
Lecture 13

Reinforcement Learning-Part 2

Q-Learning

• value iteration (MDP)
𝑉𝑉 𝑠𝑠 ← max

𝑎𝑎′
𝑅𝑅 𝑠𝑠 + 𝛾𝛾 ∑𝑠𝑠′ Pr 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 𝑉𝑉 𝑠𝑠′

• Q-Learning (RL)
Q 𝑠𝑠, 𝑎𝑎 ← 𝑄𝑄 𝑠𝑠, 𝑎𝑎 + 𝛼𝛼 𝑟𝑟 + 𝛾𝛾max

𝑎𝑎′
𝑄𝑄 𝑠𝑠′,𝑎𝑎′ − 𝑄𝑄 𝑠𝑠,𝑎𝑎

617

Important functions

• Policy: 𝑎𝑎 = 𝜋𝜋 𝑠𝑠

• Value function: 𝑉𝑉 𝑠𝑠 ∈ ℛ

• Q-function: 𝑄𝑄 𝑠𝑠,𝑎𝑎 ∈ ℛ

618

Q-function Approximation

619

Gradient Q-learning
• Minimize squared error between Q-value estimate and target

• Recall:

• Q-value estimate: 𝑄𝑄𝒘𝒘(𝑠𝑠, 𝑎𝑎)

• Target: 𝑟𝑟 + 𝛾𝛾 max
𝑎𝑎′

𝑄𝑄�𝒘𝒘(𝑠𝑠′, 𝑎𝑎′)

• Loss function:
𝐸𝐸𝐸𝐸𝐸𝐸 𝒘𝒘 = 1

2
[𝑄𝑄𝒘𝒘 𝑠𝑠,𝑎𝑎 − 𝑟𝑟 − 𝛾𝛾max

𝑎𝑎′
𝑄𝑄�𝒘𝒘 𝑠𝑠′,𝑎𝑎′]2

• Gradient
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝒘𝒘

= 𝑄𝑄𝒘𝒘 𝑠𝑠,𝑎𝑎 − 𝑟𝑟 − 𝛾𝛾max
𝑎𝑎′

𝑄𝑄�𝒘𝒘 𝑠𝑠′,𝑎𝑎′ 𝜕𝜕𝑄𝑄𝒘𝒘(𝑠𝑠,𝑎𝑎)
𝜕𝜕𝒘𝒘

620

Gradient Q-learning

Initialize 𝒘𝒘 and �𝒘𝒘
Observe the current state 𝑠𝑠
Loop

Select action 𝑎𝑎
Receive immediate reward
Observe new state 𝑠𝑠′
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝒘𝒘 = 𝑄𝑄𝒘𝒘 𝑠𝑠,𝑎𝑎 − 𝑟𝑟 − 𝛾𝛾max

𝑎𝑎′
𝑄𝑄�𝒘𝒘 𝑠𝑠′,𝑎𝑎′

𝜕𝜕𝑄𝑄𝒘𝒘(𝑠𝑠,𝑎𝑎)
𝜕𝜕𝒘𝒘

𝑤𝑤 ← 𝑤𝑤 − 𝛼𝛼
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝒘𝒘

𝑠𝑠 ← 𝑠𝑠′

621

Instability in Deep Q-Learning

622

Use two networks

• Q-network and Target network should be different.

623

Experience replay

• Store previous experiences (𝑠𝑠,𝑎𝑎, 𝑠𝑠’, 𝑟𝑟) into a buffer and sample a mini-batch
of previous experiences at each step to learn by Q-learning

624

Deep Q-network

• Playing Atari with Deep Reinforcement Learning
• Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin Riedmiller

• Human-level play in many Atari video games

625

Deep Q-Network for Atari

626

627

Policy gradient

• Q-learning
• Model-free value-based method

• Policy gradient
• Model-free policy-based method

628

Deterministic policy vs Stochastic Policy

• Deterministic policy 𝑎𝑎 = 𝜋𝜋 𝑠𝑠

• Stochastic policy 𝜋𝜋𝑤𝑤 𝑎𝑎 𝑠𝑠 = Pr(𝑎𝑎|𝑠𝑠)

