Lecture 5

Dropout, Batch normalization

What is dropout?

* Dropout is one of the techniques for preventing overfitting in deep
neural network which contains a large number of parameters.

220

Original Paper

e Title:
— Dropout: A Simple Way to Prevent Neural Networks from Overfitting (2014).

e Authors:

— Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, llya Sutskever, Ruslan
Salakhutdinov

* Organization:
— Department of Computer Science, University of Toronto

* URL:
— https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

221

https://www.cs.toronto.edu/%7Ehinton/absps/JMLRdropout.pdf

Overview

* The key idea is to randomly drop units from the neural network
during training.

* During training, dropout samples from number of different “thinned”
network.

* At test time, we approximate the effect of averaging the predictions
of all these thinned networks.

(a) Standard Neural Net (b) After applying dropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applyving dropout to the network on the left.
Crossed units have been dropped.

223

Model

» Consider a neural network with L hidden layer.
» Let z() denote the vector inputs into layer /
» y{) denote the vector of outputs from layer /.

» W) and b)) are the weights and biases at layer /. With dropout,
the feed-forward operation becomes:

224

Model

() '
r;’ ~ Bernoulli(p)
¥y =D © y!) here ® denotes an element-wise product.

Z_(/+1) _ w(/+1)9/ + b§/+1)

/ I

y,.(lH) = f(z-(/+1)),wherefis the activation function.

/

For any layer/, r() is a vector of independent Bernoulli random variables

each of which has probability of p of being 1. y is the input after we drop
some hidden units. The rest of the model remains the same as the regular

feed-forward neural network.

225

Training

» Dropout neural network can be trained using stochastic gradient
descent.

» The only difference here is that we only back propagate on each
thinned network.

» The gradient for each parameter are averaged over the training cases
In each mini-batch.

226

Test Time

» use a single neural net without dropout.

» If a unit is retained with probability p during training, the outgoing
weights of that unit are multiplied by p at test time.

W W
Present with Always
probability p present

(a) At training time (b) At test time

Figure 2: Left: A unit at training time that is present with probability p and iz connected to units
in the next layer with weights w. Right: At test time, the unit is always present and
the weights are multiplied by p. The output at test time is same as the expected output
at training time.

227

Applying dropout to linear regression

Let X € R™9 be a data matrix of n data points. y € R” be a vector of
targets.Linear regression tries to find a w € RY that maximizes:

Iy — Xw |

When the input X is dropped out such that any input dimension is retained
with probability p, the input can be expressed as R+ X where R € {0, 1}
is a random matrix with R; ~ Bernoulli(p) and * denotes element-wise
product. Marginalizing the noise, the objective function becomes:

m“in IEE’I:\’rvBernoulIi(p)[H y — (R * X)W HZ]

228

Applying dropout to linear regression

This reduce to:
min ||y — pXw [+p(1 — p) || Tw ||

where T = (diag(XTX))z. Therefore, dropout with linear regression is
equivalent to ridge regression with a particular form for I'. This form of [
essentially scales the weight cost for weight w; by the standard deviation
of the /™" dimension of the data. If a particular data dimension varies a lot,
the regularizer tries to squeeze its weight more.

229

Applying dropout to linear regression
The linear regression model can be represented as:

y=w'X

The objective function J(w) in ridge regression is:

J(w) = [ly — w X" + A||wl|?

230

Applying dropout to linear regression

When dropout is applied to the input features, each feature is set to zero
with probability p during each training iteration. Let's denote the
dropout mask as d, where each d; is either 0 or 1.

The "dropped-out” feature matrix X4, can be represented as:

Xd.o. =d ®X

The objective function Jy, (W) when dropout is applied becomes:

Jdropout(W) — Ed [Hy o WTXd.o.Hﬂ

231

Applying dropout to linear regression

Objective Function with Dropout:

Jao(w) =Eq [|ly — W' Xgo|[?]

232

Expanding the Expectation

Jao(W) =Eqg [(y —w'Xgo)(y —w'Xgo)']
= [Kq :ny - yWTXd.o — Xd.owyT T WTXd.oXJOW]
—yy' —2yw' (1 - p)X +w'(1—-p)XX"w
~{ly — wIX][2+ (1 p)lwlf

233

Applying dropout to linear regression

» The expanded form of the objective function with dropout includes a
regularization term (1 — p)||w]|?.

