Lecture 19

Graph Neural Network- Part 2

Graph Convolutional Network (GCN)

- First-order approximation of ChebNet.
- T. N. Kipf and M. Welling, "Semi-supervised classification with graph convolutional networks," in Proc. of ICLR, 2017

ChebNet and Chebyshev polynomials

- ChebNet takes the form:

$$
x * g_{\theta}=\sum_{i=0}^{k} \theta_{i} T_{i}(\tilde{L}) x
$$

Where T_{i} is Chebyshev polynomials.

- $T_{0}(x)=1$
- $T_{1}(x)=x$
- $T_{i}(x)=2 x T_{i-1}(x)-T_{i-2}(x)$

First-order approximation

- Let's find the first-order approximation of ChebNet.
- $x * g_{\theta}=\sum_{i=0}^{k} \theta_{i} T_{i}(\tilde{L}) x=\theta_{0} T_{0}(\tilde{L}) x+\theta_{1} T_{1}(\tilde{L}) x$

First-order approximation

- Let's find the first-order approximation of ChebNet.
- $x * g_{\theta}=\sum_{i=0}^{k} \theta_{i} T_{i}(\tilde{L}) x=\theta_{0} T_{0}(\tilde{L}) x+\theta_{1} T_{1}(\tilde{L}) x$

$$
\begin{aligned}
& T_{0}(x)=1 \\
& T_{1}(x)=x \\
& T_{i}(x)=2 x T_{i-1}(x)-T_{i-2}(x)
\end{aligned}
$$

First-order approximation

- Let's find the first-order approximation of ChebNet.
- $x * g_{\theta}=\sum_{i=0}^{k} \theta_{i} T_{i}(\tilde{L}) x=\theta_{0} T_{0}(\tilde{L}) x+\theta_{1} T_{1}(\tilde{L})$

$$
=\theta_{0} x+\theta_{1} \tilde{L} x
$$

$$
\begin{aligned}
& T_{0}(x)=1 \\
& T_{1}(x)=x \\
& T_{i}(x)=2 x T_{i-1}(x)-T_{i-2}(x)
\end{aligned}
$$

First-order approximation

- To restrain the number of parameters and avoid over-fitting, GCN further assume $\theta=\theta_{0}=\theta_{1}$
- $x * g_{\theta}=\sum_{i=0}^{k} \theta_{i} T_{i}(\tilde{L}) x=\theta_{0} T_{0}(\tilde{L}) x+\theta_{1} T_{1}(\tilde{L})$

$$
=\theta_{0} x+\theta_{1} \tilde{L} x
$$

$$
\begin{array}{r}
\text { assume } \theta=\theta_{0}=\theta_{1} \\
\\
=\theta x+\theta \tilde{L} x
\end{array}
$$

First-order approximation

- To restrain the number of parameters and avoid over-fitting, GCN further assume $\theta=\theta_{0}=\theta_{1}$
- $x * g_{\theta}=\sum_{i=0}^{k} \theta_{i} T_{i}(\tilde{L}) x=\theta_{0} T_{0}(\tilde{L}) x+\theta_{1} T_{1}(\tilde{L})$

$$
\begin{aligned}
& =\theta_{0} x+\theta_{1} \tilde{L} x \\
& =\theta x+\theta \tilde{L} x \\
& =\theta(I+\widetilde{L}) x
\end{aligned}
$$

First-order approximation

- To restrain the number of parameters and avoid over-fitting, GCN further assume $\theta=\theta_{0}=\theta_{1}$
- $x * g_{\theta}=\sum_{i=0}^{k} \theta_{i} T_{i}(\tilde{L}) x=\theta_{0} T_{0}(\tilde{L}) x+\theta_{1} T_{1}(\tilde{L})$

$$
\begin{gathered}
=\theta_{0} x+\theta_{1} \tilde{L} x \\
=\theta x+\theta \widetilde{L} x \\
=\theta\left(D^{-\frac{1}{2}} A D^{-\frac{1}{2}}\right)_{x}
\end{gathered}
$$

First-order approximation

- To restrain the number of parameters and avoid over-fitting, GCN further assume $\theta=\theta_{0}=\theta_{1}$
- $x * g_{\theta}=\sum_{i=0}^{k} \theta_{i} T_{i}(\tilde{L}) x=\theta_{0} T_{0}(\tilde{L}) x+\theta_{1} T_{1}(\tilde{L})$

$$
\begin{gathered}
=\theta_{0} x+\theta_{1} \tilde{L} x \\
=\theta x+\theta \tilde{L} x \\
=\theta\left(D^{-\frac{1}{2}} A D^{-\frac{1}{2}}\right)_{x}
\end{gathered}
$$

- This empirically causes numerical instability to GCN.

