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Graph Neural Network- Part 1



Graphs are structured data

• Many real-world datasets come in the form of graphs. 

• Social networks
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Graphs are structured data

• Many real-world datasets come in the form of graphs. 

• social networks
• protein-interaction networks
• The World Wide Web
• Molecules
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Images are graphs

• Images are graphs, where each pixel represents a node and is 
connected via an edge to adjacent pixels

Image by Sanchez-lengeling
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Text as graphs

• Each token is a node and is connected via an edge to the node that 
preceding it.

Texts  are  graphs 
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Tasks

• Graph-level task

• Node-level task

• Edge-level task
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Graph-level task

• Predict the property of an entire graph.

• Predict whether a molecule will bind to a receptor or not.
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Node-level task

• Predicting the identity or role of each node within a graph.
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Edge-level task

Image by Shobeir Fakhraei 985



CNN as GNN
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CNN as GNN
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CNN as GNN
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CNN as GNN
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Image by Zonghan Wu et al
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Convolution 

This operation is called convolution.

The convolution operation is typically denoted with an asterisk:

𝑠𝑠 𝑡𝑡 = ∫ 𝑥𝑥 𝑎𝑎 𝑤𝑤 𝑡𝑡 − 𝑎𝑎 𝑑𝑑𝑑𝑑

𝑠𝑠 𝑡𝑡 = (𝑥𝑥 ∗ 𝑤𝑤)(𝑡𝑡)
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Discrete convolution

If we now assume that 𝑥𝑥 and 𝑤𝑤 are defined only on integer 𝑡𝑡, we can 
define the discrete convolution:

𝑠𝑠 𝑡𝑡 = 𝑥𝑥 ∗ 𝑤𝑤 𝑡𝑡 = �
𝑎𝑎=−∞

∞

𝑥𝑥 𝑎𝑎 𝑤𝑤[𝑡𝑡 − 𝑎𝑎]
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Convolution on Graphs
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Definition of a Graph
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Laplacian of a Graph
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Degree Matrix and Degree of a Vertex
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Example
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Graph Cut Optimization Problem
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Eigen Decomposition of Laplacian

999



Normalized Laplacian
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Laplacian Eigenvectors & Fourier Analysis 
Analogy

• Fourier Analysis:
• Mathematical Definition: Decomposition of a signal into sinusoidal 

components.
• Frequency Domain: A signal is transformed to represent it as a sum of 

its frequency components.
• Basis Functions: Sine and cosine functions serve as the basis for this 

transformation.
• Orthogonality: These basis functions are orthogonal, ensuring unique 

frequency representation.
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Graph Laplacian Eigenvectors

• Graph Signals: Functions defined over the nodes of a graph.
• Spectral Domain: Eigenvectors of 𝐿𝐿 transform graph signals into the 

spectral domain.
• Eigenvector Basis: Analogous to sines and cosines, eigenvectors form 

a basis for graph signals.
• Orthogonality: Eigenvectors are orthogonal, providing a unique 

spectral representation for graph signals.
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Eigenvectors of Laplacian

• Low Eigenvalues: Correspond to "low-frequency" eigenvectors.
• These eigenvectors change slowly over the graph.
• Represent large-scale, smooth structures in the graph.

• High Eigenvalues: Correspond to "high-frequency" eigenvectors.
• These eigenvectors change rapidly between connected nodes.
• Capture fine details or irregularities in the graph.

• Ordering: Eigenvalues (and eigenvectors) are ordered from lowest to 
highest.
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Fourier Functions

• The following is the eigen-decomposition of graph Laplacian,

𝐿𝐿 = 𝑈𝑈𝑇𝑇Λ 𝑈𝑈

𝑈𝑈 = 𝒖𝒖𝟏𝟏, … ,𝒖𝒖𝒏𝒏
Λ𝑖𝑖𝑖𝑖 = 𝜆𝜆𝑖𝑖 diagonal matrix of eigenvalues (spectrum)

𝑈𝑈𝑇𝑇𝑈𝑈 = 𝐼𝐼

𝒖𝒖𝟏𝟏 to 𝒖𝒖𝒏𝒏 are eigenvectores of laplacian also called Fourier functions.

1004



Fourier Transform

• The Fourier transform is projecting a signal 𝑥𝑥 on the Fourier 
functions.

• The result is the coefficients of the Fourier series.

• The graph Fourier transform projects the input graph signal 
to the orthonormal space where the basis is formed by 
eigenvectors of the normalized graph Laplacian.
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Fourier Transform

• Suppose 𝒙𝒙 ∈ 𝑅𝑅𝑛𝑛 is a feature vector of all nodes of a graph where 𝑥𝑥𝑖𝑖
is the value of the 𝑖𝑖𝑡𝑡ℎ node.

