Lecture 18

Graph Neural Network- Part 1

- Many real-world datasets come in the form of graphs.
- Social networks

- Many real-world datasets come in the form of graphs.
- Social networks
- Protein-interaction networks

- Many real-world datasets come in the form of graphs.
- social networks
- protein-interaction networks
- The World Wide Web

- Many real-world datasets come in the form of graphs.
- social networks
- protein-interaction networks
- The World Wide Web
- Molecules

Images are graphs

• Images are graphs, where each pixel represents a node and is connected via an edge to adjacent pixels

Text as graphs

• Each token is a node and is connected via an edge to the node that preceding it.

Texts are graphs

- Graph-level task
- Node-level task
- Edge-level task

Graph-level task

- Predict the property of an entire graph.
- Predict whether a molecule will bind to a receptor or not.

Node-level task

• Predicting the identity or role of each node within a graph.

Input: graph with unlabled nodes

Output: graph node labels

Edge-level task

Image

Convolved Feature

Image

3

4

Image

Image

Convolved Feature

Image by Zonghan Wu et al

Convolution

This operation is called convolution.

$$s(t) = \int x(a)w(t-a)da$$

The convolution operation is typically denoted with an asterisk:

$$s(t) = (x * w)(t)$$

Discrete convolution

If we now assume that x and w are defined only on integer t, we can define the discrete convolution:

$$s[t] = (x * w)(t) = \sum_{a=-\infty}^{\infty} x[a]w[t-a]$$

Convolution on Graphs

Definition of a Graph

A graph G can be defined as a set of vertices V and edges E, along with an adjacency matrix A.

Graph Notation

G = (V, E, A)

- * V: Vertices or Nodes
- * E: Edges, representing connections between vertices
- A: Adjacency Matrix, indicating the presence (1) or absence (0) of an edge between vertex pairs

The adjacency matrix is a binary matrix indicating whether pairs of vertices are adjacent.

- $A_{ij} = 1$ if there is an edge between vertex i and vertex j
- * $A_{ij}=0$ otherwise

Laplacian of a Graph

The Laplacian matrix L of a graph provides insights into the graph's structure, including its connectivity and the presence of clusters.

Laplacian Matrix

L = D - A

- D: Degree Matrix, a diagonal matrix with the degree of each vertex along the diagonal
- A: Adjacency Matrix, as defined above

Degree Matrix and Degree of a Vertex

The degree matrix D is a square matrix where each diagonal element d_i represents the degree of the corresponding vertex i.

Degree Matrix Notation

Degree of a Vertex

 $d_i = \sum_j A_{ij}$

• The degree d_i is the sum of the elements in the *i*-th row of A, representing the number of edges connected to vertex *i*.

Example

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \qquad \text{Sum} = \begin{bmatrix} \sum A_{1j} \\ \sum A_{2j} \\ A_{3j} \\ \sum A_{4j} \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 3 \\ 1 \end{bmatrix} \qquad D = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Laplacian Matrix

$$L = D - A$$

Graph Cut Optimization Problem

- Objective: Find a cut that divides the graph into segments with minimal interconnections.
- Minimization Target: $\sum A_{ij}(y_i-y_j)^2$, captures the 'cut' cost.
- Equation: $y^T L y$, where L is the Laplacian matrix and y is a vector indicating node segments.
- Constraint Applied: $y^T y = 1$, ensures non-trivial solutions.
- * Vector y: Represents the assignment of nodes to segments, dimension n imes 1.
- * Solution Method: Eigen decomposition of ${\cal L}$ identifies optimal partitioning.

