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Generative Adversarial Networks (GAN)

• Original paper:
– Generative Adversarial Nets

• Authors:
– Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio (2014)

• Organization:
– Université de Montréal

• URL:
– https://arxiv.org/abs/1406.2661
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Different Applications
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Training 
Generative Adversarial Networks

798



799



800



801



802



803



804



805



806



807
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KL (Kullback-Leibler) divergence
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VAE GAN
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Real images (CIFAR-10) Generated images
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Conditional GAN, Mode 
Collapse, AAE and Applications 

of GAN  



• Tutorial
Generative Adversarial Networks and Adversarial Autoencoders: Tutorial 
and Survey

835

https://arxiv.org/abs/2111.13282
https://arxiv.org/abs/2111.13282


Generative adversarial network (GAN)

min
𝐺𝐺

 max
𝐷𝐷

𝑉𝑉(𝐷𝐷,𝐺𝐺)

𝑉𝑉 𝐷𝐷,𝐺𝐺 = 𝔼𝔼𝑥𝑥~𝑃𝑃𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎(𝑥𝑥) 𝑙𝑙𝑓𝑓𝑎𝑎𝐷𝐷 𝑥𝑥 + 𝔼𝔼𝑧𝑧~𝑃𝑃𝑧𝑧(𝑧𝑧)[log(1 − 𝐷𝐷(𝐺𝐺 𝑧𝑧 ))]
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Mode Collapse Problem in GAN

• The mode collapse problem (Metz et al., 2017), also known as the 
Helvetica scenario (Goodfellow, 2016), is a common problem in GAN 
models.

837



Mode Collapse Problem in GAN

• The mode collapse problem (Metz et al., 2017), also known as the 
Helvetica scenario (Goodfellow, 2016), is a common problem in GAN 
models.

• The generator learns to map several different 𝑧𝑧 values to the same 
generated data point 𝑥𝑥.

838



Mode Collapse Problem in GAN

• The mode collapse problem (Metz et al., 2017), also known as the 
Helvetica scenario (Goodfellow, 2016), is a common problem in GAN 
models.

• The generator learns to map several different 𝑧𝑧 values to the same 
generated data point 𝑥𝑥.

• Mode collapse usually happens in GAN when the distribution of 
training data, 𝑝𝑝𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎(𝑥𝑥), has multiple modes.
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Mode Collapse example

An example of mode collapse in GAN.

Credit :  Metz et al., 2017
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Mode Collapse example

Mode Collapse.Stable GAN

Credit: Jason Brownlee 841



Mode Collapse example

Accuracy for a GAN with Mode CollapseAccuracy for a Stable GAN
Credit: Jason Brownlee 842
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Minibatch discrimination

• One way to resolve the mode collapse problem is minibatch 
discrimination (Salimans et al., 2016)
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• One way to resolve the mode collapse problem is minibatch 
discrimination (Salimans et al., 2016)

• When mode collapses, all images created look similar. 
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Minibatch discrimination

• One way to resolve the mode collapse problem is minibatch 
discrimination (Salimans et al., 2016)

• When mode collapses, all images created look similar. 

• Feed real images and generated images into the discriminator 
separately in different batches and compute the similarity of the 
image 𝑥𝑥 with images in the same batch. 
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Minibatch discrimination

• Append the similarity 𝒐𝒐(𝒙𝒙) in one of the dense layers in the 
discriminator to classify whether this image is real or generated.
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Minibatch discrimination

• append the similarity 𝒐𝒐(𝒙𝒙) in one of the dense layers in the 
discriminator to classify whether this image is real or generated.

• If the mode starts to collapse, the similarity of generated images 
increases. 
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Minibatch discrimination

• append the similarity 𝒐𝒐(𝒙𝒙) in one of the dense layers in the 
discriminator to classify whether this image is real or generated.

• If the mode starts to collapse, the similarity of generated images 
increases. 

• The discriminator can use this score to detect generated images and 
penalize the generator if mode is collapsing.
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Alternative Strategies to Prevent Mode 
Collapse

• Unrolled GANs: They allow the generator to update itself using a copy 
of the discriminator from several steps ahead, preventing the 
generator from overfitting to the current discriminator.

• Experience Replay: This involves keeping a memory bank of past 
generated images and occasionally showing them to the 
discriminator, which helps maintain diversity in the generator's 
output.

• Modified Training Objectives: Alternative loss functions, like 
Wasserstein loss or least squares loss, provide more stable gradients 
and can help prevent mode collapse.
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Alternative Strategies to Prevent Mode 
Collapse

• Regularization: Adding noise to inputs or labels, or using dropout in 
the discriminator, can prevent it from making overly confident 
decisions, which in turn pressures the generator to be more diverse.

