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Lo
al tangent spa
e embeddingAbstra
tNonlinear manifold learning te
hniques, su
h as Isomap and Lo
alLinear Embedding, attempt to re
over a low-dimensional 
hara
teri-zation of high-dimensional data by measuring Eu
lidean distan
es andre
onstru
tions between nearby data points. Unfortunately, Eu
lideandi�eren
es usually do not 
orrespond to natural transformations oftypi
al data, even lo
ally. For example, in image or do
ument data,Eu
lidean distan
es rarely 
orrespond to a meaningfulper
eptual di�eren
e between nearby obje
ts. In this resear
h weattempt to improve the quality of manifold learning te
hniques bymodeling lo
al neighborhoods in terms of natural transformations be-tween data|for example, by allowing image operations that extendsimple di�eren
es and linear 
ombinations. We introdu
e the idea ofmodeling lo
al tangent spa
es of the manifold in terms of these ri
hertransformations. Given a lo
al tangent spa
e representation, we thenembed data in a lower dimensional 
oordinate system while preservingnot only lo
al distan
es and weighted 
ombinations between data, butalso the 
oordinate systems of the lo
al tangent spa
es. This leads toimproved manifold dis
overy in natural image data.1 Introdu
tionManifold learning is a signi�
ant problem a
ross a wide variety of informationpro
essing �elds in
luding pattern re
ognition, data 
ompression, ma
hinelearning, and database navigation. In many problems, the measured datave
tors are high-dimensional but we may have reason to believe that the datalie near a lower-dimensional manifold. In other words, we may believe thathigh-dimensional data are multiple, indire
t measurements of an underlyingsour
e, whi
h typi
ally 
annot be dire
tly measured. Learning a suitable2



low-dimensional manifold from high-dimensional data is essentially the sameas learning this underlying sour
e. One example of this general approa
his measuring the underlying intelligen
e and mental abilities of a person viapsy
hologi
al and edu
ational tests. In these tests, answers to questions areused as an indire
t measurement of mental ability.Dimensionality redu
tion 1 
an also be seen as the pro
ess of deriving a setof degrees of freedom whi
h 
an be used to reprodu
e most of the variabilityof a data set. Consider a set of images produ
ed by the rotation of a fa
ethrough di�erent angles. Clearly only one degree of freedom is being altered,and thus the images lie along a 
ontinuous 
urve through image spa
e.Manifold learning te
hniques 
an be used in di�erent ways in
luding:� Data dimensionality redu
tion: Produ
es a 
ompa
t low-dimensionalen
oding of a given high-dimensional data set.� Data visualization: Provides an interpretation of a given data set, usu-ally as a by-produ
t of data dimensionality redu
tion.� Prepro
essing for supervised learning: Unsupervised methods for datadimensionality redu
tion are used as a prepro
essing step in order tosimplify subsequent training of a supervised method su
h as 
lassi�
a-tion.Many algorithms for dimensionality redu
tion have been developed toa

omplish these tasks. However, sin
e the need for su
h analysis is raisedin many areas of study, 
ontributions to the �eld have 
ome from manydis
iplines. While all of these methods have a similar goal, approa
hes to theproblem are di�erent.Prin
ipal 
omponents analysis (PCA) [1℄ is a 
lassi
al method whi
h pro-vides a sequen
e of best linear approximations to a given high-dimensionalobservation. It is one of the most popular te
hniques for dimensionalityredu
tion. However, its e�e
tiveness is limited by its global linearity. Multi-dimensional s
aling (MDS) [2℄, whi
h is 
losely related to PCA, su�ers fromthe same drawba
k. Fa
tor analysis [3, 4℄ and independent 
omponent anal-ysis (ICA) [5℄ also assume that the underling manifold is a linear subspa
e.However, they di�er from PCA in the way they model the subspa
e.1In this do
ument `manifold learning' and `dimensionality redu
tion' are used inter-
hangably. 3