629

Discrete vs Continuous

Discrete actions

𝜋𝜋𝑤𝑤 𝑎𝑎 𝑠𝑠 = exp(ℎ(𝑠𝑠,𝑎𝑎;𝑤𝑤))
∑𝑎𝑎′ exp(ℎ 𝑠𝑠,𝑎𝑎′;𝑤𝑤)

630

Supervised Learning

• We want to learn 𝜋𝜋𝑤𝑤(𝑎𝑎|𝑠𝑠)

• We have state-action pairs 𝑠𝑠1, 𝑎𝑎1∗ , 𝑠𝑠2,𝑎𝑎2∗ , …

631

Supervised Learning

• We want to learn 𝜋𝜋𝑤𝑤(𝑎𝑎|𝑠𝑠)

• We have state-action pairs 𝑠𝑠1, 𝑎𝑎1∗ , 𝑠𝑠2,𝑎𝑎2∗ , …

• Maximize log likelihood of the data
𝑤𝑤∗ = argmax

𝑤𝑤
∑𝑛𝑛 log𝜋𝜋𝑤𝑤(𝑎𝑎𝑛𝑛∗ |𝑠𝑠𝑛𝑛)

𝑤𝑤𝑛𝑛+1 ← 𝑤𝑤𝑛𝑛 + 𝛼𝛼𝑛𝑛∇𝑤𝑤 log𝜋𝜋𝑤𝑤(𝑎𝑎𝑛𝑛∗ |𝑠𝑠𝑛𝑛)

632

Reinforcement Learning
• We want to learn 𝜋𝜋𝑤𝑤(𝑎𝑎|𝑠𝑠)

• We have state-action-reward triplets
{ 𝑠𝑠1,𝑎𝑎1, 𝑟𝑟1 , 𝑠𝑠2,𝑎𝑎2, 𝑟𝑟2 , … }

633

Reinforcement Learning
• We want to learn 𝜋𝜋𝑤𝑤(𝑎𝑎|𝑠𝑠)

• We have state-action-reward triplets
{ 𝑠𝑠1,𝑎𝑎1, 𝑟𝑟1 , 𝑠𝑠2,𝑎𝑎2, 𝑟𝑟2 , … }

• Maximize discounted sum of rewards
𝑤𝑤∗ = argmax

𝑤𝑤
∑𝑛𝑛 𝛾𝛾𝑛𝑛𝐸𝐸𝑤𝑤 𝑟𝑟𝑛𝑛 𝑠𝑠𝑛𝑛,𝑎𝑎𝑛𝑛

634

Reinforcement Learning
• We want to learn 𝜋𝜋𝑤𝑤(𝑎𝑎|𝑠𝑠)

• We have state-action-reward triplets
{ 𝑠𝑠1,𝑎𝑎1, 𝑟𝑟1 , 𝑠𝑠2,𝑎𝑎2, 𝑟𝑟2 , … }

• Maximize discounted sum of rewards
𝑤𝑤∗ = argmax

𝑤𝑤
∑𝑛𝑛 𝛾𝛾𝑛𝑛𝐸𝐸𝑤𝑤 𝑟𝑟𝑛𝑛 𝑠𝑠𝑛𝑛,𝑎𝑎𝑛𝑛

𝑤𝑤𝑛𝑛+1 ← 𝑤𝑤𝑛𝑛 + 𝛼𝛼𝑛𝑛𝛾𝛾𝑛𝑛𝐺𝐺𝑛𝑛∇𝑤𝑤 log𝜋𝜋𝑤𝑤(𝑎𝑎𝑛𝑛|𝑠𝑠𝑛𝑛)
where 𝐺𝐺𝑛𝑛 = ∑𝑡𝑡=0∞ 𝛾𝛾𝑡𝑡𝑟𝑟𝑛𝑛+𝑡𝑡 635

Reinforcement Learning
• We want to learn 𝜋𝜋𝑤𝑤(𝑎𝑎|𝑠𝑠)

