
Computation

For QDA we need to calculate:

δk(x) = −1
2
log(|Σk |)− 1

2
(x− µk)>Σ−1

k (x− µk) + log(πk)

Lets first consider the case that

Σk = I ,∀k .

This is the case where each distribution is spherical, around the mean
point.
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Case 1

When Σk = I

We have:

δk = −1
2
log(|I |)− 1

2
(x− µk)>I (x− µk) + log(πk)

but log(|I |) = log(1) = 0

and (x− µk)>I (x− µk) = (x− µk)>(x− µk) is the squared
Euclidean distance between two points x and µk
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Thus under this condition (i.e. Σ = I ) , a new point can be classified
by its distance from the center of a class, adjusted by some prior.

Further, for two-class problem with equal prior, the discriminating
function would be the perpendicular bisector of the 2-class’s means.
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Case 2

When Σk 6= I

Using the Singular Value Decomposition (SVD) of Σk

we get

Σk = UkSkU
>
k

Note: Σk is a symmetric matrix Σk = ΣT
k , so we have

Σk = UkSkU
>
k .
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(x− µk)>Σ−1
k (x− µk)

= (x− µk)>UkS
−1
k UT

k (x− µk)

= (U>k x− U>k µk)>S−1
k (U>k x− U>k µk)

= (U>k x− U>k µk)>S
− 1

2
k S

− 1
2

k (U>k x− U>k µk)

= (S
− 1

2
k U>k x− S

− 1
2

k U>k µk)>I (S
− 1

2
k U>k x− S

− 1
2

k U>k µk)

= (S
− 1

2
k U>k x− S

− 1
2

k U>k µk)>(S
− 1

2
k U>k x− S

− 1
2

k U>k µk)

For δk , the second term becomes what is also known as the
Mahalanobis distance:

Ali Ghodsi Classification



Think of S
− 1

2
k U>k as a linear transformation that takes points in class

k and distributes them spherically around a point, like in Case 1.

Thus when we are given a new point, we can apply the modified δk
values to calculate h∗( x) . After applying the singular value
decomposition, Σ−1

k is considered to be an identity matrix such that

δk = −1
2
log(|I |)− 1

2
[(S
− 1

2
k U>k x− S

− 1
2

k U>k µk)>(S
− 1

2
k U>k x−

S
− 1

2
k U>k µk)] + log(πk)

and,

log(|I |) = log(1) = 0
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For applying the above method with classes that have different
covariance matrices (for example the covariance matrices Σ0 and Σ1

for the two class case), each of the covariance matrices has to be
decomposed using SVD to find the according transformation. Then,
each new data point has to be transformed using each transformation
to compare its distance to the mean of each class (for example for
the two class case, the new data point would have to be transformed
by the class 1 transformation and then compared to µ0 and the new
data point would also have to be transformed by the class 2
transformation and then compared to µ1 ).
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The difference between Case 1 and Case 2 (i.e. the difference
between using the Euclidean and Mahalanobis distance) can be seen
in the illustration below.
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Alternative approach to do QDA

There is a trick that allows us to use the linear discriminant analysis
(LDA) algorithm to generate a quadratic function that can be used
to classify data. This trick is similar to, but more primitive than, the
Kernel trick that will be discussed later in the course.
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In this approach the feature vector is augmented with the quadratic
terms (i.e. new dimensions are introduced) We then apply LDA on
the new higher-dimensional data.

The motivation behind this approach is to take advantage of the fact
that fewer parameters have to be calculated in LDA , and therefore
have a more robust classifier when we have fewer data points.
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Using this trick, we introduce two new vectors, ŵ and x̂ such that:

ŵ = [w1,w2, ...,wd , v1, v2, ..., vd ]T

and

x̂ = [x1, x2, ..., xd , x1
2, x2

2, ..., xd
2]T
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We can then apply LDA to estimate the new function:
ĝ(x, x2) = ŷ = ŵT x̂ .

Note that we can do this for any x and in any dimension; we could
extend a d × n matrix to a quadratic dimension by appending
another d × n matrix with the original matrix squared, to a cubic
dimension with the original matrix cubed, or even with a different
function altogether, such as a sin(x) dimension. Note, we are not
applying QDA, but instead extending LDA to calculate a non-linear
boundary, that will be different from QDA.
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Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a method of dimensionality
reduction/feature extraction that transforms the data from a
d-dimensional space into a new coordinate system of dimension p,
where p ≤ d ( the worst case would be to have p = d).
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Principal Component Analysis (PCA)

The goal is to preserve as much of the variance in the original
data as possible in the new coordinate systems.

Give data on d variables, the hope is that the data points will lie
mainly in a linear subspace of dimension lower than d .

In practice, the data will usually not lie precisely in some lower
dimensional subspace.