• Architecture Tweaks: Adjusting the network architecture, such as 
adding more layers or changing activation functions, can help the 
generator explore a wider range of outputs.

• Feature Matching: The generator is trained to match the statistical 
features of the real data in some intermediate layer of the 
discriminator, promoting diversity in the generated data.
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Alternative Strategies to Prevent Mode 
Collapse

• Penalizing the Discriminator: Introducing penalties for the 
discriminator when it gets too confident can prevent it from 
overpowering the generator, leading to a more varied generation.

• Two Time-Scale Update Rule (TTUR): Using different learning rates 
for the generator and the discriminator can help balance their 
training and prevent the generator from collapsing to a few modes.
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Generative adversarial network (GAN)

min
𝐺𝐺

 max
𝐷𝐷

𝑉𝑉(𝐷𝐷,𝐺𝐺)

𝐷𝐷,𝐺𝐺 = 𝔼𝔼𝑥𝑥~𝑃𝑃𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎(𝑥𝑥) 𝑙𝑙𝑓𝑓𝑎𝑎𝐷𝐷 𝑥𝑥 + 𝔼𝔼𝑧𝑧~𝑃𝑃𝑧𝑧(𝑧𝑧)[log(1 − 𝐷𝐷(𝐺𝐺 𝑧𝑧 ))]
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Conditional GAN

• Assume that the dataset with which GAN is trained has 𝑐𝑐 number of 
classes. 
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Conditional GAN

• Assume that the dataset with which GAN is trained has 𝑐𝑐 number of 
classes. 

• The original GAN generates points from any class, and we do not have 
control to generate a point from a specific class.

856



Conditional GAN

• Assume that the dataset with which GAN is trained has 𝑐𝑐 number of 
classes. 

• The original GAN generates points from any class, and we do not have 
control to generate a point from a specific class.

• Conditional GAN (Mirza & Osindero), also called the conditional 
adversarial network, gives the user the opportunity to choose the 
class of generation of points.
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GAN

min
𝐺𝐺

 max
𝐷𝐷

 𝑉𝑉  (𝐷𝐷,𝐺𝐺)  ∶=  𝔼𝔼𝑥𝑥~𝑃𝑃𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎(𝑥𝑥) 𝑙𝑙𝑓𝑓𝑎𝑎𝐷𝐷 𝑥𝑥 + 𝔼𝔼𝑧𝑧~𝑃𝑃𝑧𝑧(𝑧𝑧)[log(1 − 𝐷𝐷(𝐺𝐺 𝑧𝑧 ))]
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Conditional GAN

the discriminator and generator are both conditioned on the labels

For the dataset {𝑥𝑥𝑖𝑖  ∈  ℝ𝑑𝑑}𝑖𝑖=1𝑛𝑛 , let the one-hot encoded class labels be {𝑦𝑦𝑖𝑖 ∈  ℝ𝑐𝑐}𝑖𝑖=1𝑛𝑛 . 
In conditional GAN, we can use the following loss function instead: 

min
𝐺𝐺

max
𝐷𝐷

 𝑉𝑉𝐶𝐶 𝐷𝐷,𝐺𝐺 ≔  𝔼𝔼𝑥𝑥~𝑝𝑝𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎 𝑥𝑥 log 𝐷𝐷 𝑥𝑥 𝑦𝑦 +  𝔼𝔼𝑧𝑧~𝑝𝑝𝑧𝑧 𝑧𝑧 [log(1 − 𝐷𝐷(𝐺𝐺(𝑧𝑧|𝑦𝑦)))]

min
𝐺𝐺

 max
𝐷𝐷

 𝑉𝑉  (𝐷𝐷,𝐺𝐺)  ∶=  𝔼𝔼𝑥𝑥~𝑃𝑃𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎(𝑥𝑥) 𝑙𝑙𝑓𝑓𝑎𝑎𝐷𝐷 𝑥𝑥 + 𝔼𝔼𝑧𝑧~𝑃𝑃𝑧𝑧(𝑧𝑧)[log(1 − 𝐷𝐷(𝐺𝐺 𝑧𝑧 ))]
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Conditional GAN

the discriminator and generator are both conditioned on the labels

For the dataset {𝑥𝑥𝑖𝑖  ∈  ℝ𝑑𝑑}𝑖𝑖=1𝑛𝑛 , let the one-hot encoded class labels be {𝑦𝑦𝑖𝑖 ∈  ℝ𝑐𝑐}𝑖𝑖=1𝑛𝑛 . 
In conditional GAN, we can use the following loss function instead: 

min
𝐺𝐺

max
𝐷𝐷

 𝑉𝑉𝐶𝐶 𝐷𝐷,𝐺𝐺 ≔  𝔼𝔼𝑥𝑥~𝑝𝑝𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎 𝑥𝑥 log 𝐷𝐷 𝑥𝑥 𝑦𝑦 +  𝔼𝔼𝑧𝑧~𝑝𝑝𝑧𝑧 𝑧𝑧 [log(1 − 𝐷𝐷(𝐺𝐺(𝑧𝑧|𝑦𝑦)))]
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Implementation of Conditional GAN