• The graph Fourier transform to a signal 𝑥𝑥
𝑓𝑓 𝑥𝑥 = 𝑈𝑈𝑇𝑇𝑥𝑥 = �𝑥𝑥

• The inverse graph Fourier transform

𝑓𝑓−1 �𝑥𝑥 = 𝑈𝑈�𝑥𝑥 = 𝑈𝑈𝑈𝑈𝑇𝑇𝑥𝑥 = 𝑥𝑥
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Convolution Theorem

• The graph convolution of the input signal 𝑥𝑥 with a filter 𝑔𝑔 ∈ ℝ𝑛𝑛 is  defined 
as: 

Convolution Theorem: 𝑓𝑓 (𝒙𝒙 ∗ 𝒈𝒈) = 𝑓𝑓 𝑥𝑥 ⋅ 𝑓𝑓 𝑔𝑔

𝒙𝒙 ∗ 𝒈𝒈 = 𝑓𝑓−1 𝑓𝑓 𝑥𝑥 ⋅ 𝑓𝑓 𝑔𝑔
= 𝑈𝑈 𝑈𝑈𝑇𝑇𝑥𝑥 ⋅ 𝑈𝑈𝑇𝑇𝑔𝑔
= 𝑈𝑈𝑔𝑔𝜃𝜃𝑈𝑈𝑇𝑇𝑥𝑥

Where 𝑔𝑔𝜃𝜃 = diag 𝑈𝑈𝑇𝑇𝑔𝑔
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Vanilla Spectral GCN and ChebNet
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ConvGNNs

• Spectral-based 
• Graph signal processing perspective.

• Spatial-based
• Define graph convolutions by information propagation.

• GCN [1] bridged the gap between spectral-based approaches and spatial-
based approaches.

[1] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,” in Proc. of 
ICLR, 2017. 
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Convolution Theorem

• The graph convolution of the input signal 𝑥𝑥 with a filter 𝑔𝑔 ∈ ℝ𝑛𝑛 is  
defined as: 

𝑥𝑥 ∗ 𝑔𝑔 = 𝑓𝑓−1 𝑓𝑓 𝑥𝑥 ⋅ 𝑓𝑓 𝑔𝑔
= 𝑈𝑈 𝑈𝑈𝑇𝑇𝑥𝑥 ⋅ 𝑈𝑈𝑇𝑇𝑔𝑔
= 𝑈𝑈𝑔𝑔𝜃𝜃𝑈𝑈𝑇𝑇𝑥𝑥

Where 𝑔𝑔𝜃𝜃 = diag 𝑈𝑈𝑇𝑇𝑔𝑔
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Neural Network Layers
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Vanilla Spectral GNN 

• The graph convolutional layer of Spectral CNN [*] is defined as 

𝐻𝐻′ = 𝜎𝜎 𝑈𝑈𝛩𝛩 𝑈𝑈𝑇𝑇𝐻𝐻

𝑋𝑋 = 𝐻𝐻 0

𝑔𝑔𝜃𝜃 = 𝛩𝛩

𝛩𝛩 is a diagonal matrix with learnable parameters.

[*]  Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and locally connected networks on graphs,” in Proc. of ICLR, 2014.

𝑈𝑈T𝑔𝑔 =
𝑢𝑢𝑔𝑔T

𝑢𝑢𝑛𝑛𝑛𝑛T

𝛩𝛩 =
𝑢𝑢1T𝑔𝑔 ⋯
⋮ ⋱ ⋮

⋯ 𝑢𝑢𝑛𝑛T𝑔𝑔

𝑥𝑥 ∗ 𝑔𝑔 =  𝑓𝑓−1 𝑓𝑓 𝑥𝑥 � 𝑓𝑓 𝑔𝑔
           = 𝑈𝑈(𝑈𝑈T𝑥𝑥 � 𝑈𝑈T𝑔𝑔)
           = 𝑈𝑈𝑔𝑔𝜃𝜃𝑈𝑈T𝑥𝑥
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Limitation

• eigen-decomposition requires 𝑂𝑂 𝑛𝑛3 computational complexity.
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ChebNet

• Approximates the filter 𝑔𝑔𝜃𝜃by Chebyshev [*] polynomials of the 
diagonal matrix of eigenvalues 𝛬𝛬.

[*] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on graphs with fast 
localized spectral filtering,” in Proc. of NIPS, 2016, pp. 3844–3852.
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Chebyshev Polynomials of the First Kind
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Chebyshev Polynomials of the First Kind
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Fourier basis (eigenvectors of 1D Laplacian) Chebyshev polynomials

∑𝛼𝛼𝑖𝑖𝑏𝑏𝑖𝑖
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ChebNet Graph Convolution

1018



ChebNet Graph Convolution
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ChebNet Graph Convolution
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