Lecture 2

Perceptron,Feedforward neural
networks, Backpropagation

Feedforward Neural Network

Input Hidden Output

layer layer layer
X1 /?*
X2 %
® n
X3
\.

75

Feedforward Deep Networks

Hidden Hidden Hidden Output
' layer layer layer

76

Feedforward Deep Networks

e Feedforward deep networks, a.k.a. multilayer perceptrons (MLPs), are
parametric functions composed of several parametric functions.

e Each layer of the network defines one of these sub-functions.

e Each layer (sub-function) has multiple inputs and multiple outputs.
e Each layer composed of many units (scalar output of the layer).

e \We sometimes refer to each unit as a feature.

e Each unit is usually a simple transformation of its input.

e [he entire network can be very complex.

77

Perceptron

e The perceptron is the building block for neural networks.

e |t was invented by Rosenblatt in 1957 at Cornell Labs, and first
mentioned In the paper 'The Perceptron — a perceiving and recognizing
automaton’.

e Perceptron computes a linear combination of factor of input and
returns the sign.
. X
R
oy Sig (L Brx+Bo) ———p>

Simple perceptron

78

Perceptron

-

X

- A

st

. H‘L d
D)

Simple perceptron

x" is the i-th feature of a sample and (3 is the i-th weight. 3, is
defined as the bias. The bias alters the position of the decision boundary
between the 2 classes. From a geometrical point of view, Perceptron
assigns label "1" to elements on one side of 37 x 4 B, and label "-1" to
elements on the other side

79

Perceptron

e define a cost function, ¢(3, Fy) , as a summation of the
distance between all misclassified points and the hyper-
plane, or the decision boundary.

e To minimize this cost function, we need to estimate 3, Oy.
ming g, ¢(3, Bo) = {distance of all misclassified points}

80

Distance between the point and the decision boundary hyperplane
(black line).

81

1) A hyper-plane L can be defined as
L ={x:f(x)=p8"x+ py =0},

For any two arbitrary points x; and x, on L, we have

BT+ 0o=0,
B"x 4+ Ho=0,
such that

BT(x1 —x)=0.

Therefore, 5 is orthogonal to the hyper-plane and it is the normal vector.

82

2) For any point xq in L,

BTxy+ By =0, which means 87xy = —/3 .

83

B

3) We set 5" = 157 3S the unit normal vector of the hyper-plane L . For
simplicity we call 3* norm vector. The distance of point x to L is
given by

=D

TX T
5*T(X—XO) — B Tx — B*Tx, = BTx | Bo _ (BT x+6o)

Where xp is any point on L . Hence, 37 x + 3y is proportional to the
distance of the point x to the hyper-plane L .

4) The distance from a misclassified data point x; to the hyper-plane L
IS

di = —yi(B" x; + Bo)

where y; is a target value, such that yv; = 1if 8'x, + 58, <0, y; = —1
if B x; + By >0

Since we need to find the distance from the hyperplane to the
misclassified data points, we need to add a negative sign in front. When
the data point is misclassified, 3" x; + 8, will produce an opposite sign of
yi . Since we need a positive sign for distance, we add a negative sign.

Learning Perceptron

The gradient descent is an optimization method that finds the minimum
of an objective function by incrementally updating its parameters in the
negative direction of the derivative of this function. That is, it finds the
steepest slope in the D-dimensional space at a given point, and descends
down in the direction of the negative slope. Note that unless the error
function is convex, it is possible to get stuck in a local minima. In our
case, the objective function to be minimized is classification error and the
parameters of this function are the weights associated with the inputs,

86

The gradient descent algorithm updates the weights as follows:

OE
Bnew . Bold . pa_ﬁrr
p Is called the learning rate.
The Learning Rate p is positively related to the step size of convergence

of min¢(3, Bo) .

l.e. the larger p is, the larger the step size is.
Typically, p € [0.1,0.3] .

The classification error is defined as the distance of misclassified observa-
tions to the decision boundary:

To minimize the cost function ¢(3,8) = — > yi(B"x; + Bo) where
ieM
M = {all points that are misclassified }

Db 9o

= — i X and — = — i
B A e A

Therefore, the gradient is

VD(ﬁaﬁO) — _Iéiﬂ:y

Using the gradient descent algorithm to solve these two equations, we
have

new old .
(=) = (o) = ()

89

If the data is linearly-separable, the solution is theoretically guaranteed to
converge to a separating hyperplane in a finite number of iterations.

