
Lecture 14

LLMs, RLHF, Instruct GPT

Core Challenge with Language Models:

• GPT models predict the next token based on historical data, lacking
an innate ability to follow instructions.

• GPT (Generative Pre-trained Transformer) models, at their core,
predict the next word or token in a sequence based on the
probabilities derived from pre-training on extensive text corpora.

• They don't inherently "understand" instructions or follow commands
but generate what's statistically likely to come next, given their
training.

663

The Challenge with Large Language Models
(LMs)

• Capability: LMs can be prompted to perform a range of NLP tasks.
• Issue: They often exhibit unintended behaviors:

• Making up facts
• Generating biased or toxic text
• Not adhering to user instructions

• Reason: The language modeling objective (predicting the next token)
is misaligned with the goal of "following user's instructions helpfully
and safely."

664

Alignment in Language Models

• Objective: Train LMs to act in accordance with the user's intention.
• Explicit Intentions: Following instructions.
• Implicit Intentions: Staying truthful, avoiding bias, toxicity, or harm.
Core Principles for Aligned LMs:
• Helpful: Assist users effectively.
• Honest: Offer accurate, non-misleading information.
• Harmless: Prioritize user safety and avoid harm.

665

The Goal of Alignment:

• The aim is to align GPT's responses with specific user instructions
and ethical standards, beyond just generating probable text.

• The primary objective is to bridge the gap between these statistical
predictions and meaningful adherence to instructions provided by
users.

• This involves ensuring that the AI's responses are not just contextually
appropriate or conversationally relevant but also aligned with the
specific intentions, ethical expectations, and task-oriented goals of
the user.

666

Why It Matters:

• This alignment is crucial for enhancing GPT's reliability, ensuring it
respects user intent and ethical norms.

• Without this alignment, while a model like GPT might produce
grammatically correct and contextually relevant content, it might diverge
from user instructions or produce content that's inappropriate or
misaligned with the user's ethical, cultural, or personal expectations.

• The goal is to enhance the model's reliability in following directives
accurately, respecting ethical boundaries, and fulfilling the user's actual
needs, thereby making the technology more trustworthy and effective in
real-world applications.

667

Modifying Language Model Behavior

• Multiple strategies have been developed to refine the generation
behavior of language models.

668

Filtering Pretraining Datasets

• What: Removing or excluding certain documents or content from the
dataset used for initial training.

• Why: Prevents the model from learning harmful or undesirable
patterns present in those documents.

• Example: Excluding documents that contain hate speech or
misinformation to reduce the chances of the model generating such
content.

669

Fine-Tuning on Value-Targeted Datasets

• What: Adjusting the model's parameters using a dataset that
emphasizes specific values or behaviors.

• Why: Helps the model better adhere to desired values in its outputs.
• Example: If we want a model to generate environmentally-conscious

responses, we might fine-tune it on a dataset full of eco-friendly
content.

670

Key Areas of Focus in AI Alignment

1.Learning from Human Feedback:
• Tailoring AI through human interaction.
2. Training to Follow Instructions:
• Teaching AI specific task adherence.
3. Evaluating AI Harms:
• Identifying risks in AI outputs.
4. Modifying Behavior to Mitigate Harms:
• Adjusting AI to prevent negative impacts.

671

Key Areas of Focus in AI Alignment

1.Learning from Human Feedback:
• Tailoring AI through human interaction.
2. Training to Follow Instructions:
• Teaching AI specific task adherence.
3. Evaluating AI Harms:
• Identifying risks in AI outputs.
4. Modifying Behavior to Mitigate Harms:
• Adjusting AI to prevent negative impacts.

672

Addressing GPT Challenges - Training
Strategy Overview

• To address inherent challenges with GPT models, ChatGPT's training
strategy mirrors the "Instruct GPT" approach, itself an amalgamation of
strategies from preceding works.

