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Local tangent space embedding

Abstract

Nonlinear manifold learning techniques, such as Isomap and Local
Linear Embedding, attempt to recover a low-dimensional characteri-
zation of high-dimensional data by measuring Euclidean distances and
reconstructions between nearby data points. Unfortunately, Euclidean
differences usually do not correspond to natural transformations of
typical data, even locally. For example, in image or document data,
Euclidean distances rarely correspond to a meaningful

perceptual difference between nearby objects. In this research we
attempt to improve the quality of manifold learning techniques by
modeling local neighborhoods in terms of natural transformations be-
tween data—for example, by allowing image operations that extend
simple differences and linear combinations. We introduce the idea of
modeling local tangent spaces of the manifold in terms of these richer
transformations. Given a local tangent space representation, we then
embed data in a lower dimensional coordinate system while preserving
not only local distances and weighted combinations between data, but
also the coordinate systems of the local tangent spaces. This leads to
improved manifold discovery in natural image data.

1 Introduction

Manifold learning is a significant problem across a wide variety of information
processing fields including pattern recognition, data compression, machine
learning, and database navigation. In many problems, the measured data
vectors are high-dimensional but we may have reason to believe that the data
lie near a lower-dimensional manifold. In other words, we may believe that
high-dimensional data are multiple, indirect measurements of an underlying
source, which typically cannot be directly measured. Learning a suitable



low-dimensional manifold from high-dimensional data is essentially the same
as learning this underlying source. One example of this general approach
is measuring the underlying intelligence and mental abilities of a person via
psychological and educational tests. In these tests, answers to questions are
used as an indirect measurement of mental ability.

Dimensionality reduction ! can also be seen as the process of deriving a set
of degrees of freedom which can be used to reproduce most of the variability
of a data set. Consider a set of images produced by the rotation of a face
through different angles. Clearly only one degree of freedom is being altered,
and thus the images lie along a continuous curve through image space.

Manifold learning techniques can be used in different ways including:

e Data dimensionality reduction: Produces a compact low-dimensional
encoding of a given high-dimensional data set.

e Data visualization: Provides an interpretation of a given data set, usu-
ally as a by-product of data dimensionality reduction.

o Preprocessing for supervised learning: Unsupervised methods for data
dimensionality reduction are used as a preprocessing step in order to
simplify subsequent training of a supervised method such as classifica-
tiomn.

Many algorithms for dimensionality reduction have been developed to
accomplish these tasks. However, since the need for such analysis is raised
in many areas of study, contributions to the field have come from many
disciplines. While all of these methods have a similar goal, approaches to the
problem are different.

Principal components analysis (PCA) [1] is a classical method which pro-
vides a sequence of best linear approximations to a given high-dimensional
observation. It is one of the most popular techniques for dimensionality
reduction. However, its effectiveness is limited by its global linearity. Multi-
dimensional scaling (MDS) [2], which is closely related to PCA, suffers from
the same drawback. Factor analysis [3, 4] and independent component anal-
ysis (ICA) [5] also assume that the underling manifold is a linear subspace.
However, they differ from PCA in the way they model the subspace.

1n this document ‘manifold learning’ and ‘dimensionality reduction’ are used inter-
changably.



The subspace modeled by PCA captures the maximum variability in the
data, and can be viewed as modeling the covariance structure of the data,
whereas factor analysis models the correlation structure. ICA starts from a
factor analysis solution and searches for rotations that lead to independent
components [4, 6].

In order to resolve the problem of dimensionality reduction in nonlinear
cases, many techniques including kernel PCA [7, 8] , locally linear embedding
(LLE) [9, 10], and Isomap [11, 12] have been proposed.

This document provides a brief overview of these different approaches and
shows their close connection. Afterwards, it motivates and proposes a new
research direction which improves the quality of manifold learning techniques
by modeling local neighborhoods in terms of natural transformations between
data points. Our proposed technique preserves not only local distances and
weighted combinations between data, but also the coordinate systems of the
local tangent spaces. Section 2 of this document explains Principal compo-
nents analysis which is the core of many other techniques. In Section 3, kernel
PCA, a recent extension to PCA, is discussed. Locally linear embedding, a
new and very popular algorithm, is reviewed in Section 4 and its connection
to kernel PCA is illustrated. Multidimensional scaling and its recent exten-
sion, Isomap, are discussed in Sections 5 and 6 respectively. The last section
is devoted to our proposed technique and some preliminary results.

