Lecture 18

Graph Neural Network- Part 1

Graphs are structured data

- Many real-world datasets come in the form of graphs.
- Social networks

Graphs are structured data

- Many real-world datasets come in the form of graphs.
- Social networks
- Protein-interaction networks

Graphs are structured data

- Many real-world datasets come in the form of graphs.
- social networks
- protein-interaction networks
- The World Wide Web

Graphs are structured data

- Many real-world datasets come in the form of graphs.
- social networks
- protein-interaction networks
- The World Wide Web
- Molecules

Images are graphs

- Images are graphs, where each pixel represents a node and is connected via an edge to adjacent pixels

Text as graphs

- Each token is a node and is connected via an edge to the node that preceding it.

Texts are graphs

Tasks

- Graph-level task
- Node-level task
- Edge-level task

Graph-level task

- Predict the property of an entire graph.
- Predict whether a molecule will bind to a receptor or not.

Node-level task

- Predicting the identity or role of each node within a graph.

Input: graph with unlabled nodes

Edge-level task

CNN as GNN

1_{x}	$1_{x 0}$	1_{x}	0	0
$0_{x 0}$	$1_{x x}$	1_{x}	1	0
$0_{x 0}$	0_{x}	1_{x}	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved
Feature

CNN as GNN

1	$1_{x 1}$	$1_{x 0}$	0_{x}	0
0	$1_{x 0}$	1_{x}	$1_{x 0}$	0
0	0_{x}	1_{x}	$1_{x a}$	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved
Feature

CNN as GNN

1	1	$1_{x x}$	$0_{x 0}$	$O_{x 1}$
0	1	1_{0}	$1_{x 0}$	O_{x}
0	0	$1_{x 1}$	$1_{x 0}$	1_{x}
0	0	1	1	0
0	1	1	0	0

Image

Convolved
Feature

CNN as GNN

1	1	1	0	0
$O_{x 1}$	$1_{x 0}$	1_{x}	1	0
$O_{x 0}$	$O_{x 1}$	1_{x}	1	1
$O_{x 1}$	$O_{x 0}$	$1_{x x}$	1	0
0	1	1	0	0

Image

Convolved
Feature

Image by Zonghan Wu et al

Convolution

This operation is called convolution.

$$
s(t)=\int x(a) w(t-a) d a
$$

The convolution operation is typically denoted with an asterisk:

$$
s(t)=(x * w)(t)
$$

Discrete convolution

If we now assume that x and w are defined only on integer t, we can define the discrete convolution:

$$
s[t]=(x * w)(t)=\sum_{a=-\infty}^{\infty} x[a] w[t-a]
$$

Convolution on Graphs

Definition of a Graph

A graph G can be defined as a set of vertices V and edges E, along with an adjacency matrix A.

Graph Notation

$G=(V, E, A)$

- V : Vertices or Nodes
- E : Edges, representing connections between vertices
- A : Adjacency Matrix, indicating the presence (1) or absence (0) of an edge between vertex pairs

The adjacency matrix is a binary matrix indicating whether pairs of vertices are adjacent.

- $A_{i j}=1$ if there is an edge between vertex i and vertex j
- $A_{i j}=0$ otherwise

Laplacian of a Graph

The Laplacian matrix L of a graph provides insights into the graph's structure, including its connectivity and the presence of clusters.

Laplacian Matrix

$L=D-A$

- D : Degree Matrix, a diagonal matrix with the degree of each vertex along the diagonal
- A : Adjacency Matrix, as defined above

Degree Matrix and Degree of a Vertex

The degree matrix D is a square matrix where each diagonal element d_{i} represents the degree of the corresponding vertex i.

Degree Matrix Notation
$D=\left[\begin{array}{cccc}d_{1} & 0 & \cdots & 0 \\ 0 & d_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_{n}\end{array}\right]_{n \times n}$

Degree of a Vertex

$d_{i}=\sum_{j} A_{i j}$

- The degree d_{i} is the sum of the elements in the i-th row of A, representing the number of edges connected to vertex i.

Example

$$
A=\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

$$
\text { Sum }=\left[\begin{array}{c}
\sum A_{1 j} \\
\sum A_{2 j} \\
\sum A_{3 j} \\
\sum A_{4 j}
\end{array}\right]=\left[\begin{array}{l}
2 \\
2 \\
3 \\
1
\end{array}\right]
$$

$$
D=\left[\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Laplacian Matrix
 $L=D-A$

Graph Cut Optimization Problem

- Objective: Find a cut that divides the graph into segments with minimal interconnections.
- Minimization Target: $\sum A_{i j}\left(y_{i}-y_{j}\right)^{2}$, captures the 'cut' cost.
- Equation: $y^{T} L y$, where L is the Laplacian matrix and y is a vector indicating node segments.
- Constraint Applied: $y^{T} y=1$, ensures non-trivial solutions.
- Vector y : Represents the assignment of nodes to segments, dimension $n \times 1$.
- Solution Method: Eigen decomposition of L identifies optimal partitioning.

