Lecture 13

Reinforcement Learning-Part 2

Q-Learning

• value iteration (MDP)

 $V(s) \leftarrow \max_{a'} R(s) + \gamma \sum_{s'} \Pr(s'|s, a) V(s')$

• Q-Learning (RL)

 $Q(s,a) \leftarrow Q(s,a) + \alpha \left[r + \gamma \max_{a'} Q(s',a') - Q(s,a) \right]$

Important functions

• Policy: $a = \pi(s)$

• Value function: $V(s) \in \mathcal{R}$

• Q-function: $Q(s, a) \in \mathcal{R}$

Q-function Approximation

Let

$$s = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{bmatrix}$$

We need to approximate Q(s, a). The function Q(s, a) could be a linear or a nonlinear function. It can be represented as an approximation given by:

$$Q(s,a) \approx g(\mathbf{x};\mathbf{w})$$

where $g(\cdot)$ is a function parameterized by w and x represents the feature vector.

Gradient Q-learning

- Minimize squared error between Q-value estimate and target
 - Recall: $Q(s, a) \leftarrow Q(s, a) + \alpha [r + \gamma \max_{a'} Q(s', a') Q(s, a)]$
 - Q-value estimate: $Q_w(s, a)$
 - Target: $r + \gamma \max_{a'} Q_{\overline{w}}(s', a')$
- Loss function:

 $Err(\boldsymbol{w}) = \frac{1}{2} [Q_{\boldsymbol{w}}(s,a) - r - \gamma \max_{a'} Q_{\overline{\boldsymbol{w}}}(s',a')]^2$

• Gradient $\frac{\partial Err}{\partial w} = \left[Q_w(s,a) - r - \gamma \max_{a'} Q_{\overline{w}}(s',a') \right] \frac{\partial Q_w(s,a)}{\partial w}$

Gradient Q-learning

Initialize w and \overline{w}

Observe the current state *s*

Loop

Select action *a* Receive immediate reward Observe new state *s'* $\frac{\partial Err}{\partial w} = \left[Q_w(s,a) - r - \gamma \max_{a'} Q_{\overline{w}}(s',a')\right] \frac{\partial Q_w(s,a)}{\partial w}$ $w \leftarrow w - \alpha \frac{\partial Err}{\partial w}$ $s \leftarrow s'$

Instability in Deep Q-Learning

The expression:

$$\left[Q_w(s,a) - r - \gamma \max_{a'} Q_w(s',a')\right] \frac{\partial Q_w(s,a)}{\partial w}$$

may diverge during training, leading to instability in learning. Solutions to Stabilize Training:

- 1. Dual Network Approach:
 - Use two separate networks: one for $Q_w(s, a)$ and another for $r \gamma \max_{a'} Q_{\bar{w}}(s', a')$.
- 2. Experience Replay:
 - Store previous experiences and sample from this memory for learning.

Use two networks

• Q-network and Target network should be different.

Experience replay

 Store previous experiences (s, a, s', r) into a buffer and sample a mini-batch of previous experiences at each step to learn by Q-learning

Deep Q-network

- Playing Atari with Deep Reinforcement Learning
 - Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller

• Human-level play in many Atari video games

Deep Q-Network for Atari

Policy gradient

- Q-learning
 - Model-free value-based method

- Policy gradient
 - Model-free policy-based method

Deterministic policy vs Stochastic Policy

• Deterministic policy $a = \pi(s)$

• Stochastic policy $\pi_w(a|s) = \Pr(a|s)$

Discrete vs Continuous

Discrete actions

 $\pi_w(a|s) = \frac{\exp(h(s,a;w))}{\sum_{a'} \exp(h(s,a';w))}$

Supervised Learning

- We want to learn $\pi_w(a|s)$
- We have state-action pairs $\{(s_1, a_1^*), (s_2, a_2^*), ...\}$

Supervised Learning

- We want to learn $\pi_w(a|s)$
- We have state-action pairs $\{(s_1, a_1^*), (s_2, a_2^*), ...\}$
- Maximize log likelihood of the data

 $w^* = \underset{w}{\operatorname{argmax}} \sum_n \log \pi_w(a_n^*|s_n)$

 $w_{n+1} \leftarrow w_n + \alpha_n \nabla_w \log \pi_w(a_n^*|s_n)$

- We want to learn $\pi_w(a|s)$
- We have state-action-reward triplets
 {(s₁, a₁, r₁), (s₂, a₂, r₂), ... }

- We want to learn $\pi_w(a|s)$
- We have state-action-reward triplets
 {(s₁, a₁, r₁), (s₂, a₂, r₂), ...}
- Maximize discounted sum of rewards

 $w^* = \underset{w}{\operatorname{argmax}} \sum_n \gamma^n E_w[r_n | s_n, a_n]$

- We want to learn $\pi_w(a|s)$
- We have state-action-reward triplets
 {(s₁, a₁, r₁), (s₂, a₂, r₂), ...}
- Maximize discounted sum of rewards