• We have state-action-reward triplets
{ 𝑠𝑠1,𝑎𝑎1, 𝑟𝑟1 , 𝑠𝑠2,𝑎𝑎2, 𝑟𝑟2 , … }

• Maximize discounted sum of rewards
𝑤𝑤∗ = argmax

𝑤𝑤
∑𝑛𝑛 𝛾𝛾𝑛𝑛𝐸𝐸𝑤𝑤 𝑟𝑟𝑛𝑛 𝑠𝑠𝑛𝑛,𝑎𝑎𝑛𝑛

𝑤𝑤𝑛𝑛+1 ← 𝑤𝑤𝑛𝑛 + 𝛼𝛼𝑛𝑛𝛾𝛾𝑛𝑛𝐺𝐺𝑛𝑛∇𝑤𝑤 log𝜋𝜋𝑤𝑤(𝑎𝑎𝑛𝑛|𝑠𝑠𝑛𝑛)
where 𝐺𝐺𝑛𝑛 = ∑𝑡𝑡=0∞ 𝛾𝛾𝑡𝑡𝑟𝑟𝑛𝑛+𝑡𝑡 636

Reinforcement Learning
• We want to learn 𝜋𝜋𝑤𝑤(𝑎𝑎|𝑠𝑠)

• We have state-action-reward triplets
{ 𝑠𝑠1,𝑎𝑎1, 𝑟𝑟1 , 𝑠𝑠2,𝑎𝑎2, 𝑟𝑟2 , … }

• Maximize discounted sum of rewards
𝑤𝑤∗ = argmax

𝑤𝑤
∑𝑛𝑛 𝛾𝛾𝑛𝑛𝐸𝐸𝑤𝑤 𝑟𝑟𝑛𝑛 𝑠𝑠𝑛𝑛,𝑎𝑎𝑛𝑛

𝑤𝑤𝑛𝑛+1 ← 𝑤𝑤𝑛𝑛 + 𝛼𝛼𝑛𝑛∇𝑤𝑤 log𝜋𝜋𝑤𝑤(𝑎𝑎𝑛𝑛∗ |𝑠𝑠𝑛𝑛)
𝑤𝑤𝑛𝑛+1 ← 𝑤𝑤𝑛𝑛 + 𝛼𝛼𝑛𝑛𝛾𝛾𝑛𝑛𝐺𝐺𝑛𝑛∇𝑤𝑤 log𝜋𝜋𝑤𝑤(𝑎𝑎𝑛𝑛|𝑠𝑠𝑛𝑛)
where 𝐺𝐺𝑛𝑛 = ∑𝑡𝑡=0∞ 𝛾𝛾𝑡𝑡𝑟𝑟𝑛𝑛+𝑡𝑡 637

REINFORCE Algorithm

• REINFORCE" stands for "REward Increment = Nonnegative Factor ×
Offset Reinforcement × Characteristic Eligibility,"

• From a paper by Ronald J. Williams in 1992

638

REINFORCE Algorithm

• Initialize 𝑤𝑤
• Loop forever (for each episode)

• Generate episodes 𝑠𝑠0, 𝑎𝑎0, 𝑟𝑟0, 𝑠𝑠1,𝑎𝑎1, 𝑟𝑟1, … , 𝑠𝑠𝑇𝑇 , 𝑎𝑎𝑇𝑇 , 𝑟𝑟𝑇𝑇
• Loop for each step of the episode 𝑛𝑛 = 0,1, … ,𝑇𝑇

𝐺𝐺𝑛𝑛 ← ∑𝑡𝑡=0𝑇𝑇−𝑛𝑛 𝛾𝛾𝑡𝑡𝑟𝑟𝑛𝑛+𝑡𝑡
Update policy: 𝑤𝑤 ← 𝑤𝑤 + 𝛼𝛼𝛾𝛾𝑛𝑛𝐺𝐺𝑛𝑛∇ log𝜋𝜋𝑤𝑤(𝑎𝑎𝑛𝑛|𝑠𝑠𝑛𝑛)

Return 𝜋𝜋𝑤𝑤

639

Policy Gradient

640

Gradient Ascent Optimization

641

Useful Facts for Derivation

642

Useful Facts for Derivation

643

Useful Facts for Derivation

644

Basic Policy Gradient

645

Basic Policy Gradient

646

Comparing Policy Gradient with REINFORCE

• Both methods aim to optimize the policy to achieve maximum
expected rewards.