Eigen Decomposition of Laplacian

- Decomposed as $L=U \Lambda U^{T}$
- U : Orthonormal eigenvectors
- Eigenvectors are orthogonal and normalized
- Λ : Diagonal matrix with eigenvalues
- Each diagonal entry is an eigenvalue that pairs with an eigenvector in U

Normalized Laplacian

- Start with standard Laplacian: $L=D-A$
- D : Degree matrix
- A: Adjacency matrix
- Normalized Laplacian is defined as:

$$
\widetilde{L}=D^{-\frac{1}{2}}(D-A) D^{-\frac{1}{2}}
$$

- Can be simplified to:

$$
\widetilde{L}=I-D^{-\frac{1}{2}} A D^{-\frac{1}{2}}
$$

- I: Identity matrix

Laplacian Eigenvectors \& Fourier Analysis Analogy

- Fourier Analysis:
- Mathematical Definition: Decomposition of a signal into sinusoidal components.
- Frequency Domain: A signal is transformed to represent it as a sum of its frequency components.
- Basis Functions: Sine and cosine functions serve as the basis for this transformation.
- Orthogonality: These basis functions are orthogonal, ensuring unique frequency representation.

Graph Laplacian Eigenvectors

- Graph Signals: Functions defined over the nodes of a graph.
- Spectral Domain: Eigenvectors of L transform graph signals into the spectral domain.
- Eigenvector Basis: Analogous to sines and cosines, eigenvectors form a basis for graph signals.
- Orthogonality: Eigenvectors are orthogonal, providing a unique spectral representation for graph signals.

Eigenvectors of Laplacian

- Low Eigenvalues: Correspond to "low-frequency" eigenvectors.
- These eigenvectors change slowly over the graph.
- Represent large-scale, smooth structures in the graph.
- High Eigenvalues: Correspond to "high-frequency" eigenvectors.
- These eigenvectors change rapidly between connected nodes.
- Capture fine details or irregularities in the graph.
- Ordering: Eigenvalues (and eigenvectors) are ordered from lowest to highest.

Fourier Functions

- The following is the eigen-decomposition of graph Laplacian,

$$
\begin{gathered}
L=U^{T} \Lambda U \\
U=\left[\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{n}\right] \\
\Lambda_{i i}=\lambda_{i} \text { diagonal matrix of eigenvalues (spectrum) }
\end{gathered}
$$

$$
U^{T} U=I
$$

u_{1} to u_{n} are eigenvectores of laplacian also called Fourier functions.

Fourier Transform

- The Fourier transform is projecting a signal x on the Fourier functions.
- The result is the coefficients of the Fourier series.
- The graph Fourier transform projects the input graph signal to the orthonormal space where the basis is formed by eigenvectors of the normalized graph Laplacian.

Fourier Transform

- Suppose $x \in R^{n}$ is a feature vector of all nodes of a graph where x_{i} is the value of the $i^{\text {th }}$ node.
- The graph Fourier transform to a signal x

$$
f(x)=U^{T} x=\hat{x}
$$

- The inverse graph Fourier transform

$$
f^{-1}(\hat{x})=U \hat{x}=U U^{T} x=x
$$

Convolution Theorem

- The graph convolution of the input signal x with a filter $g \in \mathbb{R}^{n}$ is defined as:

Convolution Theorem: $f(\boldsymbol{x} * \boldsymbol{g})=(f(x) \cdot f(g))$

$$
\begin{aligned}
& \boldsymbol{x} * \boldsymbol{g}=f^{-1}(f(x) \cdot f(g)) \\
& \quad=U\left(U^{T} x \cdot U^{T} g\right) \\
& \quad=U g_{\theta} U^{T} x
\end{aligned}
$$

Where $g_{\theta}=\operatorname{diag}\left(U^{T} g\right)$

Vanilla Spectral GCN and ChebNet

ConvGNNs

- Spectral-based
- Graph signal processing perspective.
- Spatial-based
- Define graph convolutions by information propagation.
- GCN [1] bridged the gap between spectral-based approaches and spatialbased approaches.
[1] T. N. Kipf and M. Welling, "Semi-supervised classification with graph convolutional networks," in Proc. of ICLR, 2017.