2 Principal components analysis

Principal components analysis (PCA) is a very popular technique for dimen-
sionality reduction. Given a set of data on n dimensions, PCA aims to find a
linear subspace of dimension lower than n such that the data points lie mainly
on this linear subspace. Such a reduced subspace attempts to maintain most
of the variability of the data.

The linear subspace can be specified by d orthogonal vectors which form
a new coordinate system and are called the ‘principal components’. The
principal components are orthogonal, linear transformations of the original
data points, so there can be no more than n of them. However, the hope is
that only d < n principal components are needed to approximate the space
spanned by the n original axes.

The most common definition of PCA, due to Hotelling [13], is that, for a
given set of data vectors x;, 1 € 1...t, the d principal axes are those orthonor-



mal axes onto which the variance retained under projection is maximal.

In order to capture as much of the variability as possible, let’s choose the
first principal component, denoted by Uy, to have maximum variance. Sup-
pose that all centered observations are stacked into the columns of an n x ¢
matrix X, where each column corresponds to an n dimensional observation
and there are t observations. Let principal component be a linear combi-
nation of X defined by coefficients (or weights) W = [w;...w]. In matrix
form:

U, =wrx
var(Uy) = var(WTX) = WTsw

where S is the ¢ x t sample covariance matrix of X.

Clearly var(U;) can be made arbitrarily large by increasing the magnitude
of W. Therefore, we choose W to maximize W71 SW while constraining W
to have unit length.

max WTSW
subject to WIW =1

To solve this optimization problem a Lagrange multiplier o is introduced:

L(W,a) = WISW — oy (WIW — 1) (1)
Differentiating with respect to W gives t equations,

SW = qu
Premultiplying both sides by W7 we have:

WTSW = a,WIW = oy

var(Uy) is maximized if o is the largest eigenvalue of S.

Clearly oy and W are an eigenvalue and an eigenvector of S. Differ-
entiating (1) with respect to the Lagrange multiplier oy gives us back the
constraint:

Wiw =1



This shows that the first principal component is given by the normalized
eigenvector with the largest associated eigenvalue of the sample covariance
matrix S. A similar argument can show that the d dominant eigenvectors of
covariance matrix S determine the first d principal components.

Another nice property of PCA, closely related to the original discussion
by Pearson [14], is that the projection onto the principal subspace minimizes
the squared reconstruction error, 3¢_, [|z; — 2;]|?. In other words, the prin-
cipal components of a set of data in R" provide a sequence of best linear
approximations to that data, for all ranks d < n

Consider the rank-d linear approximation model as :

F(A) =7+ UaA

This is the parametric representation of a hyperplane of rank d.

For convenience, suppose & = 0 (otherwise the observations can be simply
replaced by their centered versions & = x; — ). Under this assumption the
rank d linear model would be f(A) = Uy, where Uy is a n X d matrix
with d orthogonal unit vectors as columns and X is a vector of parameters.
Fitting this model to the data by least squares leaves us to minimize the
reconstruction error:

i
; . |12
min ;sz Uahil]

By partial optimization for \; we obtain:

Now we need to find the orthogonal matrix Uy:

¢
II[l]iIl Z || — UdUdT:Jc,'H2
4y

Define H; = UdUdT. H,; is a n x n matrix which acts as a projection
matrix and projects each data point x; onto its rank d reconstruction.

In other words, Hyz; is the orthogonal projection of x; onto the subspace
spanned by the columns of U;. A unique H' solution can be obtained by
finding the pseudo inverse of X, denoted as X ™.



Ht = XtX
X=Usv"
Xt=vztyur
HY =Uusvivetyt = uu”
For each rank d, Uy consists of the first d columns of U.

Algorithm 1

Recover basis: Calculate XX T = 3!_ 2,27 and let U = eigenvectors of
XXT corresponding to the top d eigenvalues.