• The Three-Phased Training Approach:
1.Supervised Fine-Tuning (SFT):

• "Refines a pre-trained GPT-3 model's responses for specific tasks or guidelines,
enhancing its understanding and output relevance.“

2. Training a Reward Model (RM):
• "Develops a system that assesses the quality of text generated by the model, guiding

it towards human-preferred responses."
3. Reinforcement Learning from Human Feedback (RLHF)

673

The Three-Phased Training Approach

1.Supervised Fine-Tuning (SFT):
• Refines a pre-trained GPT-3 model's responses for specific tasks or guidelines,

enhancing its understanding and output relevance.

2.Training a Reward Model (RM):
• Develops a system that assesses the quality of text generated by the model,

guiding it towards human-preferred responses.

3. Reinforcement Learning from Human Feedback (RLHF)
• Refining AI behavior through direct human feedback.

674

1. Supervised Fine-Tuning (SFT)

675

Data Collection Approach

• Source: OpenAI API with InstructGPT.
• Human-in-the-loop: Integral part of the process to ensure quality and

diversity.
• Goal: Capture a broad spectrum of language patterns and ensure

diversity in prompts.

676

Data Collection Approach

• Writing Prompts & Responses:

• Labelers generate diverse prompts and craft human-written
responses.

677

Introduction to Labeler-Written Prompts

• Objective: Train the initial InstructGPT model with instruction-like
prompts.

• Source: Prompts crafted by contractors (labelers).
• Types of Prompts: Plain, Few-shot, User-based.

678

Types of Labeler-Written Prompts

1.Plain Prompts:
1. Goal: Generate arbitrary tasks ensuring diversity.
2. Example: "Describe the process of evaporation."

2.Few-shot Prompts:
1. Goal: Provide an instruction with multiple query/response pairs.
2. Example:

1. Instruction: "Give the sentiment for a tweet."
2. Queries: Sample tweets.
3. Responses: "Positive" or "Negative."

679

Types of Labeler-Written Prompts

3.User-based Prompts:
• Derived from real-world applications to the OpenAI API.
• Reflect specific needs or interests of potential users.
• Example:

• Original Application: "I want to use the API for a bird identification app."
• User-based Prompt: "Describe characteristics of a common bird."

680

User-based vs Plain Prompts

• Both prompts are crafted by labelers.

• User-based prompts are inspired by real-world applications, ensuring
they align with practical needs.

• Plain prompts are more open-ended and not tied to any specific
application.

681

Illustrative User Prompts

1.Brainstorming
Example: "List five ideas for how to regain enthusiasm for my career."

2.Classification
Example: "Given the following text, rate, on a scale from 1-10, how sarcastic the
person is being."

3.Extract
Example: "Extract all course titles from the table below:
|Title|Lecturer|Room|"

4.Generation
Example: "Write a short story where a brown bear goes to the beach, makes
friends with a seal, and then returns home."

682

Illustrative User Prompts

5. Chat
Example: "This is a conversation with an AI assistant. The assistant is helpful,
creative, clever, and very friendly. Human: 'Hello, who are you?' AI: 'I am an AI
created by OpenAI. How can I help you today?’”

6. Rewrite
Example: "Translate this sentence to Spanish: <English sentence>"

7. Closed QA
Example: "Answer the following question: What shape is the earth?

A) A circle B) A sphere C) An ellipse D) A plane"

683

Illustrative User Prompts

8. Open QA
Example: "Who built the statue of liberty?"

9. Summarization
Example: "Summarize this for a second-grade student: {text}"

10. Other
Example: "Lookup 'cowboy' on Google and give me the results."

684

Supervised Fine-Tuning (SFT)

• Objective: Train the model to generate desired responses to given
prompts.

• Method:
• Concatenate the prompt and the desired response.
• Use this concatenated text as input for the model.
• Train the model to predict the next token in the sequence.

