Lecture 8

Recurrent Neural Network
(RNNSs)

Sequential data

Recurrent neural networks (RNNs) are often used for handling sequential
data.

They introduced first in 1986 (Rumelhart et al 1986).

Sequential data usually involves variable length inputs.

363

Parameter sharing

Parameter sharing makes it possible to extend and apply the model to
examples of different lengths and generalize across them.

X1
| n

X2

X1 :
n

364

Recurrent neural network

Vi1 Vi Vi
SI’“]. . St‘+f|. .
W
O M
M— —
Xe-1 Xt+1

0000 (0000| (0000

Figure: Richar@&scher

Dynamic systems

The classical form of a dynamical system:

St = f@(St—l)

St_1 St =3 W |

—(O—(O—(O—
o Jo o o

366

Dynamic systems

Now consider a dynamic system with an external signal x
St = f@(st—laxt)

St+41

1u1&ﬂd

7 | 4 i Sy |

The state contains information about the whole past sequence.

St = gt(Xta Xt—1y Xt—gy -+« 5 X2, Xl)

367

Parameter sharing

We can think of s; as a summary of the past sequence of inputs up to t.

368

Parameter sharing

We can think of s; as a summary of the past sequence of inputs up to t.

If we define a different function g; for each possible sequence length, we
would not get any generalization.

369

Parameter sharing

We can think of s; as a summary of the past sequence of inputs up to t.

If we define a different function g; for each possible sequence length, we
would not get any generalization.

If the same parameters are used for any sequence length allowing much
better generalization properties.

370

Recurrent Neural Networks

t+1

a,=b+ Ws,_; + Ux;
s; = tanh(a;)

o, = c+ Vs;

p: = softmax(o;)

371

Computing the Gradient in a
Recurrent Neural Network

Using the generalized back-propagation algorithm one can obtain the so-
called Back-Propagation Through Time (BPTT) algorithm.

372

373

6—1 O¢ &tﬂ
L: Lt
t—1 St St+1
W %4 Q W oL JL 0L,
IU [J [J 00, 0L, 00,
Lt—1 L Lt+1

374

Ot—1 O¢ 6“
V V)
i—1 St 5t+1
W W ;
U U U
Lt—1 L Lt+1

L_ZLt

0 8Lt
L

80t 00,

375

L:ZLt

1
oL 9§ 8Lt/
00, PL: 90,

376

6—1 O¢ &H
V V)
i—1 St St+1
W %4 ; W
U U U
Lt—1 L Lt+1

L:ZLt

t

1
oL 9§ 8Lt/

00, AL, 00,

oL 9L 907
0Sr 007 0Sr

377

0St Y00+ 0St

378

(C;))t—l O¢ &H
V V)
i—1 St St+1
W T
U U U
Lt—1 L Lt+1

L:ZLt
t

1
oL 9§ 8Lt/

00, AL, 00,
V

oL L 90+

95+ Y00+/057

379

(C;))t—l O¢ &H
V V)
i—1 St St+1
W T
U U U
Lt—1 L Lt+1

L:ZLt
t

1
oL 0 8Lt/
00, AL, 00,
V
oL L 90+
95+ Y00+/057

oL oL 00 OL 0S:41

S, 90, 0S5, 951 0S.

380

6—1 Ot &H
|4 Vi
%74 t—1 St St+1
W |44 ; W
U U U
Lt—1 L Lt+1

O

L:ZLt
t

1
oL 9§ 8Lt/

90, ~ L. 90,

\%

oL A 9or

057 Y007 /oSt
oL 8L 90, IL 89S

S, 90, 0S5, 951 0S.

= V4 (5t+1.W<1 — tanh®*(b + WS,_; + UXt))

381

(C;))t—l O¢ &H
L: Lt
t—1 St St+1 1
\
W 7O 7o oL 9 8Lt/
IU [J [J 00; L, 00,

Lt—1 It Lt+1 Y%
oL pLobr
0S+ Y001 /0S5t

oL JL 80t+ OL 0541
ast N aotast 35t+1. ast

5t :d\/ -+ 5t_|_1.W<1 — tanhz(b -+ WSt_l + UXt))

382

(C;))t—l O¢ &H
V V)
i—1 St St+1
W T
U U U
Lt—1 L Lt+1

oL

L:ZLt
t

1
oL 9§ 8Lt/

00, AL, 00,
V

oL L 90+

95+ Y00+/057

L 90, L 0Si,

S, 90, 0S5, 951 0S.

5t :d\/ -+ 5t_|_1.W<1 — tanhz(b -+ WSt_l + UXt))

\ J
Y

St

383

(C;))t—l O¢ &H
V V)
i—1 St St+1
W T
U U U
Lt—1 L Lt+1

5t :d\/ + 5t_|_1.W<1 — tanhz(b + WSt_l + UXt))

oL

L:ZLt
t

1
oL 9§ 8Lt/

00, AL, 00,
V

oL L 90+

95+ Y00+/057

L 90, L 0Si,

95, 90, 05, ~.AS . as

diag(1 — S?)

|

)

\ J
Y

St

384

385

386

Ot—1 Ot 6+1
V V]
t—1 St St+1
W %% ; W
U U U
7, | Xt Lt+1

387

388

389

Facing the challenge

Gradients propagated over many stages tend to either vanish (most of
the time) or explode.

390

Exploding or Vanishing Product of Jacobians

In recurrent nets (also in very deep nets), the final output is the composi-
tion of a large number of non-linear transformations.

Even if each of these non-linear transformations is smooth. Their compo-
sition might not be.

The derivatives through the whole composition will tend to be either very
small or very large.

391

Exploding or Vanishing Product of Jacobians

The Jacobian (matrix of derivatives) of a composition is the product of
the Jacobians of each stage.