Encode training data: C = U' X where C is a d x t matrix of encodings
of the original data.

Reconstruct training data: X = UC = UUT X.

Encode test example: ¢ = Uz where ¢ is a d dimensional encoding of z.

Reconstruct test example: 2 = Uc = UU .

Figure 1: Direct PCA Algorithm

Clearly the solution for U can be expressed as singular value decomposi-
tion (SVD) of X.
X=Uzv"

since the columns of U in the SVD contain the eigenvectors of X X7T. The
PCA procedure is summarized in Algorithm 1.

3 Kernel PCA

Through the use of kernels, principle components can be computed efficiently
in high-dimensional feature spaces that are related to the input space by some
nonlinear mapping. PCA is an orthogonal transformation of the coordinate
system in which we describe our data.



Kernel PCA finds principal components which are nonlinearly related to
the input space. PCA can be formulated entirely in terms of dot products
between data points. In kernel PCA, this dot product is replaced by the
inner product of a Hilbert space. This is equivalent to performing PCA in
the space produced by the nonlinear mapping, where the low-dimensional
latent structure is, hopefully, easier to discover.

Consider a feature space H such that:

Qv — H,x— O(a)

Suppose >t ®(z;) = 0 (we will return to this point and show how this
condition can be satisfied in Hilbert space).
This allows us to formulate the kernel PCA objective as follows:

t
min Y ||®(x;) — UyUy ()|
By the same argument used for PCA, the solution can be found by SVD:
d(X)=Uxv!

where U contains the eigenvectors of ®(X)®(X)T

However, the singular value decomposition allows us to do much more
than simply rederive the principle components algorithm. In fact, given
the matrices ¥ and V., one can derive a dual form of principle components
analysis which allows us to limit the direct dependence on the original di-
mensionality n, via the kernel trick.

Agsume that the dimensionality n of the n X ¢ matrix of data X is large
(i.e. m >>t). In this case, Algorithm 1 is impractical. We would prefer a
run time that depends only on the number of training examples ¢, or that at
least has a reduced dependence on n.

To reduce the dependence on n, first assume that we have a kernel (-, -)
that allows us to compute k(z,y) = 2"y. Given such a function, we can then
compute the matrix XX = K, such that k;; = k(x;,2;). Let [X T X] denote
the fact that we could compute the matrix X T X efficiently using the kernel
trick.

The eigenvectors in U corresponding to nonzero singular values in ¥
(square roots of eigenvalues) are in a one-to-one correspondence with the
eigenvectors in V.



Now assume that we perform dimensionality reduction on U and keep
only the first d eigenvectors, corresponding to the top d nonzero singular
values in Y. These eigenvectors will still be in a one-to-one correspondence
with the first d eigenvectors in V:

XV = UX

where the dimensions of these matrices are:

X U by Vv
nxt nxd dxd txd
diagonal

Crucially, ¥ is now square and invertible, because its diagonal has nonzero
entries. Thus, the following conversion between the top d eigenvectors can

be derived:
U= Xvx! (2)

Replacing all uses of U in Algorithm 1 with XVY~! gives us the dual form
of PCA, Algorithm 2 (see Figure 2).

In the derivation of the kernel PCA we assumed that ®() has zero mean.
The following normalization of the kernel satisfies this condition.

k(e y) = k(z,y) = Eu[k(z,y)] = Ey[k(e, y)] + Eo[Ey[k(2, y)]]

In order to prove that, define:

O(X) = B(X) — E,[2(X)]
Finally, the corresponding kernel is:

F(,y) = ®(2)2(y)
This expands as follows:

k(z,y) = ((2) — Eo[2(2)])(D(y) — Ey[(y)])
= k(z,y) = Buo[k(z,y)] = Ey[k(e, y)] + Eo[Ey[k(z, y)]]



Algorithm 2

Recover basis: Calculate [XTX] = Y!_, k(x;, 7;) and let V' = eigenvectors
of XTX corresponding to the top d eigenvalues. Let ¥ = diagonal
matrix of square roots of the top d eigenvalues.

Encode training data: C = UTX = SV where C is a d x t matrix of
encodings of the original data.