In this situation the number of iterations depends on the learning rate
and the margin. However, if the data is not linearly separable there is no

guarantee that the algorithm converges.

Features

e A Perceptron can only discriminate between two classes at a time.

e When data is (linearly) separable, there are an infinite number of
solutions depending on the starting point.

e Even though convergence to a solution is guaranteed if the solution
exists, the finite number of steps until convergence can be very large.

e The smaller the gap between the two classes, the longer the time of
convergence.

e When the data is not separable, the algorithm will not converge (it
should be stopped after N steps).

e A learning rate that is too high will make the perceptron periodically
oscillate around the solution unless additional steps are taken.

e The L.S compute a linear combination of feature of input and return
the sign.

e This were called Perceptron in the engineering literate in late 1950.

e Learning rate affects the accuracy of the solution and the number of
iterations directly.

Separability and convergence

The training set D is said to be linearly separable if there exists a
positive constant 7 and a weight vector 3 such that (87 x; + Bo)y; > v
forall 1 < i < n. Thatis, if we say that 3 is the weight vector of
Perceptron and y; is the true label of x; , then the signed distance of the
x; from (3 is greater than a positive constant ~ for any (x;,y;) € D .

93

Feedforward Neural Network

* A neural network is a multistate regression model which is
typically represented by a network diagram.

Input Layer 1 Layer2 % % # Layern-1 Layer n

X, O O***
X: O O***O\

*

* * * O/

#* * *

J oo ...

Hidden Layers

O-9

Feed Forward Neural Network

Feedforward Neural Network

e For regression, typically k = 1 (the number of nodes in the last layer),
there is only one output unit y; at the end.

e For c-class classification, there are typically c units at the end with the
¢ unit modelling the probability of class c, each y, is coded as 0-1

variable for the cth class.

95

Feedforward Neural Network

* Consider a feed forward neural network

U1 U2 U1z U4 Uis
U1 = (U221 Uz Up3z Upg Ups
3x5

| U31 U32 U3z U34 U3s

U1 Ui U3 Uig
Up1 Uy U3z U2y
Uy = |us1 uzp U3z Usg X =

Ugry Us2 Ugz Uy

| Us1 Us2 Us3 Usq] . ,

Ui Uy
U3 = | U1 U
Us1 U322, -

Backpropagation

[i J

Nodes from three hidden layers within the neural network. Each node is divided into the weighted sum of the inputs and the

output of the activation function.

dj = Z,Z/Ui/

zi = o(a;)

97

* Nodes from three hidden layers within the neural
network are considered for the backpropagation
algorithm. / j i

* Each node has been divided into the weighted sum
of the inputs a and the output of the activation
function z. The weights between the nodes are
denoted by u.

dj = E Ziuj

I
zi = o(a;)

98

* Take the derivative w.r.t weight u;;

Ay =9 oly—9 0a

99

* Take the derivative w.r.t weight u;;

2 2 — Chain rule
Qu” 83; anI l /

100

* Take the derivative w.r.t weight u;;

— Chain rule
~12 ~ 12
Oy =y 9ly—JI° Oa] / '

101

* Take the derivative w.r.t weight u;;

— Chain rule
oy —9[° Oly—9I° 9a

5,‘ Z]

102

* Take the derivative w.r.t weight u;;

— Chain rule
~ 12 A~

dly — 9| _ (9\)/—)/’2. 0a

(v J l—y—’

5,‘ Z]
Oy —yI°
Ouj l

Iy — o 2

where §; = =y

83,’

103

* whereas 0; is unknown but can be expressed as a recursive definition
in terms of o;.

_Oly =91 oly =9 0 / i j

5i 83,’ ZJ 83j 83,-

104

* whereas 0; is unknown but can be expressed as a recursive definition

in terms of 5]-.
Y Chain rule

0j

_Oly—9F - 2y —3F 0a / i j
83,’ J 83j 83,- . :

105

* whereas 0; is unknown but can be expressed as a recursive definition

in terms of 5]-.
Y Chain rule

0j

_Oly—9F - 2y —3F 0a / i j
83,’ J 83j 83,- . :

\
|

g

J

106

* whereas 0; is unknown but can be expressed as a recursive definition
in terms of o;.