The subspa
e modeled by PCA 
aptures the maximum variability in thedata, and 
an be viewed as modeling the 
ovarian
e stru
ture of the data,whereas fa
tor analysis models the 
orrelation stru
ture. ICA starts from afa
tor analysis solution and sear
hes for rotations that lead to independent
omponents [4, 6℄.In order to resolve the problem of dimensionality redu
tion in nonlinear
ases, many te
hniques in
luding kernel PCA [7, 8℄ , lo
ally linear embedding(LLE) [9, 10℄, and Isomap [11, 12℄ have been proposed.This do
ument provides a brief overview of these di�erent approa
hes andshows their 
lose 
onne
tion. Afterwards, it motivates and proposes a newresear
h dire
tion whi
h improves the quality of manifold learning te
hniquesby modeling lo
al neighborhoods in terms of natural transformations betweendata points. Our proposed te
hnique preserves not only lo
al distan
es andweighted 
ombinations between data, but also the 
oordinate systems of thelo
al tangent spa
es. Se
tion 2 of this do
ument explains Prin
ipal 
ompo-nents analysis whi
h is the 
ore of many other te
hniques. In Se
tion 3, kernelPCA, a re
ent extension to PCA, is dis
ussed. Lo
ally linear embedding, anew and very popular algorithm, is reviewed in Se
tion 4 and its 
onne
tionto kernel PCA is illustrated. Multidimensional s
aling and its re
ent exten-sion, Isomap, are dis
ussed in Se
tions 5 and 6 respe
tively. The last se
tionis devoted to our proposed te
hnique and some preliminary results.2 Prin
ipal 
omponents analysisPrin
ipal 
omponents analysis (PCA) is a very popular te
hnique for dimen-sionality redu
tion. Given a set of data on n dimensions, PCA aims to �nd alinear subspa
e of dimension lower than n su
h that the data points lie mainlyon this linear subspa
e. Su
h a redu
ed subspa
e attempts to maintain mostof the variability of the data.The linear subspa
e 
an be spe
i�ed by d orthogonal ve
tors whi
h forma new 
oordinate system and are 
alled the `prin
ipal 
omponents'. Theprin
ipal 
omponents are orthogonal, linear transformations of the originaldata points, so there 
an be no more than n of them. However, the hope isthat only d < n prin
ipal 
omponents are needed to approximate the spa
espanned by the n original axes.The most 
ommon de�nition of PCA, due to Hotelling [13℄, is that, for agiven set of data ve
tors xi, i 2 1:::t, the d prin
ipal axes are those orthonor-4



mal axes onto whi
h the varian
e retained under proje
tion is maximal.In order to 
apture as mu
h of the variability as possible, let's 
hoose the�rst prin
ipal 
omponent, denoted by U1, to have maximum varian
e. Sup-pose that all 
entered observations are sta
ked into the 
olumns of an n� tmatrix X, where ea
h 
olumn 
orresponds to an n dimensional observationand there are t observations. Let prin
ipal 
omponent be a linear 
ombi-nation of X de�ned by 
oeÆ
ients (or weights) W = [w1:::wt℄. In matrixform: U1 = W TXvar(U1) = var(W TX) = W TSWwhere S is the t� t sample 
ovarian
e matrix of X.Clearly var(U1) 
an be made arbitrarily large by in
reasing the magnitudeof W . Therefore, we 
hoose W to maximize W TSW while 
onstraining Wto have unit length. max W TSWsubje
t to W TW = 1To solve this optimization problem a Lagrange multiplier�1 is introdu
ed:L(W;�) = W TSW � �1(W TW � 1) (1)Di�erentiating with respe
t to W gives t equations,SW = �1WPremultiplying both sides by W T we have:W TSW = �1W TW = �1var(U1) is maximized if �1 is the largest eigenvalue of S.Clearly �1 and W are an eigenvalue and an eigenve
tor of S. Di�er-entiating (1) with respe
t to the Lagrange multiplier �1 gives us ba
k the
onstraint: W TW = 15



This shows that the �rst prin
ipal 
omponent is given by the normalizedeigenve
tor with the largest asso
iated eigenvalue of the