
Lecture 19

Graph Neural Network- Part 2

Graph Convolutional Network (GCN)

• First-order approximation of ChebNet.

• T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc. of ICLR, 2017

1023

ChebNet and Chebyshev polynomials

• ChebNet takes the form:

𝑥𝑥 ∗ 𝑔𝑔𝜃𝜃 = �
𝑖𝑖=0

𝑘𝑘

𝜃𝜃𝑖𝑖 𝑇𝑇𝑖𝑖 �𝐿𝐿 𝑥𝑥

Where 𝑇𝑇𝑖𝑖 is Chebyshev polynomials.

• 𝑇𝑇0 𝑥𝑥 = 1
• 𝑇𝑇1 𝑥𝑥 = 𝑥𝑥
• 𝑇𝑇𝑖𝑖 𝑥𝑥 = 2𝑥𝑥𝑇𝑇𝑖𝑖−1 𝑥𝑥 − 𝑇𝑇𝑖𝑖−2(𝑥𝑥)

1024

First-order approximation

• Let’s find the first-order approximation of ChebNet.

• 𝑥𝑥 ∗ 𝑔𝑔𝜃𝜃 = ∑𝑖𝑖=0𝑘𝑘 𝜃𝜃𝑖𝑖 𝑇𝑇𝑖𝑖 �𝐿𝐿 𝑥𝑥 = 𝜃𝜃0 𝑇𝑇0 �𝐿𝐿 𝑥𝑥 + 𝜃𝜃1𝑇𝑇1 �𝐿𝐿 𝑥𝑥

1025

First-order approximation

• Let’s find the first-order approximation of ChebNet.

• 𝑥𝑥 ∗ 𝑔𝑔𝜃𝜃 = ∑𝑖𝑖=0𝑘𝑘 𝜃𝜃𝑖𝑖 𝑇𝑇𝑖𝑖 �𝐿𝐿 𝑥𝑥 = 𝜃𝜃0 𝑇𝑇0 �𝐿𝐿 𝑥𝑥 + 𝜃𝜃1𝑇𝑇1 �𝐿𝐿 𝑥𝑥

1026

First-order approximation

• Let’s find the first-order approximation of ChebNet.

• 𝑥𝑥 ∗ 𝑔𝑔𝜃𝜃 = ∑𝑖𝑖=0𝑘𝑘 𝜃𝜃𝑖𝑖 𝑇𝑇𝑖𝑖 �𝐿𝐿 𝑥𝑥 = 𝜃𝜃0 𝑇𝑇0 �𝐿𝐿 𝑥𝑥 + 𝜃𝜃1𝑇𝑇1 �𝐿𝐿

= 𝜃𝜃0 𝑥𝑥 + 𝜃𝜃1�𝐿𝐿𝑥𝑥

1027

First-order approximation

• To restrain the number of parameters and avoid over-fitting, GCN
further assume 𝜃𝜃 = 𝜃𝜃0 = 𝜃𝜃1

• 𝑥𝑥 ∗ 𝑔𝑔𝜃𝜃 = ∑𝑖𝑖=0𝑘𝑘 𝜃𝜃𝑖𝑖 𝑇𝑇𝑖𝑖 �𝐿𝐿 𝑥𝑥 = 𝜃𝜃0 𝑇𝑇0 �𝐿𝐿 𝑥𝑥 + 𝜃𝜃1𝑇𝑇1 �𝐿𝐿

= 𝜃𝜃0 𝑥𝑥 + 𝜃𝜃1�𝐿𝐿𝑥𝑥

assume 𝜃𝜃 = 𝜃𝜃0 = 𝜃𝜃1
= 𝜃𝜃 𝑥𝑥 + 𝜃𝜃�𝐿𝐿𝑥𝑥

1028

First-order approximation

• To restrain the number of parameters and avoid over-fitting, GCN
further assume 𝜃𝜃 = 𝜃𝜃0 = 𝜃𝜃1