Y Chain rule
A2 ~|2 . .
s _ 2yl :Zﬂ!y—y! 03 [g]
I 83,’ Jl aaj | 83,- . .
1 _V_)

51 831 L (93J azi

83,- 5’2,’ . 33,‘

107

* whereas 0; is unknown but can be expressed as a recursive definition
in terms of o;.

Y Chain rule
A2 ~|2 . .
s _ 2yl :Zﬂ!y—y! 03 [g]
I 83,’ Jl aaj | 83,- . .
1 _V_)

51 831 L (93J . azi
83,- o 5’2,’ 33,‘
l_'_l

Uj,‘

108

* whereas 0; is unknown but can be expressed as a recursive definition
in terms of o;.

Y Chain rule
A2 ~|2 . .
s _ 2yl :Zﬂ!y—y! 03 [g]
I 83,’ Jl aaj | 83,- . .
1 _V_)

51 831 L (93J azi

83,- 5’2,’ . 33,‘
— -

Ui o' (aj)

109

* whereas 0; is unknown but can be expressed as a recursive definition
in terms of o;.

Y Chain rule
5 ly =9I’ Z Ay =9I 93 [i j
0a; da; 83; - .
1 _V_,
3aj 0z (51 8aj 8aj 0z;
5i o Z(SJ . 621. . 831. da; Oz . Oa;
e

Ui o' (aj)

110

* whereas 9; is unknown but can be expressed as a recursive definition
in terms of o;.

Y Chain rule
5 Oy — 91’ Z Ay =9I 93 [i j
0a; da; 83,- - .
B 8aj 0z j 8aj o 8aj 0z;
5i - Z(SJ . 621. . (93,- da; Oz . 0a;

e

J
5i:2(5j-uj;-0/(a,-) uji (7/(8,')
J

111

* whereas 0; is unknown but can be expressed as a recursive definition
in terms of o;.

Y Chain rule
5 ly =9I’ Z Ay =9I 93 [i j
0a; da; 83,- - .
5' \ J
B 8aj 0z j 8aj o 8aj 0z;

5i o Z(SJ . 621. . (93,- da; Oz . Oa;

J / L
6= 0 w0 (a) Ui o' (a;)

J

(5,’ E— O',(ai) Z 51' © Ujj 112
J

* The recursive definition of §; can be considered as a cost function at
layer i for achieving the original goal of optimizing the weights to
minimize ||y — 7|/

113

Now consider

g 83/(

k
—@—

114

: 63/(

 Where ax =y because an activation
function is not applied in the output layer

® -
A

- O|ly =yl .
o= ST oy

115

* Since y is known and y can be computed 0 = 2y, — 91
for each data point. @

_ o (k=1) _ (k 1) (k) (k 1)
e assuming small, random, initial values for 0; 25

the weights of the neural network in the 3
beginning.
5ng—2) J((k- 2))25}k—1) ISk 2)
* Therefore the ¢ values for the layer before /

the output layer can be computed using 0,
and then the 6 values for the layer before
the layer before the output layer can be
computed and so on.

ool

* Once all 6 values are known, the errors due to each of the weights u
will be known and techniques like gradient descent can be used to
optimize the weights.

Id J|ly —)7H2
ul™" < ug 0 9o
/

Backpropagation
Backpropagation procedure is done using the following steps:

e First arbitrarily choose some random weights (preferably close to zero)
for your network.

e Apply x to the FFNN's input layer, and calculate the outputs of all
Input neurons.

e Propagate the outputs of each hidden layer forward, one hidden layer
at a time, and calculate the outputs of all hidden neurons.

e Once x reaches the output layer, calculate the output(s) of all output
neuron(s) given the outputs of the previous hidden layer.

e At the output layer, compute 6, = —2(yx — yx) for each output
neuron(s).

118

e Compute each 9, , starting from /| = k — 1 all the way to the first
hidden layer, where 6; = o'(a;) >_; 0; - uji -

a2
dlly — ¥l
(9u,-,

e Compute = 0,z for all weights u;; .

a 5 2
e Then update u;®" < uﬁld — - H{‘) yl
Uji

for all weights wu; .

e Continue for next data points and iterate on the training set until
weights converge.

119

Epochs

It is common to cycle through the all of the data points multiple times in
order to reach convergence. An epoch represents one cycle in which you
feed all of your datapoints through the neural network. It is good practice
to randomized the order you feed the points to the neural network within
each epoch; this can prevent your weights changing in cycles. The number
of epochs required for convergence depends greatly on the learning rate &
convergence requirements used.

