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Classification

The problem of prediction a discrete random variable y from another
random variable x is Called classification. Consider iid data
(x1, y1), . . . , (xn, yn) where

xi =

 xi1
...
xid

 ∈ X ⊂ Rd

is a d − dimensional vector and yi takes values in some finite set Y .
A classification rule is a function h : X → Y . When we observe a
new x we predict y to be h(x).

Ali Ghodsi Classification



Error rate

Definition: The true error rate of a classifier h is

L(h) = Pr(h(x) 6= y)

and the empirical error rate or training error rate is:

L̂n =
1

n

n∑
i=1

I (h(xi) 6= yi)
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Bayes Classifier

Consider the special case where Y = {0, 1} then

r(x0) = P(y = 1|x = x0)

=
P(x = x0|y = 1)P(y = 1)

P(x = x0)

=
P(x = x0|y = 1)P(y = 1)

P(x = x0|y = 1)P(y = 1) + P(x = x0|y = 0)P(y = 0)
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Bayes Classifier

Definition: The Bayes classification rule h∗ is

h(x0) =

{
1 if r̂(x0) > 1/2
0 otherwise
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Decision Boundary

The set D(h) = {x : P(y = 1|x = x0) = P(y = 0|x = x0)} is called
the decision boundary.

h(x0) =

{
1 if P(y = 1|x = x0) > P(y = 0|x = x0)
0 otherwise
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Bayes Classifier

Theorem: The Bayes rule is optimal, that is if h is any other
classification rule then L(h∗) ≤ L(h).
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Bayes Classifier

Why do we need any other method?
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Bayes Classifier

The Bayes rule depends on unknown quantities, so we need to use
the data to find some approximation to the Bayes rule.
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Three main approaches

1. Empirical Risk Minimization: Choose a set of classifier H and
find h∗ ∈ H that minimizes some estimate of L(h).
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Three main approaches

2. Regression: Find an estimate r̂ of the function r and define

h(x) =

{
1 if r̂(x) > 1/2
0 otherwise
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Three main approaches

3. Density Estimation: Estimate P(x = x |y = 0) from the xi ’s for
which y1 = 0, estimate P(x = x |y = 1) from the xi ’s for which
yi = 1, and let

P(y = 1) =
1

n

n∑
i=1

yi

Define r̂(x) = P̂(y = 1|x = x) and

h(x) =

{
1 if r̂(x) > 1/2
0 otherwise
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Multi-class Classification

Generalize to the case that y take on more than two values
Theorem: Suppose that y ∈ Y = {1, . . . ,K}, the optimal rule is

h∗(x0) = argmaxk{P(y = k |x = x0)}
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Multi-class Classification

where

P(y = k |x = x0)

=
fk(x0)πk∑
r fr (x0)πr

=
P(x = x0|y = 1)P(y = 1)

P(x = x0|y = 1)P(y = 1) + P(x = x0|y = 0)P(y = 0)
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Toward LDA and QDA

The simplest approach to classification is to use the third approach
and assume a parametric model for the densities.
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The simplest method is to use approach 3 (above) and assume a
parametric model for densities. Assume class conditional is Gaussian.

Y = {0, 1} assumed (i.e., 2 labels)

h(x) =

{
1 P(Y = 1|x = x) > P(Y = 0|x = x)

0 otherwise

P(Y = 1|x = x) = f1(x)π1∑
k fkπk

(denom = P(x))
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1) Assume Gaussian distributions

fk(x) = 1
(2π)d/2|Σk |1/2 exp

(
− 1

2
(x− µk)TΣ−1

k (x− µk))

must compare

f1(x)π1

p(x)
with f0(x)π0

p(x)

Note that the p(x) denom can be ignored:
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f1(x)π1 with f0(x)π0

To find the decision boundary, set

f1(x)π1 = f0(x)π0

1
(2π)d/2|Σ1|1/2 exp(−1

2
(x− µ1)TΣ−1

1 (x− µ1))π1 =
1

(2π)d/2|Σ0|1/2 exp(−1
2
(x− µ0)TΣ−1

0 (x− µ0))π0
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2) Assume Σ1 = Σ0 , we can use Σ = Σ0 = Σ1 .

1
(2π)d/2|Σ|1/2 exp(−1

2
(x− µ1)TΣ−1(x− µ1))π1 =

1
(2π)d/2|Σ|1/2 exp(−1

2
(x− µ0)TΣ−1(x− µ0))π0
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3) Cancel (2π)−d/2|Σ|−1/2 from both sides.

exp(−1
2
(x− µ1)TΣ−1(x− µ1))π1 =

exp(−1
2
(x− µ0)TΣ−1(x− µ0))π0
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4) Take log of both sides.

−1
2
(x− µ1)TΣ−1(x− µ1)) + log(π1) =

−1
2
(x− µ0)TΣ−1(x− µ0)) + log(π0)

5) Subtract one side from both sides, leaving zero on one side.

−1
2
(x− µ1)TΣ−1(x− µ1) + log(π1)− [−1

2
(x− µ0)TΣ−1(x− µ0) +

log(π0)] = 0

1
2
[−xTΣ−1x− µ1

TΣ−1µ1 + 2µ1
TΣ−1x + xTΣ−1x + µ0

TΣ−1µ0 −
2µ0

TΣ−1x] + log(π1

π0
) = 0
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Cancelling out the terms quadratic in x and rearranging results in

1
2
[−µ1

TΣ−1µ1 + µ0
TΣ−1µ0 + (2µ1

TΣ−1− 2µ0
TΣ−1)x] + log(π1

π0
) = 0

We can see that the first pair of terms is constant, and the second
pair is linear in x. Therefore, we end up with something of the form

aTx + b = 0
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If we relax assumption 2 (i.e. Σ1 6= Σ0 ) then we get a quadratic
equation that can be written as:

xTAx + b
T
x + c = 0

Ali Ghodsi Classification



Theorem

Suppose that Y ∈ {1, . . . ,K} , if fk(x) = Pr(x = x|Y = k) is
Gaussian. The Bayes Classifier is

h∗(x) = arg max
k
δk(x)

Where

δk(x) = −1
2
log(|Σk |)− 1

2
(x− µk)>Σ−1

k (x− µk) + log(πk)

To compute this, we need to calculate the value for each class, and
then take the one with the max value.

Ali Ghodsi Classification



When Gaussians have the same covariance

Σ0 = Σ1 = Σ2 = · · · = Σk−1

(e.g. LDA), then

δk(x) = x>Σ−1µk − 1
2
µ>k Σ−1µk + log(πk)
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In practice

In practice we don’t know the parameters of Gaussian and will need
to estimate them using our training data.

π̂k = P̂r(y = k) = nk
n

where nk is the number of class k observations.

µ̂k = 1
nk

∑
i :yi=k xi

Σ̂k = 1
nk−k

∑
i :yi=k(xi − µ̂k)(xi − µ̂k)>
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If we wish to use LDA we must calculate a common covariance, so
we average all the covariances e.g.

Σ =
∑k

r=1(nrΣr )∑k
r=1 nr

Where:

nr is the number of data points in class r

Σr is the covariance of class r

n is the total number of data points, and k is the number of classes.

Ali Ghodsi Classification


