Lecture 3

Stochastic gradient descent,
Stein’s unbiased risk estimator

Stochastic gradient descent

Suppose that we want to minimize an objective function that is written
as a sum of differentiable functions.

Q(w) =>_iL; Qi(w)
Each term Q; is usually associated with the i_th data point.

Standard gradient descent (batch gradient descent):
w=w — UVQ(W) — W =1 27:1 VQI'(W)

where 7 is the learning rate (step size).

123

Stochastic gradient descent

Stochastic gradient descent (SGD) considers only a subset of summand
functions at every iteration.

This can be quite effective for large-scale problems.

Bottou, Leon; Bousquet, Olivier (2008). The Tradeoffs of Large Scale Learning. Advances in Neural Information Processing Systems

20. pp. 161168.

The gradient of Q(w) is approximated by a gradient at a single example:

w=w —nVQi(w).
This update needs to be done for each training example.

Several passes might be necessary over the training set until the
algorithm converges.

1 might be adaptive.

124

Stochastic gradient descent

e Choose an initial value for w and 7.

e Repeat until converged
- Randomly shuffle data points in the training set.
-Fori=1,2,...,n, do:
-w=w —nVQi(w).

125

Example

Suppose y = wy + whx
The objective function is:
Q(w) =21y Qi(w) = 3271 (wa + woxi — yi)”.

Update rule will become:

] -l

W» Wo ' 2x;(wy + wox; — yi) |

Example from Wikipedia

126

Problem Statement:

* We want to minimize a loss function Q(w) where w is the
parameter vector.

* The loss function is assumed to be differentiable.

* Show that Stochastic Gradient Descent (SGD) converges to a local
minimum of Q(w).

Why Stochastic Gradient Descent
(SGD) Works

* Initialization: Start with an initial guess wy
* Update Rule:

Wit+1} = We — PpVQiqw,)-
* Expectation of the Gradient:

E[VQiwy| = VQ(wy).

* Convergence: If p is sufficiently small, then each update moves w;
closer to the minimum of Q (w) .

128

Why Stochastic Gradient Descent
(SGD) Works

* Expectation of Update Rule:
E|wiesny] = Elwe] — pE|VQiw,)]
* Substitute Expectation of Gradient:

E[W{t+1}] = Elw] — pVQ(wy)).

e Convergence: This equation implies that the expected value of w moves in
the direction of the negative gradient, thus moving towards the minimum

of Q(w)

129

* The proof shows that the expected update of w using SGD is in the
direction of the true gradient of the loss function Q(w)

* Therefore, SGD works in practice to find a local minimum of the loss
function, provided the learning rate p is appropriately chosen.

Mini-batches

Batch gradient decent uses all n data points in each iteration.
Stochastic gradient decent uses 1 data point in each iteration.
Mini-batch gradient decent uses b data points in each iteration.

b is a parameter called Mini-batch size.

131

Mini-batches

e Choose an initial value for w and .

e Say b = 10

e Repeat until converged
- Randomly shuffle data points in the training set.
- For i =1,11,21,...,n =9, do:
-w=w =13, 5 VQi(w).

132

Tuning n

If 1 is too high, the algorithm diverges.
If 1 is too low, makes the algorithm slow to converge.

A common practice is to make n; a decreasing function of the iteration

___constantl
number L. €8 Nt — t+constant?2

The first iterations cause large changes in the w, while the later ones do
only fine-tuning.

133

Momentum

* Momentum is a technique used in optimization to accelerate
convergence.

* Inspired by physical momentum, it helps in navigating the
optimization landscape.

134

Mathematical Formulation

e Standard GD Update:

Witr1y = We — pVQ(wy)
* Momentum Update:
Viery = Pre+ (1= BIVQ(wy)

Wit+1} = We — PV{t+1}
* [3: Momentum coefficient (0.9 to 0.99)
* v;: Velocity term, a running average of gradients

135

* The velocity term v;is a running average of past gradients.
* |t accumulates information from past updates to inform the next step.
 Mathematical Update:

Vit+1)} = Bve + (1 —L)IVQ(wy)

Role in Optimization:

* Smoothing out updates

* Accelerating through flat regions
* Providing stability

Momentum (magenta) vs. Gradient Descent (cyan) on a surface with a
global minimum (the left well) and local minimum (the right well)

137

Optimization Algorithms in Deep Learning

 Adam is currently the most popular optimization algorithm in deep
learning.