• Both use gradient ascent to update the policy parameters.
• They differ in the way they handle rewards.

647

Comparing Policy Gradient with REINFORCE

𝐺𝐺𝑛𝑛 = �
𝑡𝑡=0

∞
𝛾𝛾𝑡𝑡𝑟𝑟𝑛𝑛+𝑡𝑡

648

Comparing Policy Gradient with REINFORCE

649

Game of Go

• Players alternate to place a
stone on a vacant intersection

• Connected stones that have no
adjacent vacant intersection are
removed

• Player who controls the largest
intersections at the end of the
game is the winner.

650

Game of Go Algorithm

1.Supervised Learning of Policy Network: Train the policy network using data from expert
players.

2.Policy Gradient with Policy Network: Refine the policy using reinforcement learning to
improve strategies beyond the supervised initial training.

3.Value Gradient with Value Network: Train a value network to predict the likelihood of
winning from a given board state.

4.Search with Policy and Value Networks: Utilize both networks to search through possible
moves and select the best one, optimizing gameplay.

651

Policy Network

• Policy network: 𝜋𝜋(𝑎𝑎|𝑠𝑠)

• Input: state 𝑠𝑠
• 𝑠𝑠: board configuration

• Output: distribution of actions 𝑎𝑎
• 𝑎𝑎: intersection on which the next stone will be placed

652

Policy Network

• Train policy network based on 30 million board
configurations.

653

Supervised Learning of the Policy Network

• Train policy network based on 30 million board
configurations.

maximize log𝜋𝜋𝑤𝑤(𝑎𝑎|𝑠𝑠)
∇w = 𝜕𝜕 log 𝜋𝜋𝑤𝑤(𝑎𝑎|𝑠𝑠)

𝜕𝜕𝜕𝜕
𝑤𝑤 ← 𝑤𝑤 + 𝛼𝛼∇𝑤𝑤

654

Policy gradient for the Policy Network

• Play games against its former self.

• For each game 𝐺𝐺𝑛𝑛 = � 1 win
−1 lose

655

Policy gradient for the Policy Network

• Let 𝐺𝐺𝑛𝑛 = ∑𝑡𝑡 𝛾𝛾𝑡𝑡𝑟𝑟𝑛𝑛+𝑡𝑡 be the discounted sum of rewards in a trajectory
that starts in 𝑠𝑠 at the time 𝑛𝑛 by executing 𝑎𝑎.

∇𝑤𝑤 =
𝜕𝜕 log𝜋𝜋𝑤𝑤(𝑎𝑎|𝑠𝑠)

𝜕𝜕𝜕𝜕
𝛾𝛾𝑛𝑛𝐺𝐺𝑛𝑛

𝑤𝑤 ← 𝑤𝑤 + 𝛼𝛼∇𝑤𝑤

656

Value Network

• Predict 𝑉𝑉(𝑠𝑠) (i.e., who will win the game)
• Input: state 𝑠𝑠

• 𝑠𝑠 : board configuration
• Output: expected discounted sum of rewards
𝑉𝑉(𝑠𝑠)

657

Gradient Value Learning with Value Networks

• Data: (𝑠𝑠,𝐺𝐺) where G = � 1 win
−1 lose

• Objective: minimize 1
2

(𝑉𝑉𝑤𝑤 𝑠𝑠 − 𝐺𝐺)2

• Gradient: 𝛻𝛻𝛻𝛻 = 𝜕𝜕𝑉𝑉𝑤𝑤 𝑠𝑠
𝜕𝜕𝜕𝜕

(𝑉𝑉𝑤𝑤 𝑠𝑠 − 𝐺𝐺)
• Weight update: 𝑤𝑤 ← 𝑤𝑤 − 𝛼𝛼∇𝑤𝑤

658

Monte Carlo Tree Search

• AlphaGo combines policy and value
networks into a Monte Carlo Tree
Search (MCTS) algorithm

• Node: 𝑠𝑠
• Edge: 𝑎𝑎

659

Monte Carlo Tree Search

• AlphaGo combines policy and value
networks into a Monte Carlo Tree
Search (MCTS) algorithm

• Node: 𝑠𝑠
• Edge: 𝑎𝑎

660

