
Lecture 7



Layer norm, FRN, TLU, 
Introduction to Keras



Normalization in CNNs

• Batch Normalization: Standardizes activations within a feature 
channel to have zero mean and unit variance, facilitating training and 
enabling larger learning rates.

• Challenges: Struggles with small batch sizes due to unreliable 
estimated mean and variance parameters.

324



Data Representations 

• Tensor in CNNs: Remember that in CNNs, data is represented in the 
form of a tensor.

• A specific element in the tensor can be accessed using an index 
𝑖𝑖 = (𝑖𝑖𝑁𝑁 , 𝑖𝑖𝐻𝐻 , 𝑖𝑖𝑊𝑊, 𝑖𝑖𝐶𝐶) = (i_N, i_H, i_W, i_C) i = (i_N, i_H, i_W, i_C)

• (𝑖𝑖𝑁𝑁): Batch Size, Number of examples processed together in a single 
forward/backward pass.

• (𝑖𝑖𝐻𝐻) (𝑖𝑖𝑊𝑊): Height and Width, Spatial dimensions of the input image or feature 
map, representing the vertical and horizontal pixels respectively.

• (𝑖𝑖𝐶𝐶): Channels, Depth of the input image or feature map, representing color 
channels (e.g., RGB) or feature channels in deeper layers.

325



Layer Normalization

326



Illustration of different normalization 
methods

• The pixels in blue are normalized by the same 
mean and variance

• In Batch Norm, we pool over batch, height, width, 

• In Layer Norm we pool over channel, height and 
width

Credit: Y. Wu and K. He. “Group Normalization”. 
In: ECCV. 2018.

327



Filter Response Normalization (FRN)
• S. Singh and S. Krishnan. “Filter Response Normalization Layer: Eliminating Batch Dependence in the Training 

of Deep Neural Networks”. In: CVPR. 2020.

• Robust normalization technique with small batch sizes

328



Filter Response Normalization (FRN)

329



Scaling and Shifting with TLU

330



Filter Response Normalization (FRN)

• Stability: Provides stable activations and gradients.

• Robust Training: Ensures consistent and robust training across various 
batch sizes and network architectures.

331



Normalizer-free networks

• A. Brock, S. De, S. L. Smith, and K. Simonyan. “High-Performance Large-Scale Image Recognition 
Without Normalization”. In (2021). arXiv: 2102.06171 [cs.CV].

• A methodology that trains deep residual networks without utilizing 
batch normalization or other normalization layers.

• Adaptive Gradient Clipping, which dynamically adjusts the clipping 
strength during training to avoid instabilities.

332



Gradient Clipping

333



Dynamic Gradient Clipping in Normalizer-Free 
Networks

334



Common architectures for image 
classification

• AlexNet 2012
• GoogLeNet (Inception) 2015
• ResNet 2015
• DenseNet 2017
• ConvNet 2022 (Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie. “A 

ConvNet for the 2020s”. In: (2022). arXiv: 2201.03545 [cs.CV].)

335



Neural Architecture Search (NAS)

• NAS: Automated neural network design.

• Goal: Optimize architecture for specific tasks.

336



Challenges and Objectives in NAS

• optimize for various objectives (accuracy, model size, etc) 
simultaneously, 

• The primary challenge in NAS is the computational expense of 
evaluating the objective, which involves training each candidate 
model.

• Solutions include using Bayesian optimization to reduce calls to the 
objective function, creating differentiable approximations to the loss, 
and converting the architecture into a kernel function.

337



NAS approaches 

• Bayesian Optimization: Reduces the number of calls to the objective 
function.

• Differentiable Approximations: Allows the use of gradient-based 
optimization methods to navigate the architecture search space.

• Neural Tangent Kernel Method: Converts the architecture into a 
kernel function, enabling the analysis of its eigenvalues to predict 
performance without actual training.

338



Keras: The Python Deep Learning library

Some slides courtesy of Aref Jafari

339



Step 1) Import Libraries

340



Step 3) Define model architecture

341



Step 3) Define model architecture
(Alternatives for activation)

342



Step 3) Define model architecture
(Alternatives for activation)

linear

𝑓𝑓 𝑥𝑥 = 𝑥𝑥

343



Step 3) Define model architecture
(Alternatives for activation)

sigmoid

𝑓𝑓 𝑥𝑥 =
1

1 − 𝑒𝑒−𝑥𝑥

344



Step 3) Define model architecture
(Alternatives for activation)

tanh

𝑓𝑓 𝑥𝑥 = tanh(𝑥𝑥)

345



Step 3) Define model architecture
(Alternatives for activation)

relu

𝑓𝑓 𝑥𝑥 = max(0, 𝑥𝑥)

346



Step 3) Define model architecture
(Alternatives for activation)

softplus

𝑓𝑓 𝑥𝑥 = ln[1 + 𝑒𝑒𝑥𝑥]

347



Step 3) Define model architecture
(Alternatives for activation)

LeakyReLU

348



Step 3) Define model architecture
(Alternatives for activation)

𝜎𝜎(𝒛𝒛)𝑗𝑗 =
𝑒𝑒𝑧𝑧𝑗𝑗

∑𝑘𝑘=1𝐾𝐾 𝑒𝑒𝑧𝑧𝑘𝑘
 𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 = 1, … ,𝐾𝐾

softmax

349



Step 3) Define model architecture
(Alternatives for activation)

350



Step 3) Define model architecture
(Other attributes of Dense layer)

351



Step 3) Define model architecture
(Other attributes of Dense layer)

instances of 
keras.regularizers.Regularizer 
(l1, l2, …)

352



Step 3) Define model architecture
(Other attributes of Dense layer)

Example:

Functions from the constraints 
module allow setting constraints 
(eg. non-negativity) on network 
parameters during optimization

Available constraints
max_norm(max_value=2, axis=0): maximum-
norm constraint
non_neg(): non-negativity constraint
unit_norm(): unit-norm constraint, enforces 
the matrix to have unit norm along the last 
axis

353



Step 3) Define model architecture
(Other attributes of Dense layer)

354



Step 3) Define model architecture
(Dropout Layers )

Example:

355



Step 3) Define model architecture
(Batch Normalization Layers )

Example:

356



Step 4) Compile model
(Loss functions)

Available loss functions:
• mean_squared_error
• mean_absolute_error
• mean_absolute_percentage_error
• mean_squared_logarithmic_error
• squared_hinge
• hinge
• categorical_hinge
• logcosh
• categorical_crossentropy
• sparse_categorical_crossentropy
• binary_crossentropy
• kullback_leibler_divergence
• poisson
• cosine_proximity

357



Step 4) Compile model
(Loss functions)

Available loss functions:
• mean_squared_error
• mean_absolute_error
• mean_absolute_percentage_error
• mean_squared_logarithmic_error
• squared_hinge
• hinge
• categorical_hinge
• logcosh
• categorical_crossentropy
• sparse_categorical_crossentropy
• binary_crossentropy
• kullback_leibler_divergence
• poisson
• cosine_proximity

Custom loss function

358



Step 4) Compile model
(Optimizers)

Available loss functions:
• SGD
• RMSprop
• Adagrad
• Adadelta
• Adam
• Adamax
• Nadam
• TFOptimizer

Adagrad

359



360