Reconstruct training data: X = UC = USVT = XVE-InyT =
XvVvrT.

Encode test example: ¢ = U2 = Y7V X T2 = S71VT[XT2] where ¢ is
a d dimensional encoding of z.

Reconstruct test example: 2 = Uc = UUTz = XVI2VTXTz =
XVE2VT[X Tz].

Figure 2: Indirect, Dual Form of PCA Algorithm

4 Locally linear embedding

Locally linear embedding (LLE), computes low-dimensional, neighborhood
preserving embeddings of high-dimensional data. A data set of dimension-
ality m, which is assumed to lie on or near a smooth nonlinear manifold of
dimensionality d < n, is mapped into a single global coordinate system of
lower dimensionality, d. The global nonlinear structure is recovered by locally
linear fits.

Consider t n-dimensional real-valued vectors z; sampled from some un-
derlying manifold. We can assume each data point and its neighbors lie on,
or are close to, a locally linear patch of the manifold. By a linear mapping,
consisting of a translation, rotation, and rescaling, the high-dimensional co-
ordinates of each neighborhood can be mapped to global internal coordinates
on the manifold. Thus, the nonlinear structure of the data can be identified
through two linear steps: first, compute the locally linear patches, and sec-
ond, compute the linear mapping to the coordinate system on the manifold.

The main goal here is to map the high-dimensional data points to the
single global coordinate system of the manifold such that the relationships
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between neighboring points are preserved. This proceeds in three steps:

1. Identify the neighbors of each data point z;. This can be done by
finding the K nearest neighbors, or by choosing all points within some
fixed radius, e.

2. Compute the weights that best linearly reconstruct x; from its neigh-
bors.

3. Find the low-dimensional embedding vector y; which is best recon-
structed by the weights determined in the previous step.

After finding the nearest neighbors in the first step, the second step must
compute a local geometry for each locally linear patch. This geometry is
characterized by linear coefficients that reconstruct each data point from its
neighbors. The following cost function measures the reconstruction error.

t K
(W)= e =Y Wijasl]?
=1 7=1

where the neighbors of x; are represented by ;.

Wi; are computed to minimize this cost function subject to the constraint
that the rows of the weight matrix sum to one, >, W;; = 1. The optimal
weights W;;, subject to that constraint, are found by solving a constrained
least squares problem.

The " data point is reconstructed independently of all others, so the
minimization can be done one term at a time. This is equivalent to solving
a system of equations with n equations and A unknowns.

Ideally, the solution for the weights should be invariant under the linear
mapping from the patch to the global coordinates on the manifold. This
ensures that the reconstruction holds equally well in both high-dimensional
and low-dimensional space. It can be shown that the weights are invariant
to a transformation of the data point and its neighbors if and only if all rows
of the weight matrix sum to 1.

Since the optimization can be determined one term at a time, the cost
function can be minimized individually for each data point x;.

K
ei(w) = [|lzi = > wym;||?
7=1

11



subject toz w; =1

J

where 7; denotes neighbors of i data point. We can rewrite this as:

ei(w) = [[a; = Nw|[* = [[xw — Nwl|?

where y is the matrix of columns x; repeated K times, and N is the matrix
of columns of K nearest neighbors of x;. Continuing,

gi(w) = [|(x = N)wl[* = ((x = Nw)"((x = N)w)
=wl(x = N)T(x = N) = w' Gw
where G = (y — N)I(x — N). To accommodate the constraint that the

weights sum to 1, a Lagrange multiplier, A, is introduced. Let e be a column
vector of ones.

L(w,\) = w! Guw + )\(wTe —€)

dL
— =0 =2Gw + e

dw
Gw=_"Ce

In practice, we can solve this with C' set arbitrarily to 1 and then rescale
so w sums to 1.

The third step of LLE is done by choosing the d—dimensional vector y;
to minimize the embedding cost function:

t t
O(Y) = lyi — > Wiyl
=1

J=1
Note we are optimizing the coordinates y; while fixing the weights W;;.
This is equivalent to:

i
(V) = Z 1YL — Yw,l|?
=1

where I; is the i** column of the identity matrix, and w; is the i column of

w.