685

Supervised Fine-Tuning (SFT)

• Example:
• Prompt: "What's the capital of France?"
• Desired Response: "Paris."
• Concatenated Input: "What's the capital of France? Paris."

• Outcome: The model learns to generate concise and accurate
responses to a wide range of prompts.

686

2. Training a Reward Model (RM)

687

Dataset Creation for RM

1.Generating Responses: For a given prompt, produce multiple
responses using the SFT model.

2.Pairing & Ranking: Create pairs from these responses and have a
human rank the better response in each pair.

• Prompt: "What is ice?"
• Responses:

• A. "It's the solid form of water."
• B. "Frozen water that's cold to touch."
• C. "Water that has turned solid due to low temperatures."
• D. "A crystalline substance formed when water freezes."

688

Dataset Creation for RM

Create Response Pairs: Pair the responses with each other.
• Total Pairs: C(4,2) = 6 pairs
• Example Pairs:

1. (A, B)
A: It's the solid form of water.
B: Frozen water that's cold to touch.

2. (A, C)
3. (A, D)
4. (B, C)
5. (B, D)
6. (C, D)

Human Ranking: Ask a human to rank responses within each pair.
• For pair (A, B), the human might prefer response A over B.

689

"It's the solid form of water."
"Frozen water that's cold to touch."

690

"It's the solid form of water."
"Frozen water that's cold to touch."

691

"Water that has turned solid due to low temperatures."
"A crystalline substance formed when water freezes."

692

"Water that has turned solid due to low temperatures."
"A crystalline substance formed when water freezes."

693

• Total Prompts Used: 33,000
• Responses per Prompt: Between 4 to 9
• Sample Calculation:
• For 4 responses per prompt: 33,000×C(4,2) = 198,000 pairs
• For 9 responses per prompt: 33,000×C(9,2) = 1,188,000 pairs

694

Reward Model (RM)

• Objective: Align model generation with human preference.
• Method: Rate model responses based on human preference.
• Outcome: Train a model (Reward Model) to simulate these ratings.

695

Reward Model Architecture

• Starting Point: Use the SFT model from Phase 1.
Modifications:

• Remove the last linear layer (unembedding layer).
• Add a randomly initialized linear layer.
• The model now outputs a scalar value, effectively becoming a regressor.

696

Training Regime for Reward Model

• Pair Selection:

• Losing Pair: "What is Ice? It's the solid form of water."
• Winning Pair: "What is ice? Water that has turned solid due to low

temperatures."
•

697

Reward Calculation

1.Winning Reward: Pass the winning prompt-response to the reward
model.

2.Losing Reward: Pass the losing prompt-response to the same model.
3.Difference: Calculate the difference between the two rewards.

698

Loss Function

699

Inference with Reward Model

• Post-Training: For any prompt-response combination, get a scalar
reward.

• Purpose: Simulate human preference for a given prompt-response.

700

3. Reinforcement Learning from Human
Feedback (RLHF)

701

Introduction to Reinforcement Learning
Model (RL)

• Objective: Train a model that generates text aligning with human
preferences.

• Components:
• SFT Model: Generates responses but may not align with human preferences.
• Reward Model: Provides a scalar reward but doesn't generate text.

• Goal of RL: Combine the capabilities of the above models to produce
text that maximizes the reward.

702

Aligning Generation with Human Preference

703

Training the RL Model

704

705

Generating Text with the Model

706

Model, Dataset, and Training Regime

• Model: The model structure remains similar to the SFT model but is
trained with the new objective.

• Dataset: Use the same dataset but now with the goal of maximizing
the reward.

• Training Regime: Iteratively generate responses, compute rewards,
and update the model using gradient ascent.

707

Exploring the Reinforcement Learning Phase

Model:
• Copy the SFT model trained in phase 1.
• No modifications needed.

Dataset:
• A collection of prompts.
• No responses attached.

