
Lecture 6

Convolutional Neural Network (CNNs)

Slides are partially based on Book, Deep Learning

by Bengio, Goodfellow, and Aaron Courville, 2015

Convolutional Networks

Convolutional networks are simply
neural networks that use convolution
in place of general matrix
multiplication in at least one of their
layers.

276

Convolution

This operation is called convolution.

The convolution operation is typically denoted with an asterisk:

277

Discrete convolution

If we now assume that x and w are defined only on integer t, we can
define the discrete convolution:

278

In practice

we often use convolutions over more than one axis at a time.

The input is usually a multidimensional array of data.

The kernel is usually a multidimensional array of parameters that
should be learned.

we assume that these functions are zero everywhere but the finite set of
points for which we store the values.

we can implement the infinite summation as a summation over a finite
number of array elements.
 279

convolution and cross-correlation
convolution is commutative

Cross-correlation,

Many machine learning libraries implement cross-correlation but call it
convolution.

https://www.youtube.com/watch?v=Ma0YONjMZLI

Fig 9.1

Discrete convolution can be viewed as multiplication by a matrix. 280

https://www.youtube.com/watch?v=Ma0YONjMZLI

281

Convolutions

282

Convolutions

283

Convolutions

284

Convolutions

285

Convolutions

286

Convolutions

287

Convolutions

288

Convolutions

289

Convolutions

290

Sparse interactions

In feed forward neural network every output unit interacts with every
input unit.

Convolutional networks, typically have sparse connectivity (sparse
weights)

This is accomplished by making the kernel smaller than the input

291

Sparse interactions

When we have m inputs and n outputs, then matrix multiplication

requires m × n parameters. and the algorithms used in practice have O(m × n)

runtime (per example).

limit the number of connections each output may have to k, then

requires only k × n parameters and O(k × n) runtime.

292

Parameter sharing

In a traditional neural net, each element of the weight matrix is multiplied
by one element of the input. i.e. It is used once when computing the
output of a layer.

In CNNs each member of the kernel is used at every position of the input

Instead of learning a separate set of parameters for every location, we
learn only one set.

293

Equivariance

A function f (x) is equivariant to a function g if f (g(x)) = g(f (x)).

294

Equivariance

A convolutional layer have equivariance to translation.
For example

If we apply this transformation to x, then apply convolution, the result will
be the same as if we applied convolution to x, then applied the
transformation to the output.

295

Equivariance

For images, convolution creates a 2-D map of where certain features
appear in the input.

Note that convolution is not equivariant to some other transformations,
such as changes in the scale or rotation of an image.

296

Convolutional Networks

The first stage (Convolution):

The layer performs several convolutions in
parallel to produce a set of preactivations.

The second stage (Detector):

Each preactivation is run
through a nonlinear activation
function (e.g. rectified linear).

The third stage (Pooling)

297

Popular Pooling functions

The maximum of a rectangular neighborhood (Max pooling
operation)

The average of a rectangular neighborhood.

The L2 norm of a rectangular neighborhood.

A weighted average based on the distance from the central pixel.
298

Pooling with downsampling

Max-pooling with a pool width of 3 and a stride between pools of 2.
This reduces the representation size by a factor of 2,which reduces the
computational and statistical burden on the next layer.

299

Popular Pooling functions

The maximum of a rectangular neighborhood (Max pooling
operation)

The average of a rectangular neighborhood.

The L2 norm of a rectangular neighborhood.

A weighted average based on the distance from the central pixel.
300

Pooling with downsampling

Max-pooling with a pool width of 3 and a stride between pools of 2.
This reduces the representation size by a factor of 2,which reduces the
computational and statistical burden on the next layer.

301

Pooling and translations

In Right panel, the input has been shifted to the right by 1 pixel.
Every value in the bottom row has changed, but only half of the
values in the top row have changed.

pooling helps to make the representation become invariant to small
translations of the input.

302

Pooling and translations

Invariance to local translation can be a very useful property if we care
more about whether some feature is present than exactly where it is.

For example: In a face, we need not know the exact location of the eyes.

303

Pooling: inputs of varying size

Example: we want to classify images of variable size.

The input to the classification layer must have a fixed size.

In the final pooling output (for example) four sets of summary statistics,
one for each quadrant of an image, regardless of the image size.