The new variables that form a new coordinate system are called
principal components (PCs).
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Principal Component Analysis (PCA)

PCs are denoted by u1,u2, ...,ud .

The principal components form a basis for the data.

Since PCs are orthogonal linear transformations of the original
variables there is at most d PCs.

Normally, not all of the d PCs are used but rather a subset of p
PCs, u1,u2, ...,up

In order to approximate the space spanned by the original data

points x =

 x1
...
xd

 We can choose p based on what percentage

of the variance of the original data we would like to maintain.
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Principal Component Analysis (PCA)

The first PC, u1 is called first principal component and has the
maximum variance, thus it accounts for the most significant variance
in the data.

The second PC, u2 is called second principal component and has
the second highest variance and so on until PC ud which has the
minimum variance.
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Principal Component Analysis (PCA)

The most common definition of PCA, due to Hotelling is that, for a
given set of data vectors xi , i ∈ 1...n, the p principal axes are those
orthonormal axes onto which the variance retained under projection is
maximal.
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Principal Component Analysis (PCA)

In order to capture as much of the variability as possible, let us
choose the first principal component, denoted by u1, to capture
the maximum variance.

Suppose that all centred observations are stacked into the
columns of a d × n matrix X , where each column corresponds to
a d-dimensional observation and there are n observations.

The projection of n, d-dimensional observations on the first
principal component u1 is u1

TX .
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Principal Component Analysis (PCA)

We want projection on this first dimension to have maximum
variance.

var(u1
TX ) = u1

TSu1

where S is the d × d sample covariance matrix of X .
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Clearly var(u1
TX ) can be made arbitrarily large by increasing

the magnitude of u1.

var(u1
TX ) = u1

TSu1 where S is sample covariance matrix of
sample data X .

This means that the variance stated above has no upper limit
and so we can not find the maximum.

To solve this problem, we choose u1 to maximize u1
TSu1 while

constraining u1 to have unit length.

Therefore, we can rewrite the above optimization problem as:

max u1
TSu1

subject to u1
T
u1 = 1
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To solve this optimization problem a Lagrange multiplier λ is
introduced:

L(u1, λ) = u1
TSu1 − λ(u1

T
u − 1)
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Review of Lagrange Multiplier

Lagrange multipliers are used to find the maximum or minimum of a
function f (x , y) subject to constraint g(x , y) = c
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”The red line shows the constraint g(x,y) = c. The blue lines are
contours of f(x,y). The point where the red line tangentially touches
a blue contour is our solution.” [Lagrange Multipliers, Wikipedia

]
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we define a new constant λ called a Lagrange Multiplier and we form
the Lagrangian,

L(x , y , λ) = f (x , y)− λg(x , y)

If f (x∗, y ∗) is the max of f (x , y) , there exists λ∗ such that
(x∗, y ∗, λ∗) is a stationary point of L (partial derivatives are 0). In
addition (x∗, y ∗) is a point in which functions f and g touch but do
not cross. At this point, the tangents of f and g are parallel or
gradients of f and g are parallel, such that:

∇x ,y f = λ∇x ,yg

where, ∇x ,y f = (
∂f

∂x
,
∂f

∂y
)← the gradient of f

∇x ,yg = (
∂g

∂x
,
∂g

∂y
)← the gradient of g
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Example :

Suppose we want to maximize the function f (x , y) = x − y subject
to the constraint x2 + y 2 = 1.
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We can apply the Lagrange multiplier method to find the maximum
value for the function f ; the Lagrangian is:

L(x , y , λ) = x − y − λ(x2 + y 2 − 1)
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We want the partial derivatives equal to zero:

∂L

∂x
= 1 + 2λx = 0

∂L

∂y
= −1 + 2λy = 0

∂L

∂λ
= x2 + y 2 − 1
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Solving the system we obtain two stationary points: (
√

2/2,−
√

2/2)

and (−
√

2/2,
√

2/2) . In order to understand which one is the
maximum, we just need to substitute it in f (x , y) and see which one

as the biggest value. In this case the maximum is (
√

2/2,−
√

2/2) .
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L(u1, λ) = u1
TSu1 − λ(u1

T
u1 − 1) (1)

Differentiating with respect to u1 gives d equations,

Su1 = λu1

Premultiplying both sides by u1
T we have:

u1
TSu1 = λu1

T
u1 = λ

u1
TSu1 is maximized if λ is the largest eigenvalue of S .

Ali Ghodsi Classification



Clearly λ and u1 are an eigenvalue and an eigenvector of S .
Differentiating (1) with respect to the Lagrange multiplier λ gives us
back the constraint:

u1
T
u1 = 1

This shows that the first principal component is given by the
eigenvector with the largest associated eigenvalue of the sample
covariance matrix S . A similar argument can show that the p
dominant eigenvectors of covariance matrix S determine the first p
principal components.

Ali Ghodsi Classification