Numerical trick

- This empirically causes numerical instability to GCN. To address this problem, GCN applies a normalization trick to replace
- $\tilde{A}=A+I$
- $\widetilde{D}_{i j}=\sum_{j} \tilde{A}_{i j}$
- $\bar{A}=\widetilde{D}^{-\frac{1}{2}} \tilde{A} \widetilde{D}^{-\frac{1}{2}}$
- a compositional layer can be defined as:

$$
H^{\prime}=X * g_{\theta}=\sigma(\bar{A} H \Theta)
$$

Aggregation of information

- $H^{\prime}=\sigma(H \Theta)$

- $H^{\prime}=\sigma(H \Theta)$
- $H^{\prime}=\sigma(\bar{A} H \Theta)$

\bigcirc
- $H^{\prime}=\sigma(H \Theta)$
- $H^{\prime}=\sigma(\bar{A} H \Theta)$

Towards more general frameworks

MLPs

Feed forward : $\quad H^{\prime}=\sigma(H \Theta)$

GNNs

We can aggregate neighbourhoods by multiplying the adjacency matrix.

$$
\text { Graph neural network: } H^{\prime}=\sigma(A H \Theta)
$$

Sum-pooling

- This update rule discards the central node.

Sum-pooling

- This update rule discards the central node.
- This can be fixed simply by

$$
\tilde{A}=A+I
$$

Sum-pooling

- This update rule discards the central node.
- This can be fixed simply by

$$
\tilde{A}=A+I
$$

- The node-wise update rule can be written as:

$$
h_{i}^{\prime}=\sigma\left(\sum_{j \in N_{i}} \Theta h_{j}\right)
$$

Mean-pooling

- Summing the contents of the neighbouring nodes will increase the scale of the output feature.

Mean-pooling

- Summing the contents of the neighbouring nodes will increase the scale of the output feature.
- We can normalize by \widetilde{D}^{-1} where $\widetilde{D}_{i j}=\sum_{j} \tilde{A}_{i j}$

Mean-pooling

- Summing the contents of the neighbouring nodes will increase the scale of the output feature.
- We can normalize by \widetilde{D}^{-1} where $\widetilde{D}_{i j}=\sum_{j} \tilde{A}_{i j}$

$$
h_{i}^{\prime}=\sigma\left(\sum_{j \in N_{i}} \widetilde{D}^{-1} \Theta h_{j}\right)
$$

Mean-pooling

- Summing the contents of the neighbouring nodes will increase the scale of the output feature.
- We can normalize by \widetilde{D}^{-1} where $\widetilde{D}_{i j}=\sum_{j} \tilde{A}_{i j}$

$$
h_{i}^{\prime}=\sigma\left(\sum_{j \in N_{i}} \widetilde{D}^{-1} \Theta h_{j}\right)
$$

- The node-wise update rule can be written as:

$$
h_{i}^{\prime}=\sigma\left(\sum_{j \in N_{i}} \frac{1}{\left|N_{i}\right|} \Theta h_{j}\right)
$$

Graph Convolutional Networks (GCNs)

- Use symmetric normalization

$$
H^{\prime}=\sigma\left(\widetilde{D}^{-\frac{1}{2}} \tilde{A} \widetilde{D}^{-\frac{1}{2}} H \Theta\right)
$$

- The node-wise update rule can be written as:

Node Classification

Graph Classification

Link Classification

- Sum pooling $h_{i}^{\prime}=\sigma\left(\sum_{j \in N_{i}} \Theta h_{j}\right)$
- Mean pooling $h_{i}^{\prime}=\sigma\left(\sum_{j \in N_{i}} \frac{1}{\left|N_{i}\right|} \Theta h_{j}\right)$

Graph Attention Network (GAT)

- GAT adopts attention mechanisms to learn the relative weights between two connected nodes.

$$
h_{i}^{\prime}=\sigma\left(\sum_{j \in N_{i}} \alpha_{i j} \Theta h_{j}\right)
$$

- The attention weight $\alpha_{i j}$ measures the influence of node j to node i
P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, "Graph attention networks," in Proc. of ICLR, 2018

The attention weight

- The attention weight can be computed as follows:

$$
a_{i j}=a\left(h_{i}, h_{j}\right)
$$

or

$$
a_{i j}=a\left(h_{i}, h_{j}, e_{i j}\right)
$$

- a is a single-layer feedforward neural network.
- a can be other functions for example a Transformer.

$$
\alpha_{i j}=\frac{e^{a_{i j}}}{\sum_{k \in N_{i}} e^{a_{i k}}}
$$

Multi-head attention in a single GAT step

The attention mechanism

The multi-head attention. Different arrow styles and colours denote independent attention computations. The aggregated features from each head are concatenated or averaged.

Transformers are Graph Neural Networks

This is also a sentence

Transformer

- The attention weight can be computed as follows:

$$
a_{i j}=a\left(h_{i}, h_{j}, e_{i j}\right)
$$

- a is a single-layer feedforward neural network.
- The attention weight can be computed as follows:

$$
a_{i j}=a\left(q_{i}, k_{j}\right)
$$

- $a=\frac{1}{\sqrt{p}}\left(q_{i}^{T} k_{j}\right)$
- $\alpha_{i j}=\frac{e^{a_{i j}}}{\Sigma_{k} e^{a_{i k}}}$

$$
v_{i}=\sum_{j} \alpha_{i j} v_{j}
$$