¢
: Va2 —
min SV = Y|

=1

12



min trace [Y/(I—W)(I — W)yt = min trace(Y MY'T)

The solution for Y can have an arbitrary origin and orientation. In or-
der to make the problem well-posed, these two degrees of freedom must be
removed. Requiring the coordinates to be centered on the origin (3=, y; = 0),
and constraining the embedding vectors to have unit covariance (Y1Y = I),
removes the first and second degrees of freedom respectively.

The cost function can be optimized initially by the second of these two
constraints:

LY, ) =YMYT + \YYT — (N -1)I)

dL
— = 0=2MYT 1+ 2\Y
% +

MYT = )\Y7T

L is minimized when the columns of Y7 (rows of Y) are the eigenvectors
associated with the lowest eigenvalues of M.

Discarding the eigenvector associated with eigenvalue 0 satisfies the first
constraint.

4.1 Connection to kernel PCA
LLE can be cast as a special form of kernel PCA [§]. In kernel PCA, the first

d coordinates are eigenvectors associated with the d greatest eigenvalues of
the Gram matrix.

Let A be the largest eigenvalue of (I — W)T(I —W).
Define the LLE kernel to be:

kLLE(l',',J}]‘) = ()\I — (I — W)T(I - W))z]

This kernel is, in fact, a similarity measure based on the similarity of the
weights required to reconstruct two patterns in terms of A neighboring pat-
terns. Kernel PCA using this kernel provides the LLE embedding coefficients
for a d-dimensional embedding as the first d eigenvectors.

13



5 Multidimensional scaling (MDS)

Multidimensional scaling (MDS) is another classical approach that maps the
original high dimensional space to a lower dimensional space that preserves
pairwise distances. MDS addresses the problem of constructing a configura-
tion of ¢ points in Euclidean space by using information about the distances
between the t patterns.

A ¢t x t matrix D is called a distance matrix if it is symmetric and

dpp =0, dps >0, 7#s

Given a distance matrix D, MDS finds ¢ data points yi, ..., y; in d dimen-
sions such that if d,,; denotes the Euclidean distance between y, and y,, then
D 1s similar to D.

Now, for a distance matrix D, let

and set

B=HAH

where H is a centering matrix defined as H = I — %eeT, and e is a column
vector containing all ones. When D 1s the distance matrix of X, the original
input data, B can be interpreted as the centered inner product matrix for

X.

B=(X-X)'=(X-X)

or in different form B = (HX)(HX)T. Let the eigendecomposition of
B be B = VAVT, where A is a diagonal matrix and V is a matrix whose
columns are the eigenvectors of B. If B is positive semi-definite of rank p,
then a configuration corresponding to B can be constructed as follows:

Suppose Ay > .... > A, are the positive eigenvalues of B with correspond-
ing eigenvectors Y = (Y(y),...Y(,)) normalized by

T .
Y—(l)Y—(,) = )\,’, = 1, ey P
Then the points Y, have interpoint distance given by D.

14



MDS treats the distance matrix D as the starting point. However, all
other techniques introduced in previous sections start with a data matrix X.
Similar to the argument in Section 3, one can show that the eigenvectors in
V' corresponding to nonzero eigenvalues are in a one-to-one correspondence
with the eigenvectors of the sample covariance (X — X )(X —X)T. As a matter
of fact, as far as Euclidean distance is concerned, MDS and PCA produce
the same results. However, the distances need not be based on Euclidean
distances and can represent many types of dissimilarities between objects.

6 Isomap

Another recent approach to nonlinear dimensionality reduction is the Isomap
algorithm. Isomap is a nonlinear generalization of classical MDS. The main
contribution is to compute the MDS, not in the input space, but in the
geodesic space of the manifold. The geodesic distances represent the short-
est paths along the curved surface of the manifold measured as if the surface
were flat. This can be approximated by a sequence of short steps between
neighboring sample points. Isomap then applies MDS to the geodesic dis-
tances to find a low-dimensional mapping with similar pairwise distances.
Like LLE, the Isomap algorithm proceeds through three steps:

1. Find the neighbors of each data point in high-dimensional data space.
2. Compute the geodesic pairwise distances between all points.