• 𝑥𝑥 ∗ 𝑔𝑔𝜃𝜃 = ∑𝑖𝑖=0𝑘𝑘 𝜃𝜃𝑖𝑖 𝑇𝑇𝑖𝑖 �𝐿𝐿 𝑥𝑥 = 𝜃𝜃0 𝑇𝑇0 �𝐿𝐿 𝑥𝑥 + 𝜃𝜃1𝑇𝑇1 �𝐿𝐿

= 𝜃𝜃0 𝑥𝑥 + 𝜃𝜃1�𝐿𝐿𝑥𝑥
= 𝜃𝜃 𝑥𝑥 + 𝜃𝜃�𝐿𝐿𝑥𝑥
= 𝜃𝜃 𝐼𝐼 + �𝐿𝐿 𝑥𝑥

1029

First-order approximation

• To restrain the number of parameters and avoid over-fitting, GCN
further assume 𝜃𝜃 = 𝜃𝜃0 = 𝜃𝜃1

• 𝑥𝑥 ∗ 𝑔𝑔𝜃𝜃 = ∑𝑖𝑖=0𝑘𝑘 𝜃𝜃𝑖𝑖 𝑇𝑇𝑖𝑖 �𝐿𝐿 𝑥𝑥 = 𝜃𝜃0 𝑇𝑇0 �𝐿𝐿 𝑥𝑥 + 𝜃𝜃1𝑇𝑇1 �𝐿𝐿

= 𝜃𝜃0 𝑥𝑥 + 𝜃𝜃1�𝐿𝐿𝑥𝑥
= 𝜃𝜃 𝑥𝑥 + 𝜃𝜃�𝐿𝐿𝑥𝑥

= 𝜃𝜃 𝐷𝐷−
1
2𝐴𝐴𝐷𝐷−

1
2 𝑥𝑥

1030

First-order approximation

• To restrain the number of parameters and avoid over-fitting, GCN
further assume 𝜃𝜃 = 𝜃𝜃0 = 𝜃𝜃1

• 𝑥𝑥 ∗ 𝑔𝑔𝜃𝜃 = ∑𝑖𝑖=0𝑘𝑘 𝜃𝜃𝑖𝑖 𝑇𝑇𝑖𝑖 �𝐿𝐿 𝑥𝑥 = 𝜃𝜃0 𝑇𝑇0 �𝐿𝐿 𝑥𝑥 + 𝜃𝜃1𝑇𝑇1 �𝐿𝐿

• This empirically causes numerical instability to GCN.

= 𝜃𝜃0 𝑥𝑥 + 𝜃𝜃1�𝐿𝐿𝑥𝑥
= 𝜃𝜃 𝑥𝑥 + 𝜃𝜃�𝐿𝐿𝑥𝑥

= 𝜃𝜃 𝐷𝐷−
1
2𝐴𝐴𝐷𝐷−

1
2 𝑥𝑥

1031

Numerical trick

• This empirically causes numerical instability to GCN. To address this problem,
GCN applies a normalization trick to replace

• 𝐴̃𝐴 = 𝐴𝐴 + 𝐼𝐼

• �𝐷𝐷𝑖𝑖𝑖𝑖 = �
𝑗𝑗
𝐴̃𝐴𝑖𝑖𝚥̇𝚥

• 𝐴̅𝐴 = �𝐷𝐷−12𝐴̃𝐴 �𝐷𝐷−
1
2

• a compositional layer can be defined as:

