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Statistical Learning for Neural
Networks



Guaranteed Success for ERM with Finite
Hypotheses

* Accuracy € and Tolerance ¢
* eisthe desired maximum error rate of the hypothesis found by ERM.
* J isthe tolerance for the probability of failure, i.e., the probability that the ERM
hypothesis will exceed the error rate €.
* The Bound
Withm >
greaterthan1l — J.

log(\l;ﬂ/(s) , ERM will find a hypothesis with error less than € with probability

For a large enough m, ERM produces a hypothesis with error under € at probability

1 —o.



VC Dimension

* Definition:
* VC Dimension is the maximum number of data points that a model class can
shatter.
* Shattering:

A model class can shatter a set of data points if it can perfectly classify every
possible arrangement of labels for that set.



VC Dimension of a Line in 2D

* In a two-dimensional space, the VC dimension of a line is 3.

3 points shattered 4 points impossible

Image: Wikepedia



PAC (Probably Approximately Correct)
learnability

* Being able to learn a good-enough hypothesis with high probability
given enough examples.

* If with enough data, a model from H can be learned that is probably correct (within € error)

with high confidence (probability > 1 — ¢), then H is PAC Learnable.



H is PAC Learnable if:
* thereisafunctionmy : (0,1)? — N
* and a learning algorithm A,
* such that for every distribution D over X,
* everye,0 > OQandevery fin H,
* for samples S of sizem (m = mpg(€, d))
* generated by D and labeled by f,

Pr[Lp(A(S)) > €] <.



Relaxing the Realizability Assumption

* Realizability Assumption:
e Assumes True Function in Hypothesis Class H
 Hypotheses Contain Exact Solution

* Realistic Setup:

* Lack of A Priori Knowledge:
e Learner Doesn't Know if True Classifier in H



Unpredictability of Labels:

* Another aspect of more realistic scenarios: labels (the outputs we're trying to
predict) might not be fully determined by the instance attributes (the input
data).

e Various reasons: noise in the data, unobserved variables, or inherently stochastic
processes.

* In such cases, even the best possible model in H might not perfectly predict the labels
for all instances.

Implications for Learning:

* When these more realistic conditions are assumed, learning becomes more
challenging.

* The learner must now find the best possible hypothesis within the class, even
if none of the hypotheses can perfectly predict all instances.



General Loss Functions

* Beyond Classification Errors:

* Our learning approach goes beyond counting classification errors.
* Domain Set Z:

* Z represents the set of all possible instances or data points.
* Loss Function [:

*l:HxZ—R

* Quantifies model h's loss on instance Z.



General Loss Functions

* Probability Distribution P:

* P is aprobability distribution over Z.

* Defines the likelihood of each instance.
* Expected Loss Lp(h):

* Lp(h) = E,_p[l(h, 2)]

* Average loss of model h under P.
* Flexible Learning Formalism:

* Allows us to assess model performance with various loss functions and distributions.



Agnostic PAC Learnability

* His Agnostic PAC Learnable if:
* There exists a functionm : (0,1)? — Nand a learning algorithm A.
* For every distribution P over X X Y andeverye, 0 > 0.
* For samples S of size m > mH(e, 5) generated by P.

Pr[Lp(A(S)) < }iLIGIIELp(h) +e€>1-9



Guaranteeing Learnability

* Question: Can such learnability be guaranteed?

* Crucial Factor: The VC (Vapnik-Chervonenkis) dimension of the class
H.

* Fundamental Theorem of Statistical Learning:

* "Aclass H is PAC (Probably Approximately Correct) learnable if and only if its
VC dimension is finite."



Fundamental Theorem - Quantitative Version

* The number of random labeled samples needed for learning a class of

predictors H is given by:

O ( VCdim(H)—l—log( %) )

€2



Complexity-Dependent Error Bound

¢ Lp(h) § iIlfheH Lp(h) + f(C(h), m)
* The true error of a hypothesis h is bounded by a function of its complexity and training

sample size.

Function f(c(h); m)
* Dependent on the complexity measure c(h) of hypothesis h and sample size m.
* Indicates a relationship between hypothesis complexity, sample size, and the achievable

error.

Integrates the concept of hypothesis complexity into the error bound.