• Concatenate the one-hot encoded label 𝑦𝑦 to the point 𝑥𝑥 for the input 
to the discriminator. 
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Implementation of Conditional GAN

• Concatenate the one-hot encoded label 𝑦𝑦 to the point 𝑥𝑥 for the input 
to the discriminator. 

• Concatenate the one-hot encoded label 𝑦𝑦 to the noise 𝑧𝑧 for the input 
to the generator. 
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Implementation of Conditional GAN

• Concatenate the one-hot encoded label 𝑦𝑦 to the point 𝑥𝑥 for the input 
to the discriminator. 

• Concatenate the one-hot encoded label 𝑦𝑦 to the noise 𝑧𝑧 for the input 
to the generator. 

• For these, the input layers of discriminator and generator are 
enlarged to accept the concatenated inputs
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GAN Conditional GAN
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Inference from Conditional GAN

• In the inference phase, the user choose the desired class label and 
the generator generates a new point from that class.
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Generated MNIST digits, each row conditioned on one label
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Adversarial Autoencoder (AAE)

• Adversarial Autoencoder (AAE) was proposed in (Makhzani et al., 
2015). 
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Adversarial Autoencoder (AAE)

• Adversarial Autoencoder (AAE) was proposed in (Makhzani et al., 
2015). 

• In contrast to variational autoencoder (Kingma & Welling, 2014) 
which uses KL divergence and evidence lower bound, AAE uses 
adversarial learning for imposing a specific distribution on the latent 
variable in its coding layer. 
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Unsupervised AAE
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Supervised AAE
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Clustering with AAE

• Assume we have 𝑐𝑐 number of clusters.
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Clustering with AAE

• Assume we have 𝑐𝑐 number of clusters.

• All points are unlabeled.
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Clustering with AAE

• Assume we have 𝑐𝑐 number of clusters.

• All points are unlabeled.

• The cluster indices are sampled randomly by the categorical 
distribution. 
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Clustering with AAE

• Assume we have 𝑐𝑐 number of clusters.

• All points are unlabeled.

• The cluster indices are sampled randomly by the categorical 
distribution. 

• The cluster labels and the latent code are both trained.
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Supervised AAE
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Clustering with AAE
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Semi-Supervised AAE

• Consider a partially labelled dataset.
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Semi-Supervised AAE

• Consider a partially labelled dataset.

• The labelled part of data has 𝑐𝑐 number of classes.
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Semi-Supervised AAE

• Consider a partially labelled dataset.

• The labelled part of data has 𝑐𝑐 number of classes.

• AAE can be used for semi-supervised learning with the partially 
labelled dataset.

879



Semi-Supervised AAE

• We can use the same structure for Semi-Supervised.

• But rather than the clusters, we assume we have 𝑐𝑐 number of 
classes.

• We have a partially labelled part of the dataset.
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Semi-Supervised AAE
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Semi-Supervised AAE

• If the point 𝑥𝑥 has a label use it. Labels are one-hot vectors. 

882



Semi-Supervised AAE

• If the point 𝑥𝑥 has a label use it. Labels are one-hot vectors. 

• If the point 𝑥𝑥 does not have any label, randomly sample a label 𝑦𝑦
∈ ℝ𝑐𝑐 from a categorical distribution, i.e., 𝑦𝑦 ∼ 𝐶𝐶𝑎𝑎𝑠𝑠(𝑦𝑦)
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Semi-Supervised AAE

• If the point 𝑥𝑥 has a label use it. Labels are one-hot vectors. 