3. Embed the data via MDS so as to preserve these distances.

Again like LLE, the first step can be performed by identifying the K
nearest neighbors, or by choosing all points within some fixed radius, e.
These neighborhood relations are represented by a graph G in which each
data point is connected to its nearest neighbors, with edges of weight dx (¢, )
between neighbors.

The geodesic distances dys(7, 7) between all pairs of points on the manifold
M are then estimated in the second step. Isomap approximates dps(1, ) as
the shortest path distance dg(7,7) in the graph G. This can be done in
different ways including Dijkstra’s algorithm [15] and Floyd’s algorithm [16].

These algorithms final matrix of graph distances D¢ contains the shortest
path distance between all pairs of points in G.

15



In its final step, Isomap applies classical MDS to D¢ to generate an
embedding of the data in a d-dimensional Euclidean space Y.

The global minimum of the cost function is obtained by setting the coor-
dinates of y; to the top d eigenvectors of the inner-product matrix B obtained
from Dg

7 Future work

7.1 Motivation

Historically, two key approaches to discovering low-dimensional manifolds
in high-dimensional data have been to find a mapping from the original
space to a lower dimensional space that: (1) preserves pairwise distances
(e.g. multidimensional scaling ); or (2) preserves mutual linear reconstruction
ability (e.g. principle components analysis ). In each case, globally optimal
solutions are linear manifolds. Interestingly, the more recent methods for
manifold discovery, Isomap and LLE, are based on exactly these same two
principles, with the generalization that the new methods only seek manifold
descriptions that locally preserve distances and linear reconstructions. In
this way, they avoid recovering global linear solutions.

There have been many new variants of these ideas [17, 18, 19, 20, 21],
but, even though these techniques produce nonlinear manifolds in different
ways, they are generally based on the core assumption that, in natural data,

1. Euclidean distances locally preserve geodesic distances on the manifold
[12], or

2. data objects can be linearly reconstructed from other data objects
nearby in Euclidean space. [10].

However, these core notions are neither universally applicable nor always
effective. For example, in image data it is easy to appreciate the shortcom-
ings of these ideas. For images, weighted linear combinations amount to an
awkward transformation whereby source images have their brightness levels
adjusted and then are summed directly on top of one another. This is of-
ten an unnatural way to capture the image transformations that manifolds
are intended to characterize. Figure 3 shows that centered and normalized
target images can be fairly well reconstructed from likewise aligned source

16
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Figure 3: From the left: the first three frames are nearest neighbors, the
middle frame is the reconstructed image and the right one is the target. The
first row: reconstruction of centered images. Second row: reconstruction of
the same images after a shift.

images, but that even a minor shift, rotation or rescaling will quickly limit
the ability of this approach to reconstruct a target image. Similarly, measur-
ing Euclidean distances between images can sometimes be a dubious practice
since these distances do not always correspond to meaningful perceptual dif-
ferences.

We propose to characterize manifolds locally by identifying local transfor-
mations that preserve invariants of the underlying data. That is, we attempt
to characterize those transformations that cause points on the manifold to
stay on the manifold. More specifically, we approximate the local tangent
space around a data object by considering transformations of that object
that cause it to stay on (or near) the manifold. Examining transformations
that reconstruct neighboring objects from the input data set is one obvious
way to achieve this.

7.1.1 Local image transformations

Although our approach is general, to illustrate the concepts concretely we
will focus on the special case of modeling manifolds in natural image data.
For images, it is easy to propose simple local transformations that capture
natural invariants in image data better than simply averaging nearby images
together. Consider a very simple class of transformations based on receptive
fields of pixel neighborhoods: Given an nlxn2 image x, imagine transforming
it into a nearby image & = T'(x,6), where for each pixel &, € & we determine
its value from corresponding nearby pixels in . Specifically, we determine

17
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Figure 4: Illustration of local pixel transformation from left image to right

<1 [ B

Figure 5: From the left: the first three frames are nearest neighbors, the
middle frame is the reconstructed image and the right one is the target. The
first row shows reconstruction by adjusting brightness level. The second row

illustrates the reconstruction obtained by filter transformation.