Expressive Power of Neural Networks

Theorem: Fix some € in the range (0, 1), and let s(n) denote the minimal number of nodes.
* There exists a neural network with s(n) nodes that can approximate up to € every function
from [0, 1] to [0, 1].

* s(n) is exponential in 7.



Expressive Power of Neural Networks

Theorem: Fix some € in the range (0, 1), and let s(n) denote the minimal number of nodes.
* There exists a neural network with s(n) nodes that can approximate up to € every function
from [0, 1] to [0, 1].

* s(n) is exponential in 7.

* Key Insight:
* Neural networks possess remarkable expressive power.
* They can approximate a wide range of functions with high accuracy.

* However, achieving this expressive power may require a large number of
nodes, which can grow exponentially with the input dimension n.



Measuring Error Guarantees For Neural
Networks

Lp(h) < infyeg Ls(h) + \/|E|+1ff(1/5)

Where:

E'\ is the number of edges (parameters) in the hypothesis h.

* misthe sample size.



Rethinking Generalization in Deep Learning

* Authors: Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, Oriol
Vinyals

* Key Insights:

* A paradox in deep learning: large neural networks manage to generalize

well and maintain a minimal gap between training and testing
performance, contrary to what might be expected given their size.

* Small generalization errors are commonly linked to model traits or training
regularization.

* The authors' experiments indicate these reasons don't fully account for the
networks' generalization success.



Experiment on Generalization in Deep
Networks

e State-of-the-art convolutional neural networks for image
classification, when trained with stochastic gradient methods, can
easily fit to randomly labeled training data.

* This ability to fit random labels is not significantly impacted by the
use of explicit regularization techniques.

* The phenomenon persists even when true image data is replaced
with unstructured random noise.

* Theoretical work supports these findings by showing that neural
networks with a sufficient number of parameters relative to data
points can perfectly express any finite sample set.



Experimental Details

 Data Modification:

* True labels in standard datasets (CIFAR10, ImageNet) were replaced with
random labels.

* |In an extension of the experiment, actual image pixels were replaced with
completely random noise.

* Training Results:

* Neural networks reached zero training error on randomly labeled data,
suggesting they can memorize the dataset.

e Test error was equivalent to random guessing due to lack of correlation
between training and test labels.

* Training times were only slightly longer than with true labels, indicating ease
of optimization even with random data.



Experimental Details

* Impact of Noise:

* The introduction of noise to the images did not prevent neural networks from
fitting the data.

* A progressive increase in noise led to a corresponding increase in

generalization error, yet networks could still capture any signal left in the
labels.

* Implications:

* These results challenge the role of VC-dimension, Rademacher complexity,
and uniform stability in explaining generalization in neural networks.

* The networks' ability to fit random labels and noise points to a high capacity

for memorization, which is not accounted for by traditional learning
complexity measures.



Uniform convergence may be unable to
explain generalization in deep learning

Authors:

Vaishnavh Nagarajan, Zico Kolter
Main Claim:

* The paper challenges the adequacy of uniform convergence as a tool

for explaining the generalization behavior in overparameterized deep
neural networks.

* It highlights a key finding: generalization bounds based on uniform

convergence can paradoxically increase with the size of the training
dataset.



Understanding Uniform Convergence

* Uniform convergence is a concept in statistical learning theory. It

describes how closely the empirica
learning algorithm converges to the
data distribution) uniformly over al

oss (loss on training data) of a
expected loss (loss on the entire

nypotheses in a hypothesis class.

* This concept is crucial for establishing generalization bounds, which
predict how well a model trained on a finite dataset will perform on

unseen data.

* The idea is that if the empirical loss converges uniformly to the true
loss across all hypotheses, one can be confident that a hypothesis
with low empirical loss will also have low true loss, hence will

generalize well.



* The paper demonstrates scenarios with overparameterized models
(like deep neural networks with more parameters than training data
points) where uniform convergence fails to explain generalization.

* It shows that even when considering only hypotheses output by
gradient descent with low test errors, uniform convergence provides
vacuous (ineffective) generalization guarantees.

* These findings cast doubt on the ability of uniform convergence-
based bounds to fully explain why large neural networks generalize
effectively, suggesting the need for alternative or additional
theoretical frameworks.





