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Stochastic gradient descent, 
Stein’s unbiased risk estimator
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Stochastic gradient descent
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Example
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Why Stochastic Gradient Descent (SGD) 
Works

Problem Statement:
• We want to minimize a loss function 𝑄𝑄(𝒘𝒘) where 𝒘𝒘 is the 

parameter vector. 

• The loss function is assumed to be differentiable.

• Show that Stochastic Gradient Descent (SGD) converges to a local 
minimum of 𝑄𝑄(𝒘𝒘) .
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Why Stochastic Gradient Descent 
(SGD) Works

• Initialization: Start with an initial guess 𝑤𝑤0
• Update Rule: 

𝑤𝑤 𝑡𝑡+1 = 𝑤𝑤𝑡𝑡 − 𝜌𝜌∇𝑄𝑄𝑖𝑖 𝑤𝑤𝑡𝑡 .
• Expectation of the Gradient: 

𝐸𝐸 ∇𝑄𝑄𝑖𝑖 𝑤𝑤𝑡𝑡 = ∇𝑄𝑄 𝑤𝑤𝑡𝑡 .
• Convergence: If 𝜌𝜌 is sufficiently small, then each update moves 𝑤𝑤𝑡𝑡

closer to the minimum of 𝑄𝑄(𝑤𝑤) .
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Why Stochastic Gradient Descent 
(SGD) Works

• Expectation of Update Rule:

𝐸𝐸 𝑤𝑤 𝑡𝑡+1 = 𝐸𝐸 𝑤𝑤𝑡𝑡 − 𝜌𝜌𝐸𝐸 ∇𝑄𝑄𝑖𝑖 𝑤𝑤𝑡𝑡

• Substitute Expectation of Gradient: 

E 𝑤𝑤 𝑡𝑡+1 = 𝐸𝐸 𝑤𝑤𝑡𝑡 − 𝜌𝜌∇𝑄𝑄 𝑤𝑤𝑡𝑡 ).
• Convergence: This equation implies that the expected value of 𝑤𝑤 moves in 

the direction of the negative gradient, thus moving towards the minimum 
of 𝑄𝑄(𝑤𝑤)
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Why Stochastic Gradient Descent 
(SGD) Works

• The proof shows that the expected update of 𝑤𝑤 using SGD is in the 
direction of the true gradient of the loss function 𝑄𝑄(𝑤𝑤)

• Therefore, SGD works in practice to find a local minimum of the loss 
function, provided the learning rate 𝜌𝜌 is appropriately chosen.
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Mini-batches

131



Mini-batches
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Tuning η
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Momentum 

• Momentum is a technique used in optimization to accelerate 
convergence.

• Inspired by physical momentum, it helps in navigating the 
optimization landscape.
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Mathematical Formulation

• Standard GD Update:
𝑤𝑤 𝑡𝑡+1 = 𝑤𝑤𝑡𝑡 − 𝜌𝜌∇𝑄𝑄 𝑤𝑤𝑡𝑡

• Momentum Update: 
𝑎𝑎 𝑡𝑡+1 = 𝛽𝛽𝑎𝑎𝑡𝑡 + 1 − 𝛽𝛽 ∇𝑄𝑄 𝑤𝑤𝑡𝑡

𝑤𝑤 𝑡𝑡+1 = 𝑤𝑤𝑡𝑡 − 𝜌𝜌𝑎𝑎 𝑡𝑡+1

• 𝛽𝛽: Momentum coefficient (0.9 to 0.99)
• 𝑎𝑎𝑡𝑡: Velocity term, a running average of gradients
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Understanding the Velocity Term

• The velocity term 𝑎𝑎𝑡𝑡is a running average of past gradients. 
• It accumulates information from past updates to inform the next step. 
• Mathematical Update:

𝑎𝑎 𝑡𝑡+1 = 𝛽𝛽𝑎𝑎𝑡𝑡 + 1 − 𝛽𝛽 ∇𝑄𝑄 𝑤𝑤𝑡𝑡

Role in Optimization:
• Smoothing out updates
• Accelerating through flat regions
• Providing stability

136



Momentum (magenta) vs. Gradient Descent (cyan) on a surface with a 
global minimum (the left well) and local minimum (the right well)
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Optimization Algorithms in Deep Learning

• Adam is currently the most popular optimization algorithm in deep 
learning.

• However, there are some concerns about its generalization 
performance compared to stochastic gradient descent (SGD).

• Other optimization algorithms, such as AMSGrad, AdamW, QHAdam, 
YellowFin, Demon Adam, Momentum, and Aggmo QHM, have been 
proposed and evaluated on various test problems.

• SGD is slower to converge but generally performs better in terms of 
generalization.
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Challenges of Second-Order Optimization in 
Deep Learning

Computational Complexity
• Requires Hessian matrix: 𝑂𝑂 𝑛𝑛2 complexity
• Matrix inversion: 𝑂𝑂 𝑛𝑛3 complexity
Memory Requirements
• Hessian storage: 𝑂𝑂 𝑛𝑛2 memory
• Non-Convexity
• Risk of saddle points and local minima
•
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Stein’s unbiased risk 
estimator



Model Selection

• The general task in machine learning is estimating a function.
• We want to estimate :
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Model Selection

• The general task in machine learning is estimating a function.
• We want to estimate :

• Where there is a true underlying function :
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Model Selection

• The general task in machine learning is estimating a function.
• We want to estimate :

• Where there is a true underlying function :
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Definitions and Notations
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Definitions and Notations

148



• Empirical error:

True error

Empirical error
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true error empirical error
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true error empirical error
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• Our problem:
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• Our problem:
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• Our problem:
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Chain rule
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• Our problem:
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err
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err Err
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err Err
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err Err

Complexity of model
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err Err

Complexity of model

Stein’s Unbiased Risk 
Estimator (SURE)
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• SURE gives us a very good insight about the behavior of true error 
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• SURE gives us a very good insight about the behavior of true error 

Empirical error (err)
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• SURE gives us a very good insight about the behavior of true error 
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• SURE gives us a very good insight about the behavior of true error 

Empirical error (err)
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