised Learning

* We want to learn m,,(als)

* We have state-action pairs {(s{,a7), (s,,a5), ... }

631

Supervised Learning

* We want to learn m,,(als)
* We have state-action pairs {(s{,a7), (s,,a5), ... }

* Maximize log likelihood of the data

%

w* = argmax),, logm,, (a|s,)
w

Wn+1 — Wn + anvw 1Og Ty (a‘;’kllsn)

632

Reinforcement Learning

* We want to learn m,,(als)

* We have state-action-reward triplets

{(s1,a1,17),(S9,a5,13), ...}

633

Reinforcement Learning

* We want to learn m,,(als)

* We have state-action-reward triplets

{(s1,a1,17),(S9,a5,13), ...}

* Maximize discounted sum of rewards

*

w* = argmax)., ¥ "Ey|r|sy, an]
w

634

Reinforcement Learning

* We want to learn m,,(als)

* We have state-action-reward triplets

{(s1,a1,17),(S9,a5,13), ...}

* Maximize discounted sum of rewards

*

w* = argmax)., ¥ "Ey|r|sy, an]
w

Wnt1 € Wy + any"G,Vy, logm,, (a,|s,)

— \'®© t
where G, = 220V Tnt

635

Reinforcement Learning

* We want to learn m,,(als)

* We have state-action-reward triplets

{(s1,a1,17),(S9,a5,13), ...}

* Maximize discounted sum of rewards

*

w* = argmax)., ¥ "Ey|r|sy, an]
w

Wpt1 < Wy + o,y "G,V logm, (ay|sy)

— \'®© t
where G, = 220V Tnt -

Reinforcement Learning

* We want to learn m,,(als)

* We have state-action-reward triplets

{(s1,a1,17),(S9,a5,13), ...}

* Maximize discounted sum of rewards

*

w* = argmax)., ¥ "Ey|r|sy, an]
w

Wni1 < Wy + @,V logm, (ay|s,)
W1 < Wy + v "G,V logmy, (ay|sy)

where G,, = X720V Tt 637

REINFORCE Algorithm

 REINFORCE" stands for "REward Increment = Nonnegative Factor x
Offset Reinforcement x Characteristic Eligibility,"

* From a paper by Ronald J. Williams in 1992

638

REINFORCE Algorithm

e |nitialize w

* Loop forever (for each episode)
* Generate episodes s, ag, 7y, S1, A1, 71, -, ST, A, T'T
* Loop for each step of the episoden = 0,1, ..., T

Gy < 2120 ¥ Tt
Update policy: w < w + ay"G,Viognr,, (a,|s,)

Return T,

639

» Objective: Maximize the expected return of a stochastic,
parameterized policy, 7,,.

» Expected Return:

J(mw) = Err, [R(7)]

Where R(7) is the total rewrad.

Gradient Ascent Optimization

» Optimizing the Policy by Gradient Ascent:

Wir1 = W +aV,J(my)

» The gradient, V,,J(7,), is the policy gradient(Vanilla Policy
Gradien).

641

Useful Facts for Derivation

. Probability of a Trajectory: Given a trajectory

7 = (Sp, ag, - -.,S7+1) with actions from 7,
T
P(|w) = po(so HP Siv1|se, ag)me(ag]s)
t=0

. The Log-Derivative Trick: The derivative of log(u) is . By
rearrangement Vu = uVliog(u) :

VoP(T|lw) = P(r|w)V,,log P(T|w)

642

Useful Facts for Derivation

3. Log-Probability of a Trajectory:

T
log P(7|w) =)+ Z log P(si+1]st, ar) + log mu(ai|s:))
t=0

4. Gradients of Environment Functions: The environment has no
dependence on w, so gradients of py(sg), P(s;c1]s;,a,), and R(7)
are zero.