 $w^* = \underset{w}{\operatorname{argmax}} \sum_n \gamma^n E_w[r_n | s_n, a_n]$

 $w_{n+1} \leftarrow w_n + \alpha_n \gamma^n G_n \nabla_w \log \pi_w(a_n | s_n)$ where $G_n = \sum_{t=0}^{\infty} \gamma^t r_{n+t}$

- We want to learn $\pi_w(a|s)$
- We have state-action-reward triplets
 {(s₁, a₁, r₁), (s₂, a₂, r₂), ...}
- Maximize discounted sum of rewards

 $w^* = \underset{w}{\operatorname{argmax}} \sum_n \gamma^n E_w[r_n | s_n, a_n]$

 $w_{n+1} \leftarrow w_n + \alpha_n \gamma^n G_n \nabla_w \log \pi_w(a_n | s_n)$ where $G_n = \sum_{t=0}^{\infty} \gamma^t r_{n+t}$

- We want to learn $\pi_w(a|s)$
- We have state-action-reward triplets
 {(s₁, a₁, r₁), (s₂, a₂, r₂), ...}
- Maximize discounted sum of rewards

 $w^* = \underset{w}{\operatorname{argmax}} \sum_n \gamma^n E_w[r_n | s_n, a_n]$

$$w_{n+1} \leftarrow w_n + \alpha_n \nabla_w \log \pi_w(a_n^*|s_n)$$

$$w_{n+1} \leftarrow w_n + \alpha_n \gamma^n G_n \nabla_w \log \pi_w(a_n|s_n)$$

where $G_n = \sum_{t=0}^{\infty} \gamma^t r_{n+t}$

REINFORCE Algorithm

- REINFORCE" stands for "REward Increment = Nonnegative Factor × Offset Reinforcement × Characteristic Eligibility,"
- From a paper by Ronald J. Williams in 1992

REINFORCE Algorithm

- Initialize w
- Loop forever (for each episode)
 - Generate episodes $s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_T, a_T, r_T$
 - Loop for each step of the episode n = 0, 1, ..., T $G_n \leftarrow \sum_{t=0}^{T-n} \gamma^t r_{n+t}$

Update policy: $w \leftarrow w + \alpha \gamma^n G_n \nabla \log \pi_w(a_n | s_n)$

Return π_w

Policy Gradient

- **Objective**: Maximize the expected return of a stochastic, parameterized policy, π_w .
- **Expected Return**:

$$J(\pi_w) = \mathbb{E}_{\tau \sim \pi_w}[R(\tau)]$$

Where $R(\tau)$ is the total rewrad.

Gradient Ascent Optimization

Optimizing the Policy by Gradient Ascent:

$$w_{k+1} = w_k + \alpha \nabla_w J(\pi_w)$$

The gradient, $\nabla_w J(\pi_w)$, is the **policy gradient**(Vanilla Policy Gradien).

Useful Facts for Derivation

1. **Probability of a Trajectory**: Given a trajectory $\tau = (s_0, a_0, \dots, s_{T+1})$ with actions from π_w :

$$P(\tau|w) = \rho_0(s_0) \prod_{t=0}^T P(s_{t+1}|s_t, a_t) \pi_w(a_t|s_t)$$

2. The Log-Derivative Trick: The derivative of log(u) is $\frac{\nabla u}{u}$. By rearrangement $\nabla u = u \nabla log(u)$:

$$\nabla_w P(\tau|w) = P(\tau|w) \nabla_w \log P(\tau|w)$$

Useful Facts for Derivation

3. Log-Probability of a Trajectory:

$$\log P(\tau|w) = \log \rho_0(s_0) + \sum_{t=0}^T \left(\log P(s_{t+1}|s_t, a_t) + \log \pi_w(a_t|s_t)\right)$$

4. Gradients of Environment Functions: The environment has no dependence on w, so gradients of $\rho_0(s_0)$, $P(s_{t+1}|s_t, a_t)$, and $R(\tau)$ are zero.

Useful Facts for Derivation

Grad-Log-Prob of a Trajectory:

The gradient of the log-prob of a trajectory is:

$$\nabla_w \log P(\tau|w) = \nabla_w \log \rho_0(s_0) + 0$$

$$\sum_{t=0}^{T} \left(\nabla_{w} \log P(s_{t+1}|s_{t}, a_{t}) + \nabla_{w} \log \pi_{w}(a_{t}|s_{t}) \right)$$

Simplifying, we get:

$$\nabla_w \log P(\tau|w) = \sum_{t=0}^T \nabla_w \log \pi_w(a_t|s_t)$$

Basic Policy Gradient

$$\nabla_{w} J(\pi_{w}) = \nabla_{w} \mathop{\mathrm{E}}_{\tau \sim \pi_{w}} [R(\tau)]$$

$$= \nabla_{w} \int_{\tau} P(\tau \mid w) R(\tau)$$

$$= \int_{\tau} \nabla_{w} P(\tau \mid w) R(\tau)$$

$$= \int_{\tau} P(\tau \mid w) \nabla_{w} \log P(\tau \mid w) R(\tau)$$

$$= \mathop{\mathrm{E}}_{\tau \sim \pi_{w}} [\nabla_{w} \log P(\tau \mid w) R(\tau)]$$

$$\therefore \nabla_{w} J(\pi_{w}) = \mathop{\mathrm{E}}_{\tau \sim \pi_{w}} \left[\sum_{t=0}^{T} \nabla_{w} \log \pi_{w} (a_{t} \mid s_{t}) R(\tau) \right]$$