• If the point 𝑥𝑥 does not have any label, randomly sample a label 𝑦𝑦
∈ ℝ𝑐𝑐 from a categorical distribution, i.e., 𝑦𝑦 ∼ 𝐶𝐶𝑎𝑎𝑠𝑠(𝑦𝑦)

• This categorical distribution gives a one-hot encoded vector where 
the prior probability of every class is estimated by the proportion of 
the class’s population to the total number of labelled points.
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Dimensionality Reduction with AAE

The low-dimensional 
representation of �𝒙𝒙 ∈  ℝ𝑝𝑝 is 
obtained as: 

�𝒙𝒙 = 𝑾𝑾𝑇𝑇𝒚𝒚 + 𝒛𝒛,          
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Applications
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Application: Image-to-Image Translation by 
GAN

• Interactive GAN (iGAN) (Zhu et al., 2016)
• PatchGAN (Isola et al., 2017)
• CycleGAN (Cycle-Consistent Generative Adversarial Networks) (Zhu et 

al., 2017)
• Simulated GAN (SimGAN) (Shrivastava et al., 2017) 
• DeepFaceDrawing (Chen et al., 2020)
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PatchGAN: (a) coloring a sketch, (b) changing daylight to night 
darkness in image, (c) changing an aerial image to a map, (d) 
coloring a black-and-white image, 
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CycleGAN 
Credit: (Zhu et al., 2017)

DeepFaceDrawing 
 Credit: (Chen et al., 2020)

Transforming zebra to horse and vice versa Generating a facial image from a facial sketch.
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Application: Text-to-Image Generation

• Image is generated from some descriptive caption.
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Application: Text-to-Image Generation

• Image is generated from some descriptive caption.
• Reed et al., 2016a;b
• Zhang et al., 2017
• Reed et al., 2017
• Nguyen et al., 2017a
• Zhang et al., 2018
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StackGAN
Credit: Zhang et al., 2017
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Application: Mixing Image Characteristics

• FineGAN (Singh et al., 2019) 
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Application: Mixing Image Characteristics

• FineGAN (Singh et al., 2019) 

• An unsupervised GAN model which disentangles the features of the 
generated image to background, shape, and color/texture.
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Application: Mixing Image Characteristics

• FineGAN (Singh et al., 2019) 

• An unsupervised GAN model which disentangles the features of the 
generated image to background, shape, and color/texture.

• FineGAN generates an image hierarchically. It starts with generating the 
background.
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• MixNMatch (Li et al., 2020)
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• MixNMatch (Li et al., 2020)

• built upon FineGAN
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• MixNMatch (Li et al., 2020)

• built upon FineGAN

• It gives the user the opportunity to choose the background, shape, and 
colour/texture from three pictures and it generates an image with the chosen 
characteristics.
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generating an image by borrowing its 
characteristics from three images using MixNMatch

generating an image by borrowing its characteristics from 
different domains using improved MixNMatch.

Credit: Li et al., 2020 Credit: Ojha et al., 2021b
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Other Applications

• In some structures of GAN, learned latent space is meaningful and we 
can do vector arithmetic in the latent space. 
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Other Applications

• In some structures of GAN, learned latent space is meaningful and we 
can do vector arithmetic in the latent space. 

• For example in Deep Convolutional GAN (DCGAN), proposed in 
(Radford et al., 2016)
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Other Applications

• In some structures of GAN, learned latent space is meaningful and we 
can do vector arithmetic in the latent space. 

• For example in Deep Convolutional GAN (DCGAN), proposed in 
(Radford et al., 2016)

• DCGAN uses an all-convolutional network for both generator and 
discriminator.
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Vector arithmetic in the latent space on images by DCGAN. 

Credit of image : Radford et al., 2016
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Other Applications

• Inpainting 
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Other Applications

• Inpainting 
• (Pathak et al., 2016). GAN learns to inpaint the lost part based on the 

available pixels in the image. 
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Other Applications

• Inpainting 
• (Pathak et al., 2016). GAN learns to inpaint the lost part based on the 

available pixels in the image. 

• Medical application 
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Other Applications

• Inpainting 
• (Pathak et al., 2016). GAN learns to inpaint the lost part based on the 

available pixels in the image. 

• Medical application 
• Generating histopathology images which can give insight into cancer 

diagnosis from pathology whole slide images (Levine et al., 2020).
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Other Applications

• NLP (Li et al., 2018; Wang et al., 2019)
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Other Applications

• NLP (Li et al., 2018; Wang et al., 2019)

• Speech processing (Pascual et al., 2017; Sriram et al., 2018)
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• Network embedding (Dai et al., 2018)
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Other Applications

• NLP (Li et al., 2018; Wang et al., 2019)

• Speech processing (Pascual et al., 2017; Sriram et al., 2018)

• Network embedding (Dai et al., 2018)

• Logic (Nagisetty et al., 2021)
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Other Applications

• NLP (Li et al., 2018; Wang et al., 2019)

• Speech processing (Pascual et al., 2017; Sriram et al., 2018)

• Network embedding (Dai et al., 2018)

• Logic (Nagisetty et al., 2021)

• Sketch retrieval (Creswell & Bharath, 2016).
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