» This term is similar to the regularization term in ridge regression.

234

Slide modified from Sergey loffe , with permission

Slides based on

Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift

By Sergey loffe and Christian Szegedy

Batch Normalization

Batch Normalization

Batch Normalization

Effect of changing input distribution

e Careful initialization T
e Small learning rates I
e Rectifiers !

ax+b

239

Internal covariate shift

e Layer input distributions change during training

E — FQ(Fl(ll, @1), @2)

e Change In internal activation distribution requires domain
adaptation

240

e Normalize each activation:

241

Mini-batch mean:

Mini-batch variance:

Normalize:

Scale and shift:

242

e Replace batch statistics with population statistics

r — E|x]
\/ Var[z] + €

~ Ly — UB
x.

—— m I«
Vo35

o~
A

243

MNIST: 3 FC layers + softmax, 100 logistic units per hidden layer

Distribution of inputs to a typical sigmoid, evolving over 100k steps:

Without BN:

J

st Bl
8|

L

Training steps

751" %ile
median

25" %ile

With BN:

T

Lttt bbb A o

Training steps

244

0.98

0.96

0.94

0.92

0.9

0.88|"

softmax/Eval Accuracy

2 With BN

Without BN

20000

40000 60000

Training steps

80000

245

e Inception: deep convolutional ReLU model
e Distributed SGD with momentum

e Batch Normalization applied at every convolutional layer

o Extra cost (~30%) per training step

246

Validation accuracy

08—

Y SPEE I SSpIp SR .

o7l B NP o
wor | e Baseline: 72.2% @ 31M steps

e WithBN: 72.2% @ 13.3M steps
ms—: :'

D = = = noopton

! ~ - BN-Bassline

! ' : 4 Steps to match Inception
04—t Y Tom oM 200 250 oM

Training steps

247

e Batch Normalization enables higher learning rate
o Increased 30x
e Removing dropout improves validation accuracy

o Batch Normalization as a regularizer?

248

Validation accuracy

08—

i mmmm T
- : .
-
-

e Baseline: 12.2% @ 31M steps
e Ourbest model: 72.2% @ 2.7M steps
74 .8% @ 6M steps

= = = [nception
- = BN-Baseline
— BN-X30

4 Steps to match Inception

Training steps

15M 20M 25M 30M

249

Lecture 5

Batch Normalization revised

BatchNorm

e Batch normalization motivated by internal covariate shift (2015 lofee
& Szegedy)

252

BatchNorm

e Batch normalization motivated by internal covariate shift (2015 lofee
& Szegedy)

* We have moving inputs.
* Distribution changes quite a lot.

 Solution: normalize the input of each leayer.

253

BatchNorm

\© _ yi” = u(y;)

— + B
Y ())

BN (y;

* where y-(b)denotes the value of the output y;on the b-th input of a

batch.

* and [and y are learned parameters controlling the mean and
variance of the output.

254

Standard Network

Adding a BatchNorm layer (between weights and activation function)

(Santurkar, et al., 2019)
255

Training Accuracy (%)

Training with and without BatchNorm

Learning Rate=0.1 Learning Rate=0.5

100 100
S
>
O
o

—— Standard O —— Standard

o0 —— Standard + BatchNorm & 59 —— Standard + BatchNorm
o
£
=
o
I_

0 5k 10k 15k 0 5k 10k 15k
Steps Steps

(Santurkar, et al., 2019)

256

How Does Batch Normalization Help Optimization?
By Santurkar, S., Tsipras, D., llyas, A., & Madry, A. (NeurlPS 2019).

1. BatchNorm doesn't fix covariate shift.
2. If we fix covariate shift, it doesn't help.
3. If we intentionally increase ICS, it doesn’t harm.

4. BatchNorm is not the only possible normalization. There are
alternatives.

257

Training with and without BatchNorm

Standard + BatchNorm

Layer #3

Layer #11

(Santurkar, et al., 2019) o

Training with and without BatchNorm

Standard Standard + BatchNorm

Layer #3

Layer #11

(Santurkar, et al., 2019) 7

Increase Internal Covariate Shift

Standard Standard + Standard +

BatchNorm "Noisy" BatchNorm [Me+1 — Hel

—— Standard
—— Standard + BatchNorm
——— Standard + "Noisy" Batchnorm

0 d J
:) |0f.41 = 0F|
g — —— Standard
g e —— Standard + BatchNorm

——— Standard + "Noisy" Batchnorm

Layer #2
Layer#: 9

Layer #9

o

m H*

— o

** o

| S 2000 . |

(O]

>

©

— 0

= 0 5k 10k 15k

Steps
(Santurkar, et al., 2019)
Add non-stationary Gaussian noise (with a randomly sampled mean and variance at each iteration)
260

Training Accuracy

100

co
o

@)
o

N
o

N
=

Increase Internal Covariate Shift

* The optimization performance is
unaffected.