708

Training Regime

1.Feed a prompt to the model.
2.The model generates a corresponding response.
3.Concatenate the prompt and response.
4.Pass this concatenated pair to the reward model to obtain a reward

score.
5.Use the reward and probabilities in the gradient equation.
6.Update the model parameters using this gradient.

709

Challenge with Direct Model Updates

• Using the initial training method can make the model unpredictable.
• These updates can push the model to produce text that doesn't make

sense or is off-topic.

710

Solution: KL Divergence

• Ensure updates don't deviate too much from the SFT trained in phase
1.

• Use KL divergence to measure the "distance" between the SFT and
the RL model.

• KL divergence compares two distributions.

711

Training Process

1.For a given prompt, the RL model generates a response.
2.At each generation step, a probability distribution over the

vocabulary is produced.
3.Feed the same prompt-response to the SFT model to get its

probability distribution over the vocabulary.
4.Calculate the KL divergence between the distributions from the RL

model and the SFT model.
5.Subtract this divergence value from the reward for the prompt-

response pair.

712

Subtract this divergence value from the
reward

713

Issue with the Cost Function

Problem:
• The model's performance on some datasets was inferior to the

original pretrained model.

Solution:
• Introduce an additional term in the cost function to keep the RL

model close to the original pretrained base.

714

Updated Cost Function

715

In Conclusion

The model is optimized to:
• Maximize reward obtained using the reward model.
• Minimize divergence from SFT model.
• Maximize likelihood of observing sequences seen during pretraining.

After updating the RL model for some steps:
• Initialize a new reward model from it.
• Ask humans to generate another dataset following the procedure described in

Phase 2.
• Conduct another training session for the reward model.

716

LLaMA

Overview
• Released by Meta AI in February 2023.
• Available in sizes: 7B, 13B, 33B, 65B, and 70B parameters.

LLaMA-2 vs LLaMA-1
• LLaMA-2 uses 40% more training data.
• Architecture remains largely unchanged.

717

LLaMA

Open Source & Accessibility:
• Inference code under GPL 3 license.
• Model weights access via application process.
• Trained on 20 major languages, focusing on Latin and Cyrillic

alphabets.
Coding: "Code Llama"
• fine-tuned for coding tasks.
• Sizes: 7B, 13B, 34B parameters.

718

Stanford Alpaca

• Dataset:
• Fine-tuned from LLaMA 7B on 52K instruction-following samples.
• Comparable to OpenAI’s text-davinci-003 but more cost-effective.

• Integration with LLaMA:
• Used to fine-tune LLaMA v1.
• Enhances LLaMA v1 by adding instruction-following capabilities (which it

lacked by default).

https://crfm.stanford.edu/2023/03/13/alpaca.html

719

https://crfm.stanford.edu/2023/03/13/alpaca.html

Open Assistant

• Mission: To democratize language technologies and innovations.
• Open & Collaborative: Provides unrestricted access to:

• Datasets
• Models
• Code sources

• Platform: Open Assistant platform is designed for seamless
interaction and collaboration.

• Philosophy: Emphasizes open access and community collaboration,
ensuring that advancements in language technologies are accessible
to all.

720

Open Assistant

https://github.com/LAION-AI/Open-Assistant

https://www.kdnuggets.com/2023/04/open-assistant-explore-
possibilities-open-collaborative-chatbot-development.html

721

https://github.com/LAION-AI/Open-Assistant
https://www.kdnuggets.com/2023/04/open-assistant-explore-possibilities-open-collaborative-chatbot-development.html
https://www.kdnuggets.com/2023/04/open-assistant-explore-possibilities-open-collaborative-chatbot-development.html

LLaMA v2

Variants:
• Multiple sizes available:

• 7B (Billion parameters)
• 13B
• 70B

Versions:
• Chat: Features instruction-following capability.
• Non-Chat: Traditional language model without instruction-following.

