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Statistical Learning for Neural 
Networks



Guaranteed Success for ERM with Finite 
Hypotheses



VC Dimension

• Definition:
• VC Dimension is the maximum number of data points that a model class can 

shatter.

• Shattering:
• A model class can shatter a set of data points if it can perfectly classify every 

possible arrangement of labels for that set.



VC Dimension of a Line in 2D

• In a two-dimensional space, the VC dimension of a line is 3.

Image: Wikepedia



PAC (Probably Approximately Correct) 
learnability

• Being able to learn a good-enough hypothesis with high probability 
given enough examples.





Relaxing the Realizability Assumption

• Realizability Assumption:
• Assumes True Function in Hypothesis Class 𝐻𝐻
• Hypotheses Contain Exact Solution

• Realistic Setup:
• Lack of A Priori Knowledge:

• Learner Doesn't Know if True Classifier in 𝐻𝐻



Unpredictability of Labels:
• Another aspect of more realistic scenarios:  labels (the outputs we're trying to 

predict) might not be fully determined by the instance attributes (the input 
data). 

• Various reasons: noise in the data, unobserved variables, or inherently stochastic 
processes. 

• In such cases, even the best possible model in 𝐻𝐻 might not perfectly predict the labels 
for all instances.

Implications for Learning:
• When these more realistic conditions are assumed, learning becomes more 

challenging. 
• The learner must now find the best possible hypothesis within the class, even 

if none of the hypotheses can perfectly predict all instances. 



General Loss Functions



General Loss Functions



Agnostic PAC Learnability



Guaranteeing Learnability

• Question: Can such learnability be guaranteed?
• Crucial Factor: The VC (Vapnik-Chervonenkis) dimension of the class 
𝐻𝐻.

• Fundamental Theorem of Statistical Learning:
• "A class 𝐻𝐻 is PAC (Probably Approximately Correct) learnable if and only if its 

VC dimension is finite."



Fundamental Theorem - Quantitative Version



Complexity-Dependent Error Bound

Integrates the concept of hypothesis complexity into the error bound.



Expressive Power of Neural Networks



Expressive Power of Neural Networks

• Key Insight:
• Neural networks possess remarkable expressive power.
• They can approximate a wide range of functions with high accuracy.
• However, achieving this expressive power may require a large number of 

nodes, which can grow exponentially with the input dimension 𝑛𝑛.



Measuring Error Guarantees For Neural 
Networks



Rethinking Generalization in Deep Learning

• Authors: Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, Oriol 
Vinyals

• Key Insights:
• A paradox in deep learning: large neural networks manage to generalize 

well and maintain a minimal gap between training and testing 
performance, contrary to what might be expected given their size.

• Small generalization errors are commonly linked to model traits or training 
regularization.

• The authors' experiments indicate these reasons don't fully account for the 
networks' generalization success.

             
The authors experiments indicate these reasons dont fully account for the networks generalization success.



Experiment on Generalization in Deep 
Networks

• State-of-the-art convolutional neural networks for image 
classification, when trained with stochastic gradient methods, can 
easily fit to randomly labeled training data.

• This ability to fit random labels is not significantly impacted by the 
use of explicit regularization techniques.

• The phenomenon persists even when true image data is replaced 
with unstructured random noise.

• Theoretical work supports these findings by showing that neural 
networks with a sufficient number of parameters relative to data 
points can perfectly express any finite sample set.



Experimental Details

• Data Modification:
• True labels in standard datasets (CIFAR10, ImageNet) were replaced with 

random labels.
• In an extension of the experiment, actual image pixels were replaced with 

completely random noise.
• Training Results:

• Neural networks reached zero training error on randomly labeled data, 
suggesting they can memorize the dataset.

• Test error was equivalent to random guessing due to lack of correlation 
between training and test labels.

• Training times were only slightly longer than with true labels, indicating ease 
of optimization even with random data.



Experimental Details

• Impact of Noise:
• The introduction of noise to the images did not prevent neural networks from 

fitting the data.
• A progressive increase in noise led to a corresponding increase in 

generalization error, yet networks could still capture any signal left in the 
labels.

• Implications:
• These results challenge the role of VC-dimension, Rademacher complexity, 

and uniform stability in explaining generalization in neural networks.
• The networks' ability to fit random labels and noise points to a high capacity 

for memorization, which is not accounted for by traditional learning 
complexity measures.



Uniform convergence may be unable to 
explain generalization in deep learning

Authors: 
Vaishnavh Nagarajan, Zico Kolter
Main Claim:
• The paper challenges the adequacy of uniform convergence as a tool 

for explaining the generalization behavior in overparameterized deep 
neural networks.

• It highlights a key finding: generalization bounds based on uniform 
convergence can paradoxically increase with the size of the training 
dataset.



Understanding Uniform Convergence

• Uniform convergence is a concept in statistical learning theory. It 
describes how closely the empirical loss (loss on training data) of a 
learning algorithm converges to the expected loss (loss on the entire 
data distribution) uniformly over all hypotheses in a hypothesis class.

• This concept is crucial for establishing generalization bounds, which 
predict how well a model trained on a finite dataset will perform on 
unseen data.

• The idea is that if the empirical loss converges uniformly to the true 
loss across all hypotheses, one can be confident that a hypothesis 
with low empirical loss will also have low true loss, hence will 
generalize well.



Implications of the Findings

• The paper demonstrates scenarios with overparameterized models 
(like deep neural networks with more parameters than training data 
points) where uniform convergence fails to explain generalization.

• It shows that even when considering only hypotheses output by 
gradient descent with low test errors, uniform convergence provides 
vacuous (ineffective) generalization guarantees.

• These findings cast doubt on the ability of uniform convergence-
based bounds to fully explain why large neural networks generalize 
effectively, suggesting the need for alternative or additional 
theoretical frameworks.