643

Useful Facts for Derivation

» Grad-Log-Prob of a Trajectory:
The gradient of the log-prob of a trajectory is:

0
Vlog P(t|w) =V o(S0) +

0

Z;F:o (Vw lo 577115, a) + V, log Ww(a,tst))

Simplifying, we get:

Vlog P(t|w) = ZV log m,,(a|s;)
=0

644

Basic Policy Gradient

Yied () =V B [Bir)

T~ aw

" [P(r | w)R(7)

T

= / V., P(r | w)R(r)

: / P(r | w)V,,log P(r | w)R(r)
= E [Vylog P(7 | w)R(7)]

",I'N’Tl',w

T
Z Vlogm, (a; | s¢) R(T)

t=0

LVl lmy) = E

T~

645

vy

Basic Policy Gradient

The policy gradient is an expectation, which can be estimated via

sample mean.

Using trajectories D = {7;},—1. n from the policy m,, we get:

TEEEEY

T
N 1
g = ﬁ Z Z Vw 10g ’}’T.w(a,-t|8t)R-(T)

T7€D t=0

|D| represents the number of trajectories (N in this case).
This expression is our desired computable form.

With a policy that allows V,, log 7, (a|s) calculations and by
collecting trajectory datasets, we can compute the gradient and
update.

646

Comparing Policy Gradient with REINFORCE

* Both methods aim to optimize the policy to achieve maximum
expected rewards.

* Both use gradient ascent to update the policy parameters.
* They differ in the way they handle rewards.

647

Comparing Policy Gradient with REINFORCE

» Policy Gradient’s update expression:
» Gradient of log-policy times Return of the trajectory:

R(7)V .y log my (ag|sy)

» REINFORCE’s update expression:

» Discounted cumulative reward times Gradient of log-policy:

f-\/n Gn v,w log T (a'n |S?'l)

(0e]

_ t
G = V Tn+t
t=0

648

R(7): The return for a trajectory in the policy gradient method. It
captures the total reward for a sequence of actions.

G,: Cumulative discounted reward for the trajectory in
REINFORCE. It accounts for the sum of rewards, with future

rewards being discounted.

~": The discount factor in REINFORCE. It diminishes the value of
future rewards in a trajectory.

For v =1, G, at any time-step n is equivalent to the return R(7)
from that time-step.

Game of Go

* Players alternate to place a
stone on a vacant intersection

 Connected stones that have no
adjacent vacant intersection are
removed

* Player who controls the largest
intersections at the end of the
game is the winner.

650

Game of Go Algorithm

1.Supervised Learning of Policy Network: Train the policy network using data from expert
players.

2.Policy Gradient with Policy Network: Refine the policy using reinforcement learning to
improve strategies beyond the supervised initial training.

3.Value Gradient with Value Network: Train a value network to predict the likelihood of
winning from a given board state.

a.Search with Policy and Value Networks: Utilize both networks to search through possible
moves and select the best one, optimizing gameplay.

651

Policy Network

* Policy network: m(a|s) n(als)

* Input: state s
* s: board configuration

* Qutput: distribution of actions a
* a: intersection on which the next stone will be place

652

Policy Network

* Train policy network based on 30 million board
configurations.

m(als)

s

. o

653

Supervised Learning of the Policy Network

* Train policy network based on 30 million board
configurations.

maximize log ,, (als)
0 log Ty, (als)

Vw =
ow
w < w+ aVw

654

Policy gradient for the Policy Network

* Play games against its former self.

1 win

* For each game G,, = {—1 lose

655

Policy gradient for the Policy Network

e Let G,, =)., y'1,,.+ be the discounted sum of rewards in a trajectory
that starts in s at the time n by executing a.

_ Odlogmy,(als)

V G
w aW y n

we<w+aVw

656

Value Network

V(s
* Predict /(s) (i.e., who will win the game)

* Input: state s
e S :board configuration ~q
e Output: expected discounted sum of rewards

V(s)

657

Gradient Value Learning with Value Networks

1 win

* Data: (s,G) where G = {_1 lose

* Objective: minimize % (V,,(s) — G)?

2 (1,(s) = G)

ow

* Weight update: w « w — aVw

e Gradient: Vw =

658

Monte Carlo Tree Search

* AlphaGo combines policy and value
networks into a Monte Carlo Tree
Search (MCTS) algorithm

* Node: s
* Edge: a

659

Monte Carlo Tree Search

* AlphaGo combines policy and value
networks into a Monte Carlo Tree H

Search (MCTS) algorithm H ﬁ

* Node: s 53
* Edge: a "9(:!%) ﬂtl—
~pTi

($#)

660