Z; according to

i’,’ = (QTJ}N(,') (3)

where N(¢) denotes the set of neighboring pixels of pixel x,. Thus T'(-,9)
defines a simple local filter passed over the image, parameterized by a single
weight vector 6. as shown in Figure 4.

Although this defines a limited class of image transformations, it obvi-
ously enhances the image modeling capabilities of weighted image combina-
tions (which are only based on adjusting the brightness level of source im-
ages). Figure 5 shows that similar images can be much better reconstructed
by simple filter transformations rather than merely adjusting brightness lev-
els prior to summing. Here minor translations and appearance changes can
be adequately modeled in circumstances where brightness changes fail.

18



7.2 Local tangent space modeling

The key to our proposal is to model the local tangent space around high-
dimensional data points by a small number of transformations that locally
preserve membership in the manifold. Thus, in our approach, a manifold is
locally characterized by the invariants it preserves.

We model transformations over the data space by using an operator
T(x,0) which combines a data object x and a parameter vector 6 to pro-
duce a transformed object & = T'(x,6). In general, we will need to assume
very little about this operator, but, by making some very simple (and fairly
weak) assumptions about the nature of 7', we will be able to formulate nat-
ural geometric properties that one can preserve in a dimensionality reducing
embedding.

First, we assume that T is a bilinear operator. That is, T becomes a
linear operator on each argument when the other argument is held fixed.
Specifically,

T(axy + brg,0) = aT(x1,0) + bT (22, 6)
T(x,aby + b03) = aT(x,6;) 4+ bT(x,6s) (4)

Second, we require the operator to have a local origin w in the second argu-
ment that gives an identity map:

T(x,w) = x for all x (5)

With these properties, we can then naturally equate parameterized transfor-
mations with tangent vectors as follows. First note that T'(x,8) = +T'(«, )
for § = 6§ — w, since by bilinearity we have

T(x,0)=T(x,w+6)=T(x,w)+ T(x,0)

and also

T(r,w)==x

Thus, we can interpret every transformation of an object = as a vector sum.
That is, if # = T'(x,0) then the difference & — x is just T'(z,9).

Now imagine transforming a source object x; to approximate a nearby
target object x;, where both reside on the manifold. The best approximation
of x; by z; 1s given by

Tij = T(xi, 0:;)

19



where .
0ij = argmin [[2; — Tz, 8)]|

If the approximation error is small, we can claim that the difference vector
Ti; — x; = T(6;5), for 6,5 = 6;; — w, is approximately tangent to the manifold
at z;. Consider the norm of the diffence vector:

zi — 2]l = |T(z,5) = 0l 1T (=,

where 7;; = S,]/HS,]H Here T'(x,7;;) gives the direction of the approximate
tangent vector at x;, and ||d;;|| gives the coefficient in direction 7;;. This says
that 2;; is the projection of x; onto the tangent plane centered at x;, since
Ti; =z + ||S,]||T(:1;, 7i;) 1s the best approximation of x; in the local tangent
space of x;.

Intuitively, when we embed z; and Z;; in a lower dimensional space, say
by a mapping x; — y; and Z;; — ¥;;, we would like to preserve the coefficient:

lyi — 7l =~ 193]

That is, in the lower-dimensional space, the vector y; — y;; encodes the em-
bedded direction of the transformation, T'(z;,7;;), and the length [ly; — ]|
encodes the coeflicient of the transformation, ||d;]|.

7.3 Local tangent space embedding algorithm

The local tangent space embedding (LTSE) algorithm proceeds through three
steps:

In the first step, the neighbors of each data point z; are identified as
follows:

Compute the best point-to-point approximations. The best approxima-
tion of x; by z; is given by

i‘,’j = T(l'i, 91])
where
éz’j = arg Inein ||$] - T(l‘,’, 9)”

The K nearest neighbors of data point z; are the K best approximations
amongst all 7;;.
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The second step of LTSE is to reconstruct each data point from its nearest
neighbors. Consider a particular data point x; with K nearest neighbors and
reconstruction weights w;. The reconstruction error can be written as:

min ZHSIH — &y, will”
k]

where T, denotes the K nearest neighbors of x;. This cost function should
be minimized subject to two constraints: first, that each data point x; is
reconstructed only from its neighbors (W;; = 0 if x; is not among the nearest
neighbors of ;). Second, the rows of the weight matrix sum to one (}-; W;; =
1). This is a constrained least squares problem and, similar to LLE, can be
computed in closed form.