Basic Policy Gradient

- The policy gradient is an expectation, which can be estimated via sample mean.
- ▶ Using trajectories $\mathcal{D} = {\tau_i}_{i=1,...,N}$ from the policy π_w , we get:

$$\hat{g} = \frac{1}{|\mathcal{D}|} \sum_{\tau \in \mathcal{D}} \sum_{t=0}^{T} \nabla_{w} \log \pi_{w}(a_{t}|s_{t}) R(\tau)$$

- \triangleright $|\mathcal{D}|$ represents the number of trajectories (N in this case).
- This expression is our desired computable form.
- With a policy that allows ∇_w log π_w(a|s) calculations and by collecting trajectory datasets, we can compute the gradient and update.

Comparing Policy Gradient with REINFORCE

- Both methods aim to optimize the policy to achieve maximum expected rewards.
- Both use gradient ascent to update the policy parameters.
- They differ in the way they handle rewards.

Comparing Policy Gradient with REINFORCE

Policy Gradient's update expression:

Gradient of log-policy times Return of the trajectory:

 $R(\tau)\nabla_w \log \pi_w(a_t|s_t)$

REINFORCE's update expression:

Discounted cumulative reward times Gradient of log-policy:

 $\gamma^n G_n \nabla_w \log \pi_w(a_n | s_n)$

$$G_n = \sum_{t=0}^{\infty} \gamma^t r_{n+t}$$

Comparing Policy Gradient with REINFORCE

- \triangleright $R(\tau)$: The return for a trajectory in the policy gradient method. It captures the total reward for a sequence of actions.
- G_n: Cumulative discounted reward for the trajectory in REINFORCE. It accounts for the sum of rewards, with future rewards being discounted.
- γⁿ: The discount factor in REINFORCE. It diminishes the value of future rewards in a trajectory.
- For $\gamma = 1$, G_n at any time-step *n* is equivalent to the return $R(\tau)$ from that time-step.

Game of Go

- Players alternate to place a stone on a vacant intersection
- Connected stones that have no adjacent vacant intersection are removed
- Player who controls the largest intersections at the end of the game is the winner.

Game of Go Algorithm

1. Supervised Learning of Policy Network: Train the policy network using data from expert players.

^{2.}Policy Gradient with Policy Network: Refine the policy using reinforcement learning to improve strategies beyond the supervised initial training.

3.Value Gradient with Value Network: Train a value network to predict the likelihood of winning from a given board state.

4. Search with Policy and Value Networks: Utilize both networks to search through possible moves and select the best one, optimizing gameplay.

Policy Network

- Policy network: $\pi(a|s)$
 - Input: state s
 - s: board configuration
 - Output: distribution of actions *a*
 - *a*: intersection on which the next stone will be place

Policy Network

• Train policy network based on 30 million board configurations.

Supervised Learning of the Policy Network

• Train policy network based on 30 million board configurations.

maximize $\log \pi_w(a|s)$ $\nabla w = \frac{\partial \log \pi_w(a|s)}{\partial w}$ $w \leftarrow w + \alpha \nabla w$

Policy gradient for the Policy Network

• Play games against its former self.

• For each game $G_n = \begin{cases} 1 & \text{win} \\ -1 & \text{lose} \end{cases}$

Policy gradient for the Policy Network

• Let $G_n = \sum_t \gamma^t r_{n+t}$ be the discounted sum of rewards in a trajectory that starts in s at the time n by executing a.

$$\nabla w = \frac{\partial \log \pi_w(a|s)}{\partial w} \gamma^n G_n$$

 $w \leftarrow w + \alpha \nabla w$

Value Network

- Predict V(s) (i.e., who will win the game)
 - Input: state s
 - **s** : board configuration
 - Output: expected discounted sum of rewards
 V(s)

Gradient Value Learning with Value Networks

• Data:
$$(s, G)$$
 where $G = \begin{cases} 1 & win \\ -1 & lose \end{cases}$

• Objective: minimize $\frac{1}{2}(V_w(s) - G)^2$

• Gradient:
$$\nabla w = \frac{\partial V_w(s)}{\partial w} (V_w(s) - G)$$

• Weight update: $w \leftarrow w - \alpha \nabla w$

Monte Carlo Tree Search

- AlphaGo combines policy and value networks into a Monte Carlo Tree
 Search (MCTS) algorithm
 - Node: *s*
 - Edge: *a*

Monte Carlo Tree Search

- AlphaGo combines policy and value networks into a Monte Carlo Tree Search (MCTS) algorithm
 - Node: s
 - Edge: *a*

