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Reinforcement Learning-Part 2



Q-Learning

• value iteration (MDP)
𝑉𝑉 𝑠𝑠 ← max

𝑎𝑎′
𝑅𝑅 𝑠𝑠 + 𝛾𝛾 ∑𝑠𝑠′ Pr 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 𝑉𝑉 𝑠𝑠′

• Q-Learning (RL)
Q 𝑠𝑠, 𝑎𝑎 ← 𝑄𝑄 𝑠𝑠, 𝑎𝑎 + 𝛼𝛼 𝑓𝑓 + 𝛾𝛾max

𝑎𝑎′
𝑄𝑄 𝑠𝑠′,𝑎𝑎′ − 𝑄𝑄 𝑠𝑠,𝑎𝑎
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Important functions

• Policy: 𝑎𝑎 = 𝜋𝜋 𝑠𝑠

• Value function: 𝑉𝑉 𝑠𝑠 ∈ ℛ

• Q-function: 𝑄𝑄 𝑠𝑠,𝑎𝑎 ∈ ℛ
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Q-function Approximation
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Gradient Q-learning
• Minimize squared error between Q-value estimate and target 

• Recall: 

• Q-value estimate: 𝑄𝑄𝒘𝒘(𝑠𝑠, 𝑎𝑎)

• Target: 𝑓𝑓 + 𝛾𝛾 max
𝑎𝑎′

𝑄𝑄�𝒘𝒘(𝑠𝑠′, 𝑎𝑎′)

• Loss function:
𝐸𝐸𝑓𝑓𝑓𝑓 𝒘𝒘 = 1

2
[𝑄𝑄𝒘𝒘 𝑠𝑠,𝑎𝑎 − 𝑓𝑓 − 𝛾𝛾max

𝑎𝑎′
𝑄𝑄�𝒘𝒘 𝑠𝑠′,𝑎𝑎′ ]2

• Gradient
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝒘𝒘

= 𝑄𝑄𝒘𝒘 𝑠𝑠,𝑎𝑎 − 𝑓𝑓 − 𝛾𝛾max
𝑎𝑎′

𝑄𝑄�𝒘𝒘 𝑠𝑠′,𝑎𝑎′ 𝜕𝜕𝑄𝑄𝒘𝒘(𝑠𝑠,𝑎𝑎)
𝜕𝜕𝒘𝒘
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Gradient Q-learning

Initialize 𝒘𝒘 and �𝒘𝒘
Observe the current state 𝑠𝑠
Loop 

Select action 𝑎𝑎
Receive immediate reward 
Observe new state 𝑠𝑠′
𝜕𝜕𝐸𝐸𝑓𝑓𝑓𝑓
𝜕𝜕𝒘𝒘 = 𝑄𝑄𝒘𝒘 𝑠𝑠,𝑎𝑎 − 𝑓𝑓 − 𝛾𝛾max

𝑎𝑎′
𝑄𝑄�𝒘𝒘 𝑠𝑠′,𝑎𝑎′

𝜕𝜕𝑄𝑄𝒘𝒘(𝑠𝑠,𝑎𝑎)
𝜕𝜕𝒘𝒘

𝑤𝑤 ← 𝑤𝑤 − 𝛼𝛼
𝜕𝜕𝐸𝐸𝑓𝑓𝑓𝑓
𝜕𝜕𝒘𝒘

𝑠𝑠 ← 𝑠𝑠′
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Instability in Deep Q-Learning
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Use two networks

• Q-network and Target network should be different. 

623



Experience replay

• Store previous experiences (𝑠𝑠,𝑎𝑎, 𝑠𝑠’, 𝑓𝑓) into a buffer and sample a mini-batch 
of previous experiences at each step to learn by Q-learning
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Deep Q-network

• Playing Atari with Deep Reinforcement Learning
• Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves,  Ioannis

Antonoglou, Daan Wierstra, and Martin Riedmiller

• Human-level play in many Atari video games

625



Deep Q-Network for Atari
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Policy gradient

• Q-learning 
• Model-free value-based method

• Policy gradient 
• Model-free policy-based method 
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Deterministic policy  vs Stochastic Policy

• Deterministic policy  𝑎𝑎 = 𝜋𝜋 𝑠𝑠

• Stochastic policy 𝜋𝜋𝑤𝑤 𝑎𝑎 𝑠𝑠 = Pr(𝑎𝑎|𝑠𝑠)
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Discrete vs Continuous

Discrete actions 

𝜋𝜋𝑤𝑤 𝑎𝑎 𝑠𝑠 = exp(ℎ(𝑠𝑠,𝑎𝑎;𝑤𝑤))
∑𝑎𝑎′ exp(ℎ 𝑠𝑠,𝑎𝑎′;𝑤𝑤 )
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Supervised Learning

