Lecture 18



Graph Neural Network- Part 1



Graphs are structured data

« Many real-world datasets come in the form of graphs.

e Social networks
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Graphs are structured data

« Many real-world datasets come in the form of graphs.

e social networks
e protein-interaction networks

 The World Wide Web
 Molecules
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Images are graphs

* Images are graphs, where each pixel represents a node and is

connected via an edge to adjacent pixels
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Text as graphs

* Each token is a node and is connected via an edge to the node that
preceding it.

Texts are graphs
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* Graph-level task

* Node-level task

* Edge-level task



* Predict the property of an entire graph.

* Predict whether a molecule will bind to a receptor or not.



Node-level task

* Predicting the identity or role of each node within a graph.
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Edge-level task
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CNN as GNN
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CNN as GNN
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CNN as GNN
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CNN as GNN
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Image by Zonghan Wu et al
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Convolution

This operation is called convolution.

s(t) = [ x(a)w(t — a)da

The convolution operation is typically denoted with an asterisk:

s(t) = (x *w)(2)
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Discrete convolution

If we now assume that x and w are defined only on integer ¢, we can
define the discrete convolution:

00)

s[t] = (cxw)(®©) = ) xlalw[t - a]

a=—oo
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Convolution on Graphs
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Definition of a Graph

A graph (G can be defined as a set of vertices V" and edges E, along with an adjacency matrix A.

Graph Notation
G=(V,E, A

* V:Vertices or Nodes
* F: Edges, representing connections between vertices

* A: Adjacency Matrix, indicating the presence (1) or absence (0) of an edge between vertex pairs

The adjacency matrix is a binary matrix indicating whether pairs of vertices are adjacent.

. Ai-j — 1 ifthere is an edge between vertex 7 and vertex j

* A;; = Qotherwise
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Laplacian of a Graph

The Laplacian matrix L of a graph provides insights into the graph's structure, including its

connectivity and the presence of clusters.

Laplacian Matrix

L=D-A

* D: Degree Matrix, a diagonal matrix with the degree of each vertex along the diagonal

* A: Adjacency Matrix, as defined above
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Degree Matrix and Degree of a Vertex

The degree matrix D is a square matrix where each diagonal element d; represents the degree of

the corresponding vertex 1.

Degree Matrix Notation

_dl 0O -+ 0]

0 do --- 0
D=]. ) .

_0 0O .- dn_ o
Degree of a Vertex
di:ZjA’fj

* The degree d; is the sum of the elements in the i-th row of A, representing the number of edges

connected to vertex i.
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Graph Cut Optimization Problem

Objective: Find a cut that divides the graph into segments with minimal interconnections.
Minimization Target: > | A;;(y; — y;)?, captures the 'cut' cost.

Equation: yTLy, where L is the Laplacian matrix and y is a vector indicating node segments.
Constraint Applied: yTy — 1, ensures non-trivial solutions.

Vector y: Represents the assignment of nodes to segments, dimensionn x 1.

Solution Method: Eigen decomposition of L identifies optimal partitioning.
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Eigen Decomposition of Laplacian

* Decomposedas L, = UAUT
* U:Orthonormal eigenvectors

* Eigenvectors are orthogonal and normalized
* A: Diagonal matrix with eigenvalues

* Each diagonal entry is an eigenvalue that pairs with an eigenvector in U
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Normalized Laplacian

* Start with standard Laplacian: L = D — A
* D:Degree matrix
* A: Adjacency matrix
* Normalized Laplacian is defined as:
L=D:D-A)D:
* Can be simplified to:
L=I-D :AD:
* I:ldentity matrix
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* Fourier Analysis:

* Mathematical Definition: Decomposition of a signal into sinusoidal
components.

* Frequency Domain: A signal is transformed to represent it as a sum of
its frequency components.

e Basis Functions: Sine and cosine functions serve as the basis for this
transformation.

* Orthogonality: These basis functions are orthogonal, ensuring unique
frequency representation.



e Graph Signals: Functions defined over the nodes of a graph.

* Spectral Domain: Eigenvectors of L transform graph signals into the
spectral domain.

 Eigenvector Basis: Analogous to sines and cosines, eigenvectors form
a basis for graph signals.

* Orthogonality: Eigenvectors are orthogonal, providing a unique
spectral representation for graph signals.



* Low Eigenvalues: Correspond to "low-frequency" eigenvectors.
* These eigenvectors change slowly over the graph.
* Represent large-scale, smooth structures in the graph.