* However, there are some concerns about its generalization
performance compared to stochastic gradient descent (SGD).

e Other optimization algorithms, such as AMSGrad, AdamW, QHAdam,
YellowFin, Demon Adam, Momentum, and Aggmo QHM, have been
proposed and evaluated on various test problems.

e SGD is slower to converge but generally performs better in terms of
generalization.

138

Challenges of Second-Order Optimization in
Deep Learning

Computational Complexity

* Requires Hessian matrix: O(n?) complexity
* Matrix inversion: O(n>) complexity
Memory Requirements

* Hessian storage: 0(n?) memory

* Non-Convexity

* Risk of saddle points and local minima

139

Stein’s unbiased risk
estimator

Model Selection

* The general task in machine learning is estimating a function.
* \We want to estimate :

f(x) estimated function

141

Model Selection

* The general task in machine learning is estimating a function.
* \We want to estimate :

f(x) estimated function

* Where there is a true underlying function :

f(x) true function

142

Model Selection

* The general task in machine learning is estimating a function.
* \We want to estimate :

f(x) estimated function f(x)
* Where there is a true underlying function :
f(x) true function _ MSE
Bias —
E[f(x)] (%)

Definitions and Notations

assume T = {(x;, y;)}"_, be the training set.

144

Definitions and Notations

assume T = {(x;, y;)}"_, be the training set.

f(.) — True function

145

Definitions and Notations

assume T = {(x;, y;)}"_, be the training set.

f(.) — True function
7?() — Estimated function

146

Definitions and Notations

assume T = {(x;, y;)}"_, be the training set.

f(.) — True function
7?() — Estimated function

also assume:
yi = f(xi) + ¢

where ¢; ~ N(0, 0?)

147

Definitions and Notations

assume T = {(x;, y;)}"_, be the training set.

f(.) — True function
7?() — Estimated function

also assume:
yi = f(xi) + ¢

where ¢; ~ N(0, 0?)

Vi = I?(X,)
fi = 1f(x)
P = f(Xi) 148

. 1 —
* Empirical error: - E : a2
L (yl yl)

True error

Meodel Prediction Error

Empirical error
_

& o &

Model Complexity

149

For point (xg, o) we are interested in:

E[(50 — y0)°] = El(fo — fo — 0)’]

150

For point (xg, o) we are interested in:
E[(50 — y0)*] = E[(fo — fo — €0)’]

= E[((’% — fo) — 60)2]

151

For point (xg, o) we are interested in:
E[(50 — y0)*] = E[(fo — fo — €0)’]
p— E [((]% — fb) — 60)2]

= E[(fo — f0)* + cg — 2¢o(fo —)]

152

For point (xg, o) we are interested in:

153

For point (xg, o) we are interested in:

o
|
oh
N—"
N
+
Q
N
|
No
m
=
o
~—~
ot
|
oh
—

154

case 1
assume: (x0,¥0) € T

N\

In this case, since f is estimated only based on points in training set,
therefore it is completely independent from (xg, yo)

case 1
assume: (x0,0) € T

In this case, since f is estimated only based on points in training set,
therefore it is completely independent from (xg, yo)

= E[(yo — f)(f — F)] = cov(yo, f) = 0

156

case 1
assume: (x0,¥0) € T

In this case, since f is estimated only based on points in training set,
therefore it is completely independent from (xg, yo)

= E[(yo — f)(f — F)] = cov(yo, f) = 0

If summing up all m pints that are not in T.

157

case 1
assume: (x0,¥0) € T

In this case, since f is estimated only based on points in training set,
therefore it is completely independent from (xg, yo)

= E[(yo — f)(f — F)] = cov(yo, f) = 0

If summing up all m pints that are not in T.

m m

Z()A/i — i) = Z(f: — £;)> + mo*

158

true error empirical error

\ /

Err = err — mo?

159

true error empirical error

\ /

Err = err — mo?

Empirical error (err) is a good estimator of true error (Err) if the point
(X0, o) is not in the training set.