• We want to learn  𝜋𝜋𝑤𝑤(𝑎𝑎|𝑠𝑠)

• We have  state-action pairs 𝑠𝑠1, 𝑎𝑎1∗ , 𝑠𝑠2,𝑎𝑎2∗ , …
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Supervised Learning

• We want to learn  𝜋𝜋𝑤𝑤(𝑎𝑎|𝑠𝑠)

• We have  state-action pairs 𝑠𝑠1, 𝑎𝑎1∗ , 𝑠𝑠2,𝑎𝑎2∗ , …

• Maximize log likelihood of the data
𝑤𝑤∗ = argmax

𝑤𝑤
∑𝑛𝑛 log𝜋𝜋𝑤𝑤(𝑎𝑎𝑛𝑛∗ |𝑠𝑠𝑛𝑛)

𝑤𝑤𝑛𝑛+1 ← 𝑤𝑤𝑛𝑛 + 𝛼𝛼𝑛𝑛∇𝑤𝑤 log𝜋𝜋𝑤𝑤(𝑎𝑎𝑛𝑛∗ |𝑠𝑠𝑛𝑛)
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Reinforcement Learning
• We want to learn 𝜋𝜋𝑤𝑤(𝑎𝑎|𝑠𝑠)

• We have state-action-reward triplets 
{ 𝑠𝑠1,𝑎𝑎1, 𝑓𝑓1 , 𝑠𝑠2,𝑎𝑎2, 𝑓𝑓2 , … }
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Reinforcement Learning
• We want to learn 𝜋𝜋𝑤𝑤(𝑎𝑎|𝑠𝑠)

• We have state-action-reward triplets 
{ 𝑠𝑠1,𝑎𝑎1, 𝑓𝑓1 , 𝑠𝑠2,𝑎𝑎2, 𝑓𝑓2 , … }

• Maximize discounted sum of rewards
𝑤𝑤∗ = argmax

𝑤𝑤
∑𝑛𝑛 𝛾𝛾𝑛𝑛𝐸𝐸𝑤𝑤 𝑓𝑓𝑛𝑛 𝑠𝑠𝑛𝑛,𝑎𝑎𝑛𝑛
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Reinforcement Learning
• We want to learn 𝜋𝜋𝑤𝑤(𝑎𝑎|𝑠𝑠)

• We have state-action-reward triplets 
{ 𝑠𝑠1,𝑎𝑎1, 𝑓𝑓1 , 𝑠𝑠2,𝑎𝑎2, 𝑓𝑓2 , … }

• Maximize discounted sum of rewards
𝑤𝑤∗ = argmax

𝑤𝑤
∑𝑛𝑛 𝛾𝛾𝑛𝑛𝐸𝐸𝑤𝑤 𝑓𝑓𝑛𝑛 𝑠𝑠𝑛𝑛,𝑎𝑎𝑛𝑛

𝑤𝑤𝑛𝑛+1 ← 𝑤𝑤𝑛𝑛 + 𝛼𝛼𝑛𝑛𝛾𝛾𝑛𝑛𝐺𝐺𝑛𝑛∇𝑤𝑤 log𝜋𝜋𝑤𝑤(𝑎𝑎𝑛𝑛|𝑠𝑠𝑛𝑛)
where 𝐺𝐺𝑛𝑛 = ∑𝑡𝑡=0∞ 𝛾𝛾𝑡𝑡𝑓𝑓𝑛𝑛+𝑡𝑡 635
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REINFORCE Algorithm 

• REINFORCE" stands for "REward Increment = Nonnegative Factor ×
Offset Reinforcement × Characteristic Eligibility," 

• From a paper by Ronald J. Williams in 1992
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REINFORCE Algorithm 

• Initialize 𝑤𝑤
• Loop forever (for each episode)

• Generate episodes 𝑠𝑠0, 𝑎𝑎0, 𝑓𝑓0, 𝑠𝑠1,𝑎𝑎1, 𝑓𝑓1, … , 𝑠𝑠𝑇𝑇 , 𝑎𝑎𝑇𝑇 , 𝑓𝑓𝑇𝑇
• Loop for each step of the episode 𝑛𝑛 = 0,1, … ,𝑇𝑇

𝐺𝐺𝑛𝑛 ← ∑𝑡𝑡=0𝑇𝑇−𝑛𝑛 𝛾𝛾𝑡𝑡𝑓𝑓𝑛𝑛+𝑡𝑡
Update policy: 𝑤𝑤 ← 𝑤𝑤 + 𝛼𝛼𝛾𝛾𝑛𝑛𝐺𝐺𝑛𝑛∇ log𝜋𝜋𝑤𝑤(𝑎𝑎𝑛𝑛|𝑠𝑠𝑛𝑛)

Return 𝜋𝜋𝑤𝑤
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Policy Gradient
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Gradient Ascent Optimization
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Useful Facts for Derivation
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Useful Facts for Derivation
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Useful Facts for Derivation
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Basic Policy Gradient
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Basic Policy Gradient
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Comparing Policy Gradient with REINFORCE

• Both methods aim to optimize the policy to achieve maximum 
expected rewards.