I

f:fTOfT_lo...,féOf.l

where (f o g)(x) = f (g(x))
(fog)(x)=(f"og)(x)- g'(x)=1f(g(x))g'(x)

392

Exploding or Vanishing Product of Jacobians

The Jacobian matrix of f(x) derivatives of with respect to its input

vector x Is
fl = f}f}_l...,fz’fl

where

f'/ — af(X)

Ox

and

f/ — aﬂ(at)

‘ Oa,

where a; = fi_1(fia(. .., H(fi(X)))):

393

Exploding or Vanishing Product of Jacobians

Simple example

Suppose: all the numbers in the product are scalar and have the same
value a.

multiplying many numbers together tends to be either very large or very
small.

If T goes to oo, then

a’ goes to oo if a > 1

al goesto 0if a < 1

394

Facing the challenge

Gradients propagated over many stages tend to either vanish (most of
the time) or explode.

395

Echo State Networks

set the recurrent and input weights such that the recurrent hidden units
do a good job of capturing the history of past inputs, and only learn the
output weights.

s; = o(Ws;_1 + Ux;)

e Ot—1 O t+1
9 9 8

V V

S W St St+1
=) ’é W'({ T AT
unfold [

X $t 1 ilft Lt+1

396

Echo State Networks

If a change As in the state at t is aligned with an eigenvector v of jacobian
J with eigenvalue A > 1, then the small change As becomes \As after
one time step, and A\‘As after t time steps.

If the largest eigenvalue\ < 1, the map from t to t 4+ 1 is contractive.

The network forgetting information about the long-term past.

Set the weights to make the Jacobians slightly contractive.

397

Long delays

Use recurrent connections with long delays.

398

Leaky Units

Recall that
s; = o(Ws;_1 + Ux;)
Consider
s;; = (1— l)s,g_l -+ lO(WSt_l + Ux;)
Ti Ti
1< <

7; = 1, Ordinary RNN

7; > 1, gradients propagate more easily.

T7; >> 1, the state changes very slowly, integrating the past values asso-
ciated with the input sequence.

399

Gated RNNs

It might be useful for the neural network to forget the old state in some
cases.

Example:aabbbaaaabab
It might be useful to keep the memory of the past.
Example:

Instead of manually deciding when to clear the state, we want the neural
network to learn to decide when to do it.

400

Gated RNNs, the Long-Short-Term-Memory

The Long-Short-Term-Memory (LSTM) algorithm was proposed in 1997
(Hochreiter and Schmidhuber, 1997).

Several variants of the LSTM are found in the literature:
Hochreiter and Schmidhuber 1997

Graves, 2012

Graves et al., 2013

Sutskever et al., 2014

the principle is always to have a linear self-loop through which gradients

can flow for long duration.
401

Gated Recurrent Units (GRU)

Recent work on gated RNNs, Gated Recurrent Units (GRU) was
proposed in 2014

Cho et al., 2014
Chung et al., 2014, 2015
Jozefowicz et al., 2015

Chrupala et al., 2015

402

Gated RNNs

OUTFUT GATE

FORGET GATE

[WEUT GATE

:

KET MFUT

memory cell
input

i P i i o i

self-recurrent
connection

» memory cell

i 1

I r g - |

! |

! |

; |

: ipdaling lerm g My :

' . —l—i—)
I | my;
I |

: input outp :

: L gate gate| |

. |

! |

! |

1 7 .

N o e e s e e i S s -

forget gate
a
Input gate output gate

output

403

Gated Recurrent Units (GRU)

Standard RNN computes hidden layer at next time step directly:

St — U(Wst_]_ + UXt)

GRU first computes an update Gate (another layer) based on current
input vector and hidden state

Z, = O'(U(Z)Xt + W(Z)st_l)
compute reset gate similarly but with different weights

rt — O-(U(r)Xt —l— W(r)St_]_)

404

Gated Recurrent Units (GRU)

Update gate: z; = O'(U(Z)Xt — W(Z)st_l)
Reset gate: r, = o(Ux, + Ws,_,)
New memory content :

§t = tanh(UXt —|_ I+ © Wst_]_)

iIf reset gate is 0, then this ignores previous memory and only stores the
new information
Final memory at time step combines current and previous time steps :

~ 405

St:ZtOSt—l—l_(]-_Zt)OSt

Update gate:

Z; = O'(U(Z)Xt + W(Z)st_l)

Reset gate:
I’t — O-(U(r)Xt —l_ W(r)st_]_)
New memory content:

gt — tanh(UXt ‘|— I+ O Wst_]_)

~

St = Zy O 541 + (]. — Zt) O St Joe

Gated Recurrent Units (GRU)

ze = o(UBx, + W&s, ;)

e =o(UNx, + Ws,_,)
S; = tanh(Ux; + r; o Ws;_4)
St :ZtOSt—1‘|‘(1—Zt)O§t

If reset is close to 0, ignore previous hidden state — Allow model to drop
information that is irrelevant

Update gate z controls how much of past state should matter now.

If z close to 1, then we can copy information in that unit through many
time steps.

Units with short term dependencies often have reset gates very active.

407

Clipping Gradients

'0.35
0.30
(0.25
o
0.20 £
L Q
0.15
'0.10
(0.05

Strongly non-linear functions tend to have derivatives that can be either

very large or very small in magnitude.

408

Simple solution for clipping the gradient. (Mikolov, 2012; Pascanu et al.,
2013):

Clip the parameter gradient from a mini batch element-wise (Mikolov,
2012) just before the parameter update.

Clip the norm g of the gradient g (Pascanu et al., 2013a) just before the

parameter update.
/ : 9
g = min (1;) g
Is|