* A network with noisy BatchNorm
converges faster

e Almost the same as BN

— Standard
— Standard + BatchNorm
—— Standard + "Noisy" Batchnorm

5k 10k 15k

Steps 261
(Santurkar, et al., 2019)

L —Lipschitz and f —smooth

fis L-Lipschitz if | f(x1) = f(xz) | <L || x1-%2 | |, for all x; and x,.

fis B-smooth if its gradient is B-Lipschitz

262

BatchNorm’s effect

* BatchNorm’s reparameterization:

* Improves the Lipschitzness of the loss function.

the loss changes at a smaller rate and the magnitudes of the gradients are
smaller.

263

BatchNorm’s effect

e BatchNorm’s reparameterization:

* Improves the Lipschitzness of the loss function.
the loss changes at a smaller rate and the magnitudes of the gradients are smaller.

* |[n gradient descent, we use the local linear approximation of the loss
around the current solution to identify the best update step.

 How predictive of the nearby loss landscape this local approximation is

264

* BatchNorm’s reparameterization:

* Improves the Lipschitzness of the loss function.

the loss changes at a smaller rate and the magnitudes of the gradients are
smaller.

* BatchNorm’s reparameterization:

* Improves the Lipschitzness of the loss function.

the loss changes at a smaller rate and the magnitudes of the gradients are
smaller.

* Makes gradients of the loss more Lipschitz.
the loss exhibits a significantly better f-smoothness

1. Variation of the value of the loss:
L(x + nV£L(x)), 1 €[0.05,0.4]

2. Gradient predictiveness, i.e., the changes of the loss gradient:
||V£(x) — VL(x + nVL(x))H, n € [0.05,0.4]

LOSS Lanadscape

10!
[Standard

Standard

BatchNorm

=L

»

—
o
o

0 5k 10k 15k
Steps

L(x+nVL(z))

Gradient Predictiveness

250

200

150

100

50

[Standard
[Standard + BatchNorm

WANN h | P ‘ Wl
0 5k 10k 15k

Steps (Santurkar, et al., 2019)

268

BatchNorm’s effect

* A small variability of the loss indicates that the steps taken during
training are unlikely to drive the loss uncontrollably high.

* A good gradient predictiveness implies that the gradient evaluated at
a given point stays relevant over longer distances, hence allowing for
larger step sizes.

269

How Does Batch Normalization Help Optimization?
By Santurkar, S., Tsipras, D., llyas, A., & Madry, A. (NeurlPS 2019).

1. BatchNorm doesn't fix covariate shift.
2. If we fix covariate shift, it doesn't help.
3. If we intentionally increase ICS, it doesn’t harm.

4. BatchNorm is not the only possible normalization. There are
alternatives.

270

These effects are not unique to BatchNorm

* |In this normalization

w v —u()

= +B
¥ ())

replace denominator by [, norm. i.e. Hyl‘p

BN(y;)

271

. lp BatchNorm

* Normalization over layers

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. In arXiv preprint
arXiv:1607.06450, 2016

e Subsets of the batch

Yuxin Wu and Kaiming He. Group normalization. In European Conference on Computer Vision
(ECCV), 2018.

* Weight Normalization (normalizing the weights instead of
the activations)

Tim Salimans and Diederik P Kingma. Weight normalization: A simple reparameterization to accelerate training of deep neural
networks. In Advances in Neural Information Processing Systems (NIPS), 2016.

* ELU and SELU are two proposed non-linearities that have a decaying
slope instead of a sharp saturation and can be used as an alternative

for BatchNorm

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network learning by
exponential linear units (elus). In International Conference on Learning Representations (ICLR), 2016.

Gunter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing neural networks. In
Advances in Neural Information Processing Systems (NIPS), 2017.