• Both use gradient ascent to update the policy parameters.
• They differ in the way they handle rewards.
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Comparing Policy Gradient with REINFORCE

𝐺𝐺𝑛𝑛 = �
𝑡𝑡=0

∞
𝛾𝛾𝑡𝑡𝑓𝑓𝑛𝑛+𝑡𝑡
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Comparing Policy Gradient with REINFORCE
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Game of Go

• Players alternate to place a 
stone on a vacant intersection

• Connected stones that have no 
adjacent vacant intersection are 
removed

• Player who controls the largest 
intersections at the end of the 
game is the winner.
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Game of Go Algorithm

1.Supervised Learning of Policy Network: Train the policy network using data from expert 
players.

2.Policy Gradient with Policy Network: Refine the policy using reinforcement learning to 
improve strategies beyond the supervised initial training.

3.Value Gradient with Value Network: Train a value network to predict the likelihood of 
winning from a given board state. 

4.Search with Policy and Value Networks: Utilize both networks to search through possible 
moves and select the best one, optimizing gameplay.
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Policy Network

• Policy network: 𝜋𝜋(𝑎𝑎|𝑠𝑠)

• Input: state 𝑠𝑠
• 𝑠𝑠: board configuration

• Output: distribution of actions 𝑎𝑎
• 𝑎𝑎: intersection on which the next stone will be placed
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Policy Network

• Train policy network based on 30 million board 
configurations. 
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Supervised Learning of the Policy Network

• Train policy network based on 30 million board 
configurations. 

maximize log𝜋𝜋𝑤𝑤(𝑎𝑎|𝑠𝑠)
∇w = 𝜕𝜕 log 𝜋𝜋𝑤𝑤(𝑎𝑎|𝑠𝑠)

𝜕𝜕𝑤𝑤
𝑤𝑤 ← 𝑤𝑤 + 𝛼𝛼∇𝑤𝑤
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Policy gradient for the Policy Network

• Play games against its former self. 

• For each game 𝐺𝐺𝑛𝑛 = � 1 win
−1 lose

655



Policy gradient for the Policy Network

• Let 𝐺𝐺𝑛𝑛 = ∑𝑡𝑡 𝛾𝛾𝑡𝑡𝑓𝑓𝑛𝑛+𝑡𝑡 be the discounted sum of rewards in a trajectory 
that starts in 𝑠𝑠 at the time 𝑛𝑛 by executing 𝑎𝑎.

∇𝑤𝑤 =
𝜕𝜕 log𝜋𝜋𝑤𝑤(𝑎𝑎|𝑠𝑠)

𝜕𝜕𝑤𝑤
𝛾𝛾𝑛𝑛𝐺𝐺𝑛𝑛

𝑤𝑤 ← 𝑤𝑤 + 𝛼𝛼∇𝑤𝑤
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Value Network

• Predict 𝑉𝑉(𝑠𝑠 ) (i.e., who will win the game)
• Input: state 𝑠𝑠

• 𝑠𝑠 : board configuration 
• Output: expected discounted sum of rewards
𝑉𝑉(𝑠𝑠 )
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Gradient Value Learning with Value Networks

• Data: (𝑠𝑠,𝐺𝐺) where G = � 1 win
−1 lose

• Objective: minimize 1
2

(𝑉𝑉𝑤𝑤 𝑠𝑠 − 𝐺𝐺)2

• Gradient: 𝛻𝛻𝑤𝑤 = 𝜕𝜕𝑉𝑉𝑤𝑤 𝑠𝑠
𝜕𝜕𝑤𝑤

(𝑉𝑉𝑤𝑤 𝑠𝑠 − 𝐺𝐺)
• Weight update: 𝑤𝑤 ← 𝑤𝑤 − 𝛼𝛼∇𝑤𝑤
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Monte Carlo Tree Search

• AlphaGo combines policy and value 
networks into a Monte Carlo Tree 
Search (MCTS) algorithm 

• Node: 𝑠𝑠
• Edge: 𝑎𝑎
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