Convolution Theorem

- The graph convolution of the input signal x with a filter $g \in \mathbb{R}^{n}$ is defined as:

$$
\begin{aligned}
x * g & =f^{-1}(f(x) \cdot f(g)) \\
& =U\left(U^{T} x \cdot U^{T} g\right) \\
& =U g_{\theta} U^{T} x
\end{aligned}
$$

Where $g_{\theta}=\operatorname{diag}\left(U^{T} g\right)$

Neural Network Layers

Feedforward Neural Networks (FFNN):

- Computation in layers: $h^{\prime}=\sigma(W h)$
- Each layer's output h^{\prime} becomes the next layer's input.
- h_{0} (initial input) is the feature vector x.

Convolutional Neural Networks (CNN):

- Layer computation uses convolution: $h^{\prime}=\sigma(w * h)$
- w : Learned filters/kernels that slide over h.

Vanilla Spectral GNN

- The graph convolutional layer of Spectral CNN [*] is defined as

$$
U^{\mathrm{T}} g=\left[\begin{array}{c}
u_{g}^{\mathrm{T}} \\
u_{n g}^{\mathrm{T}}
\end{array}\right]
$$

$$
\begin{array}{rlrl}
x * g & =f^{-1}(f(x) \cdot f(g)) & H^{\prime}=\sigma\left(U \Theta U^{T} H\right) & \\
& =U\left(U^{\mathrm{T}} x \cdot U^{\mathrm{T}} g\right) & & \\
& =U g_{\theta} U^{\mathrm{T}} x & & \\
& g_{\theta}=\Theta & \Theta=\left[\begin{array}{ccc}
u_{1}^{\mathrm{T}} g & \cdots & \\
\vdots & \ddots & \vdots \\
& \cdots & u_{n}^{\mathrm{T}} g
\end{array}\right]
\end{array}
$$

Θ is a diagonal matrix with learnable parameters.

Limitation

- eigen-decomposition requires $O\left(n^{3}\right)$ computational complexity.

ChebNet

- Approximates the filter g_{θ} by Chebyshev [*] polynomials of the diagonal matrix of eigenvalues Λ.

[*] M. Defferrard, X. Bresson, and P. Vandergheynst, "Convolutional neural networks on graphs with fast localized spectral filtering," in Proc. of NIPS, 2016, pp. 3844-3852.

Chebyshev Polynomials of the First Kind

- $\cos (\theta)=\cos (\theta)$
- $\cos (2 \theta)=2 \cos ^{2}(\theta)-1$
- $\cos (3 \theta)=4 \cos ^{3}(\theta)-3 \cos (\theta)$

Chebyshev Polynomials:

- By substituting $\cos (\theta)=x$, we obtain:
- $T_{1}(x)=x$
- $T_{2}(x)=2 x^{2}-1$
- $T_{3}(x)=4 x^{3}-3 x$
- $T_{n}(x)$ denotes the nth polynomial.
- Orthogonal on the interval $[-1,1]$

Chebyshev Polynomials of the First Kind

- $T_{0}(x)=1$
- $T_{1}(x)=x$
- For $i \geq 2, T_{i}(x)=2 x T_{i-1}(x)-T_{i-2}(x)$

$$
\sum \alpha_{i} b_{i}
$$

Fourier basis (eigenvectors of 1D Laplacian)

Chebyshev polynomials

ChebNet Graph Convolution

- $g_{\theta}=\sum_{i} \theta_{i} T_{i}(\tilde{\Lambda})$
- g_{θ} : Graph convolutional filter parameterized by θ.
- $\tilde{\Lambda}$: Scaled version of the eigenvalues of the Laplacian matrix.
- $\tilde{\Lambda}=\frac{2 \Lambda}{\lambda_{\text {max }}}-I_{n}$
- Normalizes the eigenvalues to fall within $[-1,1]$.
- $x * g=U g_{\theta} U^{T} x$
- $x * g=\sum_{i} \theta_{i} U T_{i}(\tilde{\Lambda}) U^{T} x$

ChebNet Graph Convolution

- $x * g=U g_{\theta} U^{T} x$
- $x * g=\sum_{i} \theta_{i} U T_{i}(\tilde{\Lambda}) U^{T} x$

$$
x * g_{\theta}=U\left(\sum_{i} \theta_{i} T_{i}(\tilde{\Lambda})\right) U^{T} x
$$

- It is equivalent to:
$x * g_{\theta}=\sum_{i=1}^{k} \theta_{i} T_{i}(\tilde{L}) x$

ChebNet Graph Convolution

- $x * g=U g_{\theta} U^{T} x$
- $x * g=\sum_{i} \theta_{i} U T_{i}(\tilde{\Lambda}) U^{T} x$

$$
\tilde{L}=\frac{2 L}{\lambda_{\text {max }}}-I_{n}
$$

$$
x * g_{\theta}=U\left(\sum_{i} \theta_{i} T_{i}(\tilde{\Lambda})\right) U^{T} x
$$

- It is equivalent to:
$x * g_{\theta}=\sum_{i=1}^{k} \theta_{i} T_{i}(\tilde{L}) x$

