
Lecture 5

Dropout, Batch normalization

What is dropout?

• Dropout is one of the techniques for preventing overfitting in deep
neural network which contains a large number of parameters.

220

Original Paper

• Title:
– Dropout: A Simple Way to Prevent Neural Networks from Overfitting (2014).

• Authors:
– Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, Ruslan

Salakhutdinov

• Organization:
– Department of Computer Science, University of Toronto

• URL:
– https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

221

https://www.cs.toronto.edu/%7Ehinton/absps/JMLRdropout.pdf

Overview

• The key idea is to randomly drop units from the neural network
during training.

• During training, dropout samples from number of different “thinned”
network.

• At test time, we approximate the effect of averaging the predictions
of all these thinned networks.

222

223

Model

224

Model

225

Training

226

Test Time

227

Applying dropout to linear regression

228

Applying dropout to linear regression

229

Applying dropout to linear regression

230

Applying dropout to linear regression

231

Applying dropout to linear regression

232

Expanding Expanding the Expectation

233

Applying dropout to linear regression

234

Batch Normalization

Slide modified from Sergey Ioffe , with permission

Slides based on
Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift

By Sergey Ioffe and Christian Szegedy

235

Batch Normalization

236

Batch Normalization

237

Batch Normalization

238

Effect of changing input distribution

239

Internal covariate shift

240

241

242

243

244

245

246

247

248

249

Lecture 5

Batch Normalization revised

BatchNorm

• Batch normalization motivated by internal covariate shift (2015 lofee
& Szegedy)

252

BatchNorm

• Batch normalization motivated by internal covariate shift (2015 lofee
& Szegedy)

• We have moving inputs.

• Distribution changes quite a lot.

• Solution: normalize the input of each leayer.

253

BatchNorm

𝐵𝐵𝐵𝐵 𝑦𝑦𝑗𝑗
𝑏𝑏 = 𝛾𝛾(

𝑦𝑦𝑗𝑗
𝑏𝑏 − 𝜇𝜇 𝑦𝑦𝑗𝑗
𝜎𝜎 𝑦𝑦𝑗𝑗

) + β

• where 𝑦𝑦𝑗𝑗
𝑏𝑏 denotes the value of the output 𝑦𝑦𝑗𝑗on the 𝑏𝑏-th input of a

batch.

• and β and 𝛾𝛾 are learned parameters controlling the mean and
variance of the output.

.

254

(Santurkar, et al., 2019)
255

Training with and without BatchNorm

(Santurkar, et al., 2019)

256

How Does Batch Normalization Help Optimization?
By Santurkar, S., Tsipras, D., Ilyas, A., & Mądry, A. (NeurIPS 2019).

1. BatchNorm doesn't fix covariate shift.

2. If we fix covariate shift, it doesn't help.

3. If we intentionally increase ICS, it doesn’t harm.

4. BatchNorm is not the only possible normalization. There are
alternatives.

257

Training with and without BatchNorm

(Santurkar, et al., 2019) 258

Training with and without BatchNorm

(Santurkar, et al., 2019) 259

Increase Internal Covariate Shift

Add non-stationary Gaussian noise (with a randomly sampled mean and variance at each iteration)
(Santurkar, et al., 2019)

260

Increase Internal Covariate Shift

• The optimization performance is
unaffected.

• A network with noisy BatchNorm
converges faster

• Almost the same as BN

(Santurkar, et al., 2019)
261

𝐿𝐿 −Lipschitz and 𝛽𝛽 −smooth

f is L-Lipschitz if │ f(x₁) – f(x₂) │ ≤ L ││ x₁ - x₂ ││ , for all x₁ and x₂.

f is β-smooth if its gradient is β-Lipschitz

262

BatchNorm’s effect

• BatchNorm’s reparameterization:

• Improves the Lipschitzness of the loss function.
the loss changes at a smaller rate and the magnitudes of the gradients are
smaller.

263

BatchNorm’s effect

• BatchNorm’s reparameterization:

• Improves the Lipschitzness of the loss function.
the loss changes at a smaller rate and the magnitudes of the gradients are smaller.

• In gradient descent, we use the local linear approximation of the loss
around the current solution to identify the best update step.

• How predictive of the nearby loss landscape this local approximation is

264

BatchNorm’s effect

• BatchNorm’s reparameterization:

• Improves the Lipschitzness of the loss function.
the loss changes at a smaller rate and the magnitudes of the gradients are
smaller.

265

BatchNorm’s effect

• BatchNorm’s reparameterization:

• Improves the Lipschitzness of the loss function.
the loss changes at a smaller rate and the magnitudes of the gradients are
smaller.

• Makes gradients of the loss more Lipschitz.
the loss exhibits a significantly better 𝛽𝛽-smoothness

266

BatchNorm’s effect

1. Variation of the value of the loss:
 ℒ 𝑥𝑥 + 𝜂𝜂∇ℒ 𝑥𝑥 , 𝜂𝜂 ∈ [0.05,0.4]

2. Gradient predictiveness, i.e., the changes of the loss gradient:
 ||∇ℒ 𝑥𝑥) − ∇ℒ(𝑥𝑥 + 𝜂𝜂∇ℒ 𝑥𝑥 ||, 𝜂𝜂 ∈ [0.05,0.4]

267

(Santurkar, et al., 2019)

268

BatchNorm’s effect

• A small variability of the loss indicates that the steps taken during
training are unlikely to drive the loss uncontrollably high.

• A good gradient predictiveness implies that the gradient evaluated at
a given point stays relevant over longer distances, hence allowing for
larger step sizes.

269

How Does Batch Normalization Help Optimization?
By Santurkar, S., Tsipras, D., Ilyas, A., & Mądry, A. (NeurIPS 2019).

1. BatchNorm doesn't fix covariate shift.

2. If we fix covariate shift, it doesn't help.

3. If we intentionally increase ICS, it doesn’t harm.

4. BatchNorm is not the only possible normalization. There are
alternatives.

270

These effects are not unique to BatchNorm

• In this normalization

𝐵𝐵𝐵𝐵 𝑦𝑦𝑗𝑗
𝑏𝑏 = 𝛾𝛾(

𝑦𝑦𝑗𝑗
𝑏𝑏 − 𝜇𝜇 𝑦𝑦𝑗𝑗
𝜎𝜎 𝑦𝑦𝑗𝑗

) + β

replace denominator by 𝑙𝑙𝑝𝑝 norm. i.e. 𝑦𝑦 𝑝𝑝

271

Alternatives to BatchNorm

• 𝑙𝑙𝑝𝑝 BatchNorm
• Normalization over layers
Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. In arXiv preprint
arXiv:1607.06450, 2016

• Subsets of the batch
Yuxin Wu and Kaiming He. Group normalization. In European Conference on Computer Vision
(ECCV), 2018.

272

Alternatives to BatchNorm

• Weight Normalization (normalizing the weights instead of
the activations)

Tim Salimans and Diederik P Kingma. Weight normalization: A simple reparameterization to accelerate training of deep neural
networks. In Advances in Neural Information Processing Systems (NIPS), 2016.

• ELU and SELU are two proposed non-linearities that have a decaying
slope instead of a sharp saturation and can be used as an alternative
for BatchNorm

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network learning by
exponential linear units (elus). In International Conference on Learning Representations (ICLR), 2016.

Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing neural networks. In
Advances in Neural Information Processing Systems (NIPS), 2017.

273