Eigen Decomposition of Laplacian

- * Decomposed as $L=U\Lambda U^T$
- * U: Orthonormal eigenvectors
 - Eigenvectors are orthogonal and normalized
- Λ : Diagonal matrix with eigenvalues
 - $\, {}^{ullet}$ Each diagonal entry is an eigenvalue that pairs with an eigenvector in U

Normalized Laplacian

- Start with standard Laplacian: L = D A
 - *D*: Degree matrix
 - A: Adjacency matrix
- Normalized Laplacian is defined as: $\widetilde{L} = D^{-rac{1}{2}} (D-A) D^{-rac{1}{2}}$
- Can be simplified to:
 - $\widetilde{L} = I D^{-\frac{1}{2}} A D^{-\frac{1}{2}}$
 - *I*: Identity matrix

Laplacian Eigenvectors & Fourier Analysis Analogy

- Fourier Analysis:
- Mathematical Definition: Decomposition of a signal into sinusoidal components.
- Frequency Domain: A signal is transformed to represent it as a sum of its frequency components.
- **Basis Functions**: Sine and cosine functions serve as the basis for this transformation.
- **Orthogonality**: These basis functions are orthogonal, ensuring unique frequency representation.

Graph Laplacian Eigenvectors

- Graph Signals: Functions defined over the nodes of a graph.
- **Spectral Domain**: Eigenvectors of *L* transform graph signals into the spectral domain.
- **Eigenvector Basis**: Analogous to sines and cosines, eigenvectors form a basis for graph signals.
- Orthogonality: Eigenvectors are orthogonal, providing a unique spectral representation for graph signals.

Eigenvectors of Laplacian

- Low Eigenvalues: Correspond to "low-frequency" eigenvectors.
 - These eigenvectors change slowly over the graph.
 - Represent large-scale, smooth structures in the graph.
- High Eigenvalues: Correspond to "high-frequency" eigenvectors.
 - These eigenvectors change rapidly between connected nodes.
 - Capture fine details or irregularities in the graph.
- Ordering: Eigenvalues (and eigenvectors) are ordered from lowest to highest.

Fourier Functions

• The following is the eigen-decomposition of graph Laplacian,

 $L = U^T \Lambda U$

 $U = [u_1, ..., u_n]$ $\Lambda_{ii} = \lambda_i \text{ diagonal matrix of eigenvalues (spectrum)}$ $U^T U = I$

 u_1 to u_n are eigenvectores of laplacian also called Fourier functions.

Fourier Transform

- The Fourier transform is projecting a signal *x* on the Fourier functions.
- The result is the coefficients of the Fourier series.
- The graph Fourier transform projects the input graph signal to the orthonormal space where the basis is formed by eigenvectors of the normalized graph Laplacian.

Fourier Transform

- Suppose $x \in \mathbb{R}^n$ is a feature vector of all nodes of a graph where x_i is the value of the i^{th} node.
- The graph Fourier transform to a signal χ

 $f(x) = U^T x = \hat{x}$

• The inverse graph Fourier transform

$$f^{-1}(\hat{x}) = U\hat{x} = UU^T x = x$$

Convolution Theorem

• The graph convolution of the input signal x with a filter $g \in \mathbb{R}^n$ is defined as:

Convolution Theorem: $f(x * g) = (f(x) \cdot f(g))$

Where $g_{\theta} = \text{diag}(U^T g)$

Vanilla Spectral GCN and ChebNet

ConvGNNs

- Spectral-based
 - Graph signal processing perspective.
- Spatial-based
 - Define graph convolutions by information propagation.
- GCN [1] bridged the gap between spectral-based approaches and spatialbased approaches.

[1] T. N. Kipf and M. Welling, "Semi-supervised classification with graph convolutional networks," in Proc. of ICLR, 2017.

Convolution Theorem

• The graph convolution of the input signal x with a filter $g \in \mathbb{R}^n$ is defined as:

$$x * g = f^{-1}(f(x) \cdot f(g))$$

= $U(U^T x \cdot U^T g)$
= $Ug_{\theta}U^T x$

Where $g_{\theta} = \text{diag}(U^T g)$

Neural Network Layers

Feedforward Neural Networks (FFNN):

- Computation in layers: $h' = \sigma(Wh)$
- Each layer's output h^\prime becomes the next layer's input.
- h_0 (initial input) is the feature vector x.