𝐻𝐻′ = 𝑋𝑋 ∗ 𝑔𝑔𝜃𝜃 = 𝜎𝜎 𝐴̅𝐴𝐻𝐻𝛩𝛩

1032

Aggregation of information

• 𝐻𝐻′ = 𝜎𝜎 𝐻𝐻𝛩𝛩

1033

• 𝐻𝐻′ = 𝜎𝜎 𝐻𝐻𝛩𝛩

• 𝐻𝐻′ = 𝜎𝜎 𝐴̅𝐴𝐻𝐻𝛩𝛩

1034

• 𝐻𝐻′ = 𝜎𝜎 𝐻𝐻𝛩𝛩

• 𝐻𝐻′ = 𝜎𝜎 𝐴̅𝐴𝐻𝐻𝛩𝛩

1035

Towards more general frameworks

1036

MLPs

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 : 𝐻𝐻′ = 𝜎𝜎 𝐻𝐻𝛩𝛩

0.5

0.9

-
0.3

H1

H2

H3

O1

O2

1037

GNNs

We can aggregate neighbourhoods by multiplying the adjacency matrix.

 Graph neural network: 𝐻𝐻′ = 𝜎𝜎 𝐴𝐴𝐴𝐴𝛩𝛩

1038

Sum-pooling

• This update rule discards the central node.

1039

Sum-pooling

• This update rule discards the central node.

• This can be fixed simply by

𝐴̃𝐴 = 𝐴𝐴 + 𝐼𝐼

1040

Sum-pooling

• This update rule discards the central node.

• This can be fixed simply by

𝐴̃𝐴 = 𝐴𝐴 + 𝐼𝐼

• The node-wise update rule can be written as:

ℎ𝑖𝑖′ = 𝜎𝜎 �
𝑗𝑗∈𝑁𝑁𝑖𝑖

𝛩𝛩ℎ𝑗𝑗

1041

Mean-pooling

• Summing the contents of the neighbouring nodes will increase the
scale of the output feature.

1042

Mean-pooling

• Summing the contents of the neighbouring nodes will increase the
scale of the output feature.

• We can normalize by �𝐷𝐷−1 where �𝐷𝐷𝑖𝑖𝑖𝑖 = �
𝑗𝑗
𝐴̃𝐴𝑖𝑖𝚥̇𝚥

1043

Mean-pooling

• Summing the contents of the neighbouring nodes will increase the
scale of the output feature.

• We can normalize by �𝐷𝐷−1 where �𝐷𝐷𝑖𝑖𝑖𝑖 = �
𝑗𝑗
𝐴̃𝐴𝑖𝑖𝚥̇𝚥

ℎ𝑖𝑖′ = 𝜎𝜎 �
𝑗𝑗∈𝑁𝑁𝑖𝑖

�𝐷𝐷−1𝛩𝛩ℎ𝑗𝑗

1044

Mean-pooling

• Summing the contents of the neighbouring nodes will increase the scale of the
output feature.

• We can normalize by �𝐷𝐷−1 where �𝐷𝐷𝑖𝑖𝑖𝑖 = �
𝑗𝑗
𝐴̃𝐴𝑖𝑖𝚥̇𝚥

ℎ𝑖𝑖′ = 𝜎𝜎 �
𝑗𝑗∈𝑁𝑁𝑖𝑖

�𝐷𝐷−1𝛩𝛩ℎ𝑗𝑗

• The node-wise update rule can be written as:

ℎ𝑖𝑖′ = 𝜎𝜎 �

𝑗𝑗∈𝑁𝑁𝑖𝑖

1
𝑁𝑁𝑖𝑖

𝛩𝛩ℎ𝑗𝑗

1045

Graph Convolutional Networks (GCNs)

• Use symmetric normalization

𝐻𝐻′ = 𝜎𝜎 �𝐷𝐷−
1
2𝐴̃𝐴 �𝐷𝐷−

1
2 𝐻𝐻𝛩𝛩

• The node-wise update rule can be written as:

