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Layer norm, FRN, TLU, 
Introduction to Keras



Normalization in CNNs

• Batch Normalization: Standardizes activations within a feature 
channel to have zero mean and unit variance, facilitating training and 
enabling larger learning rates.

• Challenges: Struggles with small batch sizes due to unreliable 
estimated mean and variance parameters.
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Data Representations 

• Tensor in CNNs: Remember that in CNNs, data is represented in the 
form of a tensor.

• A specific element in the tensor can be accessed using an index 
𝑖𝑖 = (𝑖𝑖𝑁𝑁 , 𝑖𝑖𝐻𝐻 , 𝑖𝑖𝑊𝑊, 𝑖𝑖𝐶𝐶) = (i_N, i_H, i_W, i_C) i = (i_N, i_H, i_W, i_C)

• (𝑖𝑖𝑁𝑁): Batch Size, Number of examples processed together in a single 
forward/backward pass.

• (𝑖𝑖𝐻𝐻) (𝑖𝑖𝑊𝑊): Height and Width, Spatial dimensions of the input image or feature 
map, representing the vertical and horizontal pixels respectively.

• (𝑖𝑖𝐶𝐶): Channels, Depth of the input image or feature map, representing color 
channels (e.g., RGB) or feature channels in deeper layers.
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Layer Normalization

326



Illustration of different normalization 
methods

• The pixels in blue are normalized by the same 
mean and variance

• In Batch Norm, we pool over batch, height, width, 

• In Layer Norm we pool over channel, height and 
width

Credit: Y. Wu and K. He. “Group Normalization”. 
In: ECCV. 2018.
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Filter Response Normalization (FRN)
• S. Singh and S. Krishnan. “Filter Response Normalization Layer: Eliminating Batch Dependence in the Training 

of Deep Neural Networks”. In: CVPR. 2020.

• Robust normalization technique with small batch sizes
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Filter Response Normalization (FRN)
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Scaling and Shifting with TLU
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Filter Response Normalization (FRN)

• Stability: Provides stable activations and gradients.

• Robust Training: Ensures consistent and robust training across various 
batch sizes and network architectures.
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Normalizer-free networks

• A. Brock, S. De, S. L. Smith, and K. Simonyan. “High-Performance Large-Scale Image Recognition 
Without Normalization”. In (2021). arXiv: 2102.06171 [cs.CV].

• A methodology that trains deep residual networks without utilizing 
batch normalization or other normalization layers.

• Adaptive Gradient Clipping, which dynamically adjusts the clipping 
strength during training to avoid instabilities.
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Gradient Clipping
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Dynamic Gradient Clipping in Normalizer-Free 
Networks
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Common architectures for image 
classification

• AlexNet 2012
• GoogLeNet (Inception) 2015
• ResNet 2015
• DenseNet 2017
• ConvNet 2022 (Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie. “A 

ConvNet for the 2020s”. In: (2022). arXiv: 2201.03545 [cs.CV].)

335



Neural Architecture Search (NAS)

• NAS: Automated neural network design.

• Goal: Optimize architecture for specific tasks.
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Challenges and Objectives in NAS

• optimize for various objectives (accuracy, model size, etc) 
simultaneously, 

• The primary challenge in NAS is the computational expense of 
evaluating the objective, which involves training each candidate 
model.

• Solutions include using Bayesian optimization to reduce calls to the 
objective function, creating differentiable approximations to the loss, 
and converting the architecture into a kernel function.
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NAS approaches 

• Bayesian Optimization: Reduces the number of calls to the objective 
function.

• Differentiable Approximations: Allows the use of gradient-based 
optimization methods to navigate the architecture search space.

• Neural Tangent Kernel Method: Converts the architecture into a 
kernel function, enabling the analysis of its eigenvalues to predict 
performance without actual training.
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Keras: The Python Deep Learning library

Some slides courtesy of Aref Jafari
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Step 1) Import Libraries

340



Step 3) Define model architecture
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Step 3) Define model architecture
(Alternatives for activation)
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Step 3) Define model architecture
(Alternatives for activation)

linear

𝑓𝑓 𝑥𝑥 = 𝑥𝑥
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Step 3) Define model architecture
(Alternatives for activation)

sigmoid

𝑓𝑓 𝑥𝑥 =
1

1 − 𝑒𝑒−𝑥𝑥
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Step 3) Define model architecture
(Alternatives for activation)

tanh

𝑓𝑓 𝑥𝑥 = tanh(𝑥𝑥)
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Step 3) Define model architecture
(Alternatives for activation)

relu

𝑓𝑓 𝑥𝑥 = max(0, 𝑥𝑥)
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Step 3) Define model architecture
(Alternatives for activation)

softplus

𝑓𝑓 𝑥𝑥 = ln[1 + 𝑒𝑒𝑥𝑥]
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Step 3) Define model architecture
(Alternatives for activation)

LeakyReLU
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Step 3) Define model architecture
(Alternatives for activation)

𝜎𝜎(𝒛𝒛)𝑗𝑗 =
𝑒𝑒𝑧𝑧𝑗𝑗

∑𝑘𝑘=1𝐾𝐾 𝑒𝑒𝑧𝑧𝑘𝑘
 𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 = 1, … ,𝐾𝐾

softmax
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Step 3) Define model architecture
(Alternatives for activation)
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Step 3) Define model architecture
(Other attributes of Dense layer)
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Step 3) Define model architecture
(Other attributes of Dense layer)

instances of 
keras.regularizers.Regularizer 
(l1, l2, …)
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Step 3) Define model architecture
(Other attributes of Dense layer)

Example:

Functions from the constraints 
module allow setting constraints 
(eg. non-negativity) on network 
parameters during optimization

Available constraints
max_norm(max_value=2, axis=0): maximum-
norm constraint
non_neg(): non-negativity constraint
unit_norm(): unit-norm constraint, enforces 
the matrix to have unit norm along the last 
axis
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Step 3) Define model architecture
(Other attributes of Dense layer)
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Step 3) Define model architecture
(Dropout Layers )

Example:
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Step 3) Define model architecture
(Batch Normalization Layers )

Example:
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Step 4) Compile model
(Loss functions)

Available loss functions:
• mean_squared_error
• mean_absolute_error
• mean_absolute_percentage_error
• mean_squared_logarithmic_error
• squared_hinge
• hinge
• categorical_hinge
• logcosh
• categorical_crossentropy
• sparse_categorical_crossentropy
• binary_crossentropy
• kullback_leibler_divergence
• poisson
• cosine_proximity

357



Step 4) Compile model
(Loss functions)

Available loss functions:
• mean_squared_error
• mean_absolute_error
• mean_absolute_percentage_error
• mean_squared_logarithmic_error
• squared_hinge
• hinge
• categorical_hinge
• logcosh
• categorical_crossentropy
• sparse_categorical_crossentropy
• binary_crossentropy
• kullback_leibler_divergence
• poisson
• cosine_proximity

Custom loss function
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Step 4) Compile model
(Optimizers)

Available loss functions:
• SGD
• RMSprop
• Adagrad
• Adadelta
• Adam
• Adamax
• Nadam
• TFOptimizer

Adagrad
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