In the third step LTSE embeds both X and X (a t X t matrix containes
all #;;), into Y and Y. Recall that LLE in its third step computes a low
dimensional embedding Y based on the reconstruction weights W;; of point
x;. LTSE should minimize a similar cost function while preserving S,'j, the
coefficient of the transformation in the original space. Actually, the cost
function of LTSE in this step consists of two parts. The first part ensures

mutual linear reconstruction ability (similar to LLE) and the second part
preserves pairwise distances (similar to MDS).

N 1 N N
min [|[Y = YW|]* + || - §HD(5)H — [V Y)Y Y]
Y,Y

where D(®) is a distance matrix containing all transformation coefficients &;;
and [V, Y] denotes a d x (K + 1)t matrix containing the d x t matrix ¥ and
the d x K %t matrix Y.

The individual parts of this cost function are classical problems. We
have seen the solution of the first part in LLE and the second part has been
addressed by MDS. Omitting the details, it can be shown that, even with
two parts, the problem is still tractable and has a closed form solution. This
solution can be represented as eigenvectors of —%HD(‘s)H, together with an
adjustment from the first part of the cost function.

7.4 Experimental results

We present preliminary experimental results on natural image data. Here
we use the transformation operator on images (3) that was described in
Section 7.1.1. First, we need to verify that the bilinearity property (4) and
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Figure 6: Top: Original data. Middle: 1-dimensional manifold discovered by
LLE. Bottom: 1-dimensional manifold discovered by LTSE

origin property (5) are both satisfied. Bilinearity follows trivially from the
linearity of (3). Here, the identity transformation T'(x,w) = x is given by
parameters w that are zero for all neighboring pixels, excepting the center
pixel aligned with the target pixel, where the parameter is 1.

Our first experiment is on a single face image We have conducted exper-
iments on various sets of face images. Although the data is complex, many
of these data sets demonstrate manifold behavior over a small number of
degrees of freedom.

that has been translated vertically. Figure 6 shows the result of run-
ning LLE and Local Tangent Space Embedding (LTSE) on the original data
shown at the top. This figure shows that the 1-dimensional manifold discov-
ered by LLE is inferior to that discovered by LTSE, which had no problem
tracking the vertical shift in the image set. We then repeated this experi-
ment with a larger number of face images appearing at random translations.
Figure 7 again shows improved performance for LTSE over LLE. Here, a
two-dimensional manifold was discovered by each technique. LTSE discov-
ered vertical translation as its first dimension, which LLE failed to capture
in this case.

Finally, we conducted an experiment on a database of rotating face im-
ages. Figure 8 shows the two-dimensional manifold discovered by LLE,
whereas Figure 9 shows the two-dimensional manifold recovered by LTSE.
In both cases, the first dimension (top) captured the rotation angle of the
images, although once again LLE’s result is not as good as LTSE’s. Interest-
ingly, LTSE (and to a lesser extent LLE) learned to distinguish frontal from
profile views in its second dimension.
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Figure 7: Top: Original data. 2nd and 3rd rows: 2-dimensional manifold
discovered by LLE. 4th and 5th rows: 2-dimensional manifold discovered by
LTSE

CECECECEECRAECCCRECEECEE
CECCRNECCCRECCCaaGa
CECCGCGECLECEGEEGEREEa
CECCCCCECCCttuEmErnE

Figure 8: Two-dimensional manifold discovered by LLE

CEEECEECEECEEEGEEEaEnEn
CEGECCCECECREEEERRRER
CECCCGCLECECEECEaEEGEE
CECCCECECCCEECtuRmErR®
Figure 9: Two-dimensional manifold discovered by LTSE. Note: first di-

mension captures rotation, whereas second captures frontal views versus side
views
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