160

case 2
assume: (x0,Y0) € T

then: 2E[eo(fy — f5)] # 0

161

case 2
assume: (x0,Y0) € T

then: 2E[eo(fy — f5)] # 0

Stein’s Lemma
If :

x ~ N(6,0%)
and g(x) is differentiable.

then

Elg(x)(x — 0)] = o[2\]

162

I(fy — f)

e Qur problem: |
860

Eleo(fo — fo)] = o°E[

163

Aaéo
ofy 0f

2
— E _
’ [860 860

e Qur problem:

Eleo(fo — fo)] = o°E[

164

Aaéo
ofy 0f;
ol e
’ [860 60]

e Qur problem:

Eleo(fo — fo)] = o°E[
0

165

* Our problem: o(fo — fo)

Eleo(h —)] = o?E[2]
JUeo 0
of of;
— PE[—2 —
’ [860 60]
Oty

2
— E _
’ [860

166

* Our problem: A(fo — fo)

Eleo(fo — f3)] = o[Deo] ;
= 025[2—2 — 8:0]
= 025[2—2
el oo

167

Aaéo
_ g2 0h _ O

e €0

— E[S:Z] /—{ Chain rule

ayo
2F 0
[a)/o 86o

e Qur problem:

Eleo(fo — fo)] = o°E[

0

168

e Qur problem:

I(fy — f)

Eleolo —)] = o2E[%)
JUeo 0
ofy 0Of;
_ S2F[20
- ¢ E[(?eo 60]
= 0°E]

Chain rule

169

Aaéo
ofy Of;
ol e
7 [860 60]

_ OZE[%] /—{ Chain rule
860 1

e Qur problem:

Eleo(fo — fo)] = o°E[

0

170

* Our problem: o(fo — fo)

Eleolo —)] = [5]
. 0
ofy Of;
ol e
’ [860 60]
_ OzE[S_f;] /—{ Chain rule
A 1
_ 2E[8f0 . 8)/{(
—7 dyo /§€o
f'
——

171

El((y)o — 0)°] = E[((F)o — £5)?] + 0® — 20°E[Dy]

El((y)o — 0)°] = E[((F)o — £5)?] + 0® — 20°E[Dy]

Sum over all n data points:

n n

Z()?, —)’ = Z(f: — £)? + no® — 20° z”: D;
i=1

173

El((y)o — 0)°] = E[((F)o — £5)?] + 0® — 20°E[Dy]

Sum over all n data points:

n n

Z()?, —)’ = Z(f: — £)? + no® — 20° z”: D;
i=1

\ =1 | =1
[

err

174

El((y)o — 0)°] = E[((F)o — £5)?] + 0® — 20°E[Dy]

Sum over all n data points:

n n

Z()?, —)’ = Z(f: — £)? + no® — 20° z”: D;
i=1

\) \ J
| |

err Err

175

El((y)o — 0)°] = E[((F)o — £5)?] + 0® — 20°E[Dy]

Sum over all n data points:

n n

> (fi— £)*+ no® — 207 Z D;
=1

\) \ J

%
=
!

N
|

err Err

Err = err — no® + 207 Z D,

=1

176

El((y)o — 0)°] = E[((F)o — £5)?] + 0® — 20°E[Dy]

Sum over all n data points:

n n

> (fi— £)*+ no® — 207 Z D;

]

=

!
N
|

err Err

n
Err = err — no® + 207 E D,
=1
\ /
Y

Complexity of model

177

El((y)o — 0)°] = E[((F)o — £5)?] + 0® — 20°E[Dy]

Sum over all n data points:

n n

Z(yi —)’ = Z(ﬁ — £)? + no* — 207 En: D;

. | /=1 |
Y Y

err Err

Err = err — no® + 207 Z D,

=1

k

}

|

=1

Stein’s Unbiased Risk
Estimator (SURE)

Complexity of model

178

e SURE gives us a very good insight about the behavior of true error

Err = err — no® + 207 Z D;

=1

Model prediction error

v

Complexity

e SURE gives us a very good insight about the behavior of true error

Err = err — no® + 207 Z D;

=1

[
»

Model prediction error

Empirical error (err)

»

Complexity

180

e SURE gives us a very good insight about the behavior of true error

Err = err — no® + 207 Z D;

=1

[
»

Model prediction error

Empirical error (err)

»

Complexity

181

e SURE gives us a very good insight about the behavior of true error

Err = err — no® + 207 Z D;

=1

[
»

True error (Err)

Model prediction error

Empirical error (err)

»

Complexity

182