ℎ𝑖𝑖′ = 𝜎𝜎 �

𝑗𝑗∈𝑁𝑁𝑖𝑖

1

𝑁𝑁𝑖𝑖 𝑁𝑁𝑗𝑗
𝛩𝛩ℎ𝑗𝑗

1046

Node Classification

1047

Graph Classification

1048

Link Classification

Image by Petar Veličković 1049

• Sum pooling ℎ𝑖𝑖′ = 𝜎𝜎 �
𝑗𝑗∈𝑁𝑁𝑖𝑖

𝛩𝛩ℎ𝑗𝑗

• Mean pooling ℎ𝑖𝑖′ = 𝜎𝜎 �
𝑗𝑗∈𝑁𝑁𝑖𝑖

1
𝑁𝑁𝑖𝑖
𝛩𝛩ℎ𝑗𝑗

• GCNs ℎ𝑖𝑖′ = 𝜎𝜎 �

𝑗𝑗∈𝑁𝑁𝑖𝑖

1

𝑁𝑁𝑖𝑖 𝑁𝑁𝑗𝑗
𝛩𝛩ℎ𝑗𝑗

1050

Graph Attention Network (GAT)

• GAT adopts attention mechanisms to learn the relative weights between two connected
nodes.

ℎ𝑖𝑖′ = 𝜎𝜎 �
𝑗𝑗∈𝑁𝑁𝑖𝑖

𝛼𝛼𝑖𝑖𝑖𝑖 𝛩𝛩ℎ𝑗𝑗

• The attention weight 𝛼𝛼𝑖𝑖𝑖𝑖 measures the influence of node 𝑗𝑗 to node 𝑖𝑖

P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph attention networks,” in Proc. of ICLR, 2018

1051

The attention weight

• The attention weight can be computed as follows:
𝑎𝑎𝑖𝑖𝑖𝑖 = 𝑎𝑎 ℎ𝑖𝑖 ,ℎ𝑗𝑗

or
𝑎𝑎𝑖𝑖𝑖𝑖 = 𝑎𝑎 ℎ𝑖𝑖 ,ℎ𝑗𝑗 , 𝑒𝑒𝑖𝑖𝑖𝑖

• 𝑎𝑎 is a single-layer feedforward neural network.

• 𝑎𝑎 can be other functions for example a Transformer.

𝛼𝛼𝑖𝑖𝑖𝑖 =
𝑒𝑒𝑎𝑎𝑖𝑖𝑖𝑖

∑𝑘𝑘∈𝑁𝑁𝑖𝑖 𝑒𝑒
𝑎𝑎𝑖𝑖𝑘𝑘

1052

Multi-head attention in a single GAT step

The attention mechanism The multi-head attention. Different arrow styles and colours
denote independent attention computations. The aggregated
features from each head are concatenated or averaged. 1053

Transformers are Graph Neural Networks

This is also a sentence

1054

GAT Transformer

• The attention weight can be
computed as follows:

𝑎𝑎𝑖𝑖𝑖𝑖 = 𝑎𝑎 ℎ𝑖𝑖 ,ℎ𝑗𝑗 , 𝑒𝑒𝑖𝑖𝑖𝑖

• 𝑎𝑎 is a single-layer feedforward neural
network.

• 𝛼𝛼𝑖𝑖𝑖𝑖 = 𝑒𝑒𝑎𝑎𝑖𝑖𝑖𝑖

∑𝑘𝑘∈𝑁𝑁𝑖𝑖 𝑒𝑒
𝑎𝑎𝑖𝑖𝑘𝑘

• The attention weight can be
computed as follows:

𝑎𝑎𝑖𝑖𝑖𝑖= 𝑎𝑎 𝑞𝑞𝑖𝑖 ,𝑘𝑘𝑗𝑗

• 𝑎𝑎= 1
𝑝𝑝
𝑞𝑞𝑖𝑖𝑇𝑇𝑘𝑘𝑗𝑗

• 𝛼𝛼𝑖𝑖𝑖𝑖 = 𝑒𝑒𝑎𝑎𝑖𝑖𝑖𝑖

∑𝑘𝑘 𝑒𝑒𝑎𝑎𝑖𝑖𝑘𝑘
𝜈𝜈𝑖𝑖 = �

𝑗𝑗
𝛼𝛼𝑖𝑖𝑖𝑖 𝜈𝜈𝑗𝑗

1055