722

Falcon

• Model:
• Largest Version: 180B (Billion parameters)
• Trained on a massive 3.5 trillion tokens.

• Dataset: Falcon's dataset is released for public use
•

https://falconllm.tii.ae/index.html
• https://huggingface.co/datasets/tiiuae/falcon-refinedweb
• https://arxiv.org/pdf/2306.01116.pdf
• https://huggingface.co/tiiuae/falcon-180B
•

723

https://falconllm.tii.ae/index.html
https://falconllm.tii.ae/index.html
https://huggingface.co/datasets/tiiuae/falcon-refinedweb
https://arxiv.org/pdf/2306.01116.pdf
https://huggingface.co/tiiuae/falcon-180B

Variations of Transformer Models for
Enhanced Efficiency

• The Transformer model, though powerful, is known for its
computational complexity.

• Computational Complexity: 𝑂𝑂 𝑛𝑛2 𝑑𝑑 for self-attention, where 𝑛𝑛 is the
sequence length, and 𝑑𝑑 is the dimensionality of the input.

• Memory Complexity: 𝑂𝑂 𝑛𝑛2 + 𝑛𝑛 𝑑𝑑
• R = \sum_{t=0}^{T} \gamma^{t} r_t

724

Reformer

• Introduces a new method to reduce memory requirements while
maintaining performance.

• Key innovation: Locality-Sensitive Hashing (LSH) to reduce the
complexity of the attention mechanism.

• Computational Complexity: 𝑂𝑂 𝑛𝑛 log 𝑛𝑛 𝑑𝑑
• Memory Complexity: 𝑂𝑂 𝑛𝑛 𝑑𝑑

725

Lformer

• Focuses on reducing time complexity of self-attention, making it more
efficient for long sequences.

• Key innovation: Linear time complexity self-attention mechanism.

• Computational Complexity: 𝑂𝑂 𝑛𝑛 𝑑𝑑
• Memory Complexity: 𝑂𝑂(𝑛𝑛 𝑑𝑑)

726

Performer

• Replaces self-attention with a more efficient approximation.
• Key innovation: Fast Attention Via positive Orthogonal Random

features (FAVOR+) allowing faster training and inference times.

• Computational Complexity: 𝑂𝑂 𝑛𝑛 𝑑𝑑
• Memory Complexity: 𝑂𝑂(𝑛𝑛 𝑑𝑑)

727

Longformer

• Extends Transformer to handle long sequences more efficiently.
• Key innovation: Sparse attention mechanism with a mix of local and

global attentions.

• Computational Complexity: 𝑂𝑂 𝑛𝑛 𝑑𝑑 + 𝑛𝑛 𝑤𝑤 , where w is the window
size of local attention.

• Memory Complexity: 𝑂𝑂 𝑛𝑛 𝑑𝑑 + 𝑛𝑛 𝑤𝑤

728

win Transformer

• Specifically designed for computer vision tasks.
• Key innovation: Hierarchical feature maps from smaller-sized patches

and merges them for efficiency.

• Computational Complexity: Varies based on hierarchical structure,
generally lower than standard Transformers.

• Memory Complexity: Also varies, generally lower.

729

ALBERT

• Reduces memory consumption by lowering the number of
parameters.

• Key innovation: Parameter sharing across layers and separating
vocabulary embedding into two smaller matrices.

• Computational Complexity: 𝑂𝑂 𝑛𝑛2 𝑑𝑑 , but with fewer parameters due
to sharing.

• Memory Complexity: 𝑂𝑂 𝑛𝑛2 + 𝑛𝑛 𝑑𝑑 , but with fewer parameters.

730

DeBERTa

• Adds a disentangled attention mechanism to improve training
efficiency.

• Key innovation: Disentangled attention mechanism allowing for more
flexible and efficient attention computation.

• Computational Complexity: Similar to original Transformer but with
efficiency in training.

• Memory Complexity: Similar to original Transformer.

731

