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Dropout, Batch normalization



What is dropout?

• Dropout is one of the techniques for preventing overfitting in deep 
neural network which contains a large number of parameters.
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Original Paper

• Title:
– Dropout: A Simple Way to Prevent Neural Networks from Overfitting (2014).

• Authors:
– Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, Ruslan 

Salakhutdinov

• Organization:
– Department of Computer Science, University of Toronto

• URL:
– https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf
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Overview

• The key idea is to randomly drop units from the neural network 
during training. 

• During training, dropout samples from number of different “thinned” 
network. 

• At test time, we approximate the effect of averaging the predictions 
of all these thinned networks.
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Training
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Test Time
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Applying dropout to linear regression
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Applying dropout to linear regression

229



Applying dropout to linear regression
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Applying dropout to linear regression
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Applying dropout to linear regression
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Expanding Expanding the Expectation
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Applying dropout to linear regression
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Batch Normalization 

Slide modified from Sergey Ioffe , with permission

Slides based on
Batch Normalization: Accelerating Deep Network Training by Reducing 
Internal Covariate Shift

By Sergey Ioffe and Christian Szegedy
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Batch Normalization 
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Batch Normalization 
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Batch Normalization 
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Effect of changing input distribution
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Internal covariate shift
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Lecture 5



Batch Normalization revised



BatchNorm

• Batch normalization motivated by internal covariate shift (2015 lofee
& Szegedy)
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BatchNorm

• Batch normalization motivated by internal covariate shift (2015 lofee
& Szegedy)

• We have moving inputs.

• Distribution changes quite a lot.

• Solution: normalize the input of each leayer.
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BatchNorm

𝐵𝐵𝐵𝐵 𝑦𝑦𝑗𝑗
𝑏𝑏 = 𝛾𝛾(

𝑦𝑦𝑗𝑗
𝑏𝑏 − 𝜇𝜇 𝑦𝑦𝑗𝑗
𝜎𝜎 𝑦𝑦𝑗𝑗

) + β

• where 𝑦𝑦𝑗𝑗
𝑏𝑏 denotes the value of the output 𝑦𝑦𝑗𝑗on the 𝑏𝑏-th input of a 

batch.

• and β and 𝛾𝛾 are learned parameters controlling the mean and 
variance of the output.

. 
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(Santurkar, et al., 2019)
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Training with and without BatchNorm

(Santurkar, et al., 2019)
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How Does Batch Normalization Help Optimization? 
By Santurkar, S., Tsipras, D., Ilyas, A., & Mądry, A. (NeurIPS 2019). 

1. BatchNorm doesn't fix covariate shift.

2. If we fix covariate shift, it doesn't help.

3. If we intentionally increase ICS, it doesn’t harm.

4. BatchNorm is not the only possible normalization. There are 
alternatives.
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Training with and without BatchNorm

(Santurkar, et al., 2019) 258



Training with and without BatchNorm

(Santurkar, et al., 2019) 259



Increase Internal Covariate Shift

Add non-stationary Gaussian noise (with a randomly sampled mean and variance at each iteration)
(Santurkar, et al., 2019)
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Increase Internal Covariate Shift

• The optimization performance is 
unaffected. 

• A network with noisy BatchNorm
converges faster

• Almost the same as BN

(Santurkar, et al., 2019)
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𝐿𝐿 −Lipschitz and 𝛽𝛽 −smooth

f is L-Lipschitz if │ f(x₁) – f(x₂) │ ≤ L  ││ x₁ - x₂ ││ , for all x₁ and x₂. 

f is β-smooth if its gradient is β-Lipschitz
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BatchNorm’s effect

• BatchNorm’s reparameterization:

• Improves the Lipschitzness of the loss function. 
the loss changes at a smaller rate and the magnitudes of the gradients are 
smaller.
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BatchNorm’s effect

• BatchNorm’s reparameterization:

• Improves the Lipschitzness of the loss function. 
the loss changes at a smaller rate and the magnitudes of the gradients are smaller.

• In gradient descent, we use the local linear approximation of the loss 
around the current solution to identify the best update step.

• How predictive of the nearby loss landscape this local approximation is
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BatchNorm’s effect

• BatchNorm’s reparameterization:

• Improves the Lipschitzness of the loss function. 
the loss changes at a smaller rate and the magnitudes of the gradients are 
smaller.
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BatchNorm’s effect

• BatchNorm’s reparameterization:

• Improves the Lipschitzness of the loss function. 
the loss changes at a smaller rate and the magnitudes of the gradients are 
smaller.

• Makes gradients of the loss more Lipschitz. 
the loss exhibits a significantly better  𝛽𝛽-smoothness
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BatchNorm’s effect

1. Variation of the value of the loss: 
   ℒ 𝑥𝑥 +  𝜂𝜂∇ℒ 𝑥𝑥 ,    𝜂𝜂 ∈ [0.05,0.4]

2.    Gradient predictiveness, i.e., the changes of the loss gradient: 
   ||∇ℒ 𝑥𝑥) − ∇ℒ(𝑥𝑥 + 𝜂𝜂∇ℒ 𝑥𝑥 ||,    𝜂𝜂 ∈ [0.05,0.4]
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(Santurkar, et al., 2019)
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BatchNorm’s effect

• A small variability of the loss indicates that the steps taken during 
training are unlikely to drive the loss uncontrollably high.

• A good gradient predictiveness implies that the gradient evaluated at 
a given point stays relevant over longer distances, hence allowing for 
larger step sizes.
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How Does Batch Normalization Help Optimization? 
By Santurkar, S., Tsipras, D., Ilyas, A., & Mądry, A. (NeurIPS 2019). 

1. BatchNorm doesn't fix covariate shift.

2. If we fix covariate shift, it doesn't help.

3. If we intentionally increase ICS, it doesn’t harm.

4. BatchNorm is not the only possible normalization. There are 
alternatives.
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These effects are not unique to BatchNorm

• In this normalization

𝐵𝐵𝐵𝐵 𝑦𝑦𝑗𝑗
𝑏𝑏 = 𝛾𝛾(

𝑦𝑦𝑗𝑗
𝑏𝑏 − 𝜇𝜇 𝑦𝑦𝑗𝑗
𝜎𝜎 𝑦𝑦𝑗𝑗

) + β

replace denominator by 𝑙𝑙𝑝𝑝 norm. i.e. 𝑦𝑦 𝑝𝑝
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Alternatives to BatchNorm

• 𝑙𝑙𝑝𝑝 BatchNorm
• Normalization over layers 
Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. In arXiv preprint 
arXiv:1607.06450, 2016

• Subsets of the batch
Yuxin Wu and Kaiming He. Group normalization. In European Conference on Computer Vision 
(ECCV), 2018.
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Alternatives to BatchNorm

• Weight Normalization (normalizing the weights instead of 
the activations)

Tim Salimans and Diederik P Kingma. Weight normalization: A simple reparameterization to accelerate training of deep neural 
networks. In Advances in Neural Information Processing Systems (NIPS), 2016. 

• ELU and SELU are two proposed non-linearities that have a decaying 
slope instead of a sharp saturation and can be used as an alternative 
for BatchNorm

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network learning by 
exponential linear units (elus). In International Conference on Learning Representations (ICLR), 2016.

Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing neural networks. In 
Advances in Neural Information Processing Systems (NIPS), 2017.
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