304

Pooling: inputs of varying size

It is also possible to dynamically pool features together, for example, by
running a clustering algorithm on the locations of interesting features
(Boureau et al., 2011).

i.e. a different set of pooling regions for each image.

Learn a single pooling structure that is then applied to all images (Jia et
al., 2012).

305

Convolution and Pooling as an Infinitely Strong Prior

A weak prior is a prior distribution with high entropy, such a Gaussian
distribution with high variance

A strong prior has very low entropy, such as a Gaussian distribution with
low variance.

An infinitely strong prior places zero probability on some parameters and
says

a convolutional net is similar to a fully connected net with an
infinitely strong prior over its weights.

306

Convolution and Pooling as an Infinitely Strong Prior

The weights for one hidden unit must be identical to the weights of
its neighbor, but shifted in space. The weights must be zero, except
for in the small, spatially contiguous receptive field assigned to that
hidden unit.

use of convolution as infinitely strong prior probability distribution
over the parameters of a layer. This prior says that the function the
layer should learn contains only local interactions and is equivariant
to translation.

307

Convolution and Pooling as an Infinitely Strong Prior

The use of pooling is in infinitely strong prior that each unit should be
invariant to small translations.

convolution and pooling can cause underfitting

308

Practical issues

The input is usually not just a grid of real values.

It is a grid of vector-valued observations.

For example, a color image has a red, green, and blue intensity at each
pixel.

309

Practical issues

When working with images, we usually think of the input and output of
the convolution as 3-D tensors.

One index into the different channels and two indices into the coordinates
of each channel.

Software implementations usually work in batch mode, so they will
actually use 4-D tensors, with the fourth axis indexing different
examples in the batch.

310

Training

Suppose we want to train a convolutional network that incorporates
convolution of kernel stack K applied to multi-channel image V with stride
s: c (K; V ; s)

Suppose we want to minimize some loss function J (V ; K).
During forward propagation, we will need to use c itself to output Z,

Z is propagated through the rest of the network and used to compute J.

311

Training

During backpropagation, we will receive a tensor G such that

To train the network, we need to compute the derivatives with
respect to the weights in the kernel. To do so, we can use a function

If this layer is not the bottom layer of the network, we?ll need to compute
the gradient with respect to V in order to backpropagate the error farther
down. To do so, we can use a function

312

Random or Unsupervised Features

the most expensive part of convolutional network training is learning the
features.

When performing supervised training with gradient descent, every
gradient step requires a complete run of forward propagation and
backward propagation through the entire network.

use features that are not trained in a supervised fashion.

313

Random or Unsupervised Features

There are two basic strategies for obtaining convolution kernels
without supervised training.

One is to simply initialize them randomly.

learn them with an unsupervised criterion.

314

Random or Unsupervised Features

Random filters often work surprisingly well in convolutional networks.

layers consisting of convolution following by pooling naturally become
frequency selective and translation invariant when assigned random
weights.

that this provides an inexpensive way to choose the architecture of a
convolutional network: first evaluate the performance of several
convolutional network architectures by training only the last layer, then
take the best of these architectures and train the entire architecture using
a more expensive approach.

315

Residual Networks (ResNet)

• ResNet, short for Residual Networks, was introduced by Kaiming He et al.
from Microsoft Research in 2015.

• It brought a significant breakthrough in deep learning by enabling the
training of much deeper networks, addressing the vanishing gradient
problem.

316

Residual Networks (ResNet)

• ResNet introduces the concept of
skip connections (or residual
connections) that allow the
gradient to be directly
backpropagated to earlier layers.

• Skip connections help in
overcoming the degradation
problem, where the accuracy
saturates and then degrades
rapidly as the network depth
increases.

317

• .
• Variants and Applications:

• Several variants of ResNet have been developed, including ResNet-50,
ResNet-101, and ResNet-152, differing in the number of layers.

• ResNet has been widely adopted for various computer vision tasks, including
image classification, object detection, and facial recognition.

318

• DenseNet, short for Densely Connected Networks, was introduced by
Gao Huang et al. in 2017.

• It is known for its efficient connectivity between layers, which
enhances feature propagation and reduces the number of
parameters.

319

320

• Key Feature – Dense Connectivity:
• In DenseNet, each layer receives feature maps from all preceding

layers and passes its own feature maps to all subsequent layers.
• This dense connectivity improves the flow of information and

gradients throughout the network, mitigating the vanishing gradient
problem.

321