Convolutional Neural Networks (CNN):

- Layer computation uses convolution: $h' = \sigma(w * h)$
- w: Learned filters/kernels that slide over h.

Vanilla Spectral GNN

• The graph convolutional layer of Spectral CNN [*] is defined as

$$\begin{aligned} x * g &= f^{-1} \big(f(x) \cdot f(g) \big) & H' &= \sigma (U \Theta \ U^T H) \\ &= U (U^T x \cdot U^T g) \\ &= U g_{\theta} U^T x & X &= H^{(0)} \\ & g_{\theta} &= \Theta & \Theta & \left[\begin{matrix} u_1^T g & \cdots \\ \vdots & \ddots & \vdots \\ & \cdots & u_n^T g \end{matrix} \right] \end{aligned}$$

 Θ is a diagonal matrix with learnable parameters.

 $U^{\mathrm{T}}g = \begin{bmatrix} u_g^{\mathrm{T}} \\ u_{n,a}^{\mathrm{T}} \end{bmatrix}$

Limitation

• eigen-decomposition requires $O(n^3)$ computational complexity.

ChebNet

• Approximates the filter g_{θ} by Chebyshev [*] polynomials of the diagonal matrix of eigenvalues Λ .

[*] M. Defferrard, X. Bresson, and P. Vandergheynst, "Convolutional neural networks on graphs with fast localized spectral filtering," in Proc. of NIPS, 2016, pp. 3844–3852.

Chebyshev Polynomials of the First Kind

- $\cos(\theta) = \cos(\theta)$
- $\cos(2 heta)=2\cos^2(heta)-1$
- $\cos(3 heta) = 4\cos^3(heta) 3\cos(heta)$

Chebyshev Polynomials:

- By substituting $\cos(heta)=x$, we obtain:
 - $T_1(x) = x$
 - $T_2(x) = 2x^2 1$
 - $T_3(x) = 4x^3 3x$

- $T_n(x)$ denotes the nth polynomial.
- ullet Orthogonal on the interval [-1,1]

Chebyshev Polynomials of the First Kind

- $T_0(x)=1$
- $T_1(x) = x$
- For $i\geq 2$, $T_i(x)=2xT_{i-1}(x)-T_{i-2}(x)$

$\sum \alpha_i b_i$

Chebyshev polynomials

ChebNet Graph Convolution

- $g_ heta = \sum_i heta_i T_i(ilde\Lambda)$
- g_{θ} : Graph convolutional filter parameterized by heta.
- $ilde{\Lambda}$: Scaled version of the eigenvalues of the Laplacian

matrix.

•
$$ilde{\Lambda} = rac{2\Lambda}{\lambda_{max}} - I_n$$

- * Normalizes the eigenvalues to fall within $\left[-1,1
 ight].$
- $x * g = U g_{\theta} U^T x$
- $x * g = \sum_i heta_i U T_i(ilde{\Lambda}) U^T x$

ChebNet Graph Convolution

- $x * g = U g_{ heta} U^T x$
- $x * g = \sum_i heta_i U T_i(ilde{\Lambda}) U^T x$

$$x * g_{ heta} = U(\sum_i heta_i T_i(ilde{\Lambda})) U^T x$$

• It is equivalent to:

$$x * g_{ heta} = \sum_{i=1}^k heta_i T_i(ilde{L}) x$$

ChebNet Graph Convolution

- $x * g = U g_{ heta} U^T x$
- $x * g = \sum_i heta_i U T_i(ilde{\Lambda}) U^T x$

We can compute L without the eigendecomposition of L. The scaled Laplacian \tilde{L} is

$$ilde{L}=rac{2L}{\lambda_{max}}-I_n$$

$$x * g_{ heta} = U(\sum_i heta_i T_i(ilde{\Lambda})) U^T x$$

• It is equivalent to:

$$x * g_{ heta} = \sum_{i=1}^k heta_i T_i(ilde{L}) x$$