* High Eigenvalues: Correspond to "high-frequency" eigenvectors.
* These eigenvectors change rapidly between connected nodes.
e Capture fine details or irregularities in the graph.

e Ordering: Eigenvalues (and eigenvectors) are ordered from lowest to
highest.



Fourier Functions

 The following is the eigen-decomposition of graph Laplacian,
L=U"AU

U = [ul, ...,un]
A;; = A; diagonal matrix of eigenvalues (spectrum)

Uty =1

u, to u,, are eigenvectores of laplacian also called Fourier functions.
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Fourier Transform

* The Fourier transform is projecting a signal x on the Fourier
functions.

e The result is the coefficients of the Fourier series.

* The graph Fourier transform projects the input graph signal
to the orthonormal space where the basis is formed by
eigenvectors of the normalized graph Laplacian.
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Fourier Transform

* SUppose x € R™ is a feature vector of all nodes of a graph where x;
is the value of the i*" node.

 The graph Fourier transform to a signal x
fx)=U"x=%

* The inverse graph Fourier transform
fFAR) =Ux=U0UU"x =x
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Convolution Theorem

* The graph convolution of the input signal x with a filter g € R™ is defined
as:

Convolution Theorem: [ (x *x g) = (f(x) -f(g))

xxg=f1(fx)- (@)
— UWTx-UTg)
=UgeUTx

Where go = diag(U" g)
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Vanilla Spectral GCN and ChebNet



* Spectral-based
* Graph signal processing perspective.

* Spatial-based
* Define graph convolutions by information propagation.

. GCNél] bridged the gap between spectral-based approaches and spatial-
based approaches.

T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,” in Proc. of

[1]
ICLR, 2017.



Convolution Theorem

* The graph convolution of the input signal x with a filter g € R" is
defined as:

xxg=f"(f(x)-f(9)
=UWUTx-UTg)
=UgeU'x

Where gy = diag(U" g)
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Neural Network Layers

Feedforward Neural Networks (FFNN):

* Computation in layers: b’ = o(Wh)
* Each layer's output h’' becomes the next layer's input.

* hy (initial input) is the feature vector .
Convolutional Neural Networks (CNN):

* Layer computation uses convolution: A’ = o(w * h)

* w: Learned filters/kernels that slide over h.
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Vanilla Spectral GNN

T
u
T . g
* The graph convolutional layer of Spectral CNN [*] is defined as U'g= LT ]
ng

I __ T
xeg= (@ f(g) M =oWOUTH)
=UWU'x-UTg) _
:UgQUTX X:H(O) ulg

gg — @ ] ung_

® is a diagonal matrix with learnable parameters.

[*] Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and locally connected networks on graphs,” in Proc. of ICLR, 2014.
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Limitation

* eigen-decomposition requires O(n®) computational complexity.
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* Approximates the filter ggby Chebyshev [*] polynomials of the
diagonal matrix of eigenvalues /

[*] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on graphs with fast
localized spectral filtering,” in Proc. of NIPS, 2016, pp. 3844—-3852.



Chebyshev Polynomials of the First Kind

* cos(#) = cos(0)
* cos(20) = 2cos*(0) — 1
* cos(30) = 4 cos’(0) — 3 cos(0)

Chebyshev Polynomials:

* By substituting cos(f) = x, we obtain:
y T1 (SC) — X

* Th(x) = 22% — 1 e
* Orth | on the int | |—
C Ty(x) — 42 — 3a rthogonal on the interval |[—1, 1] -

¢ Tn(:c) denotes the nth polynomial.



Chebyshev Polynomials of the First Kind

y T[)(a'?) —
° Tl(as) =T
* Fori > 2,T;(x) = 22T; 1 (x) — T;—2(x)
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ChebNet Graph Convolution

* g0 =), 0;T;(A)
* gp: Graph convolutional filter parameterized by 6.

* A: Scaled version of the eigenvalues of the Laplacian

matrix.

*A=22 —1,

A’I’I’LCLCI:

* Normalizes the eigenvalues to fall within [—1, 1].
T xg = UggUT:B
"Txg=) . 0,UT;(N\UT 2
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ChebNet Graph Convolution

‘T xg = UggUT:L'
rxxg=> UL (AU

z* gy = U(X,; 0,T;(A)UT
* ltis equivalent to:

zxgs =3, 0T, (L)
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ChebNet Graph Convolution

* T * g — UggUT:B We can computef}withoutthe eigendecomposition of L.
o A The scaled Laplacian L is
zxg=>, 0, UT; (AU z P
r _ 2L
L v

z % gy = U(Y, 0:T(A)) Uz
* ltis equivalent to:

zxgs =3, 0T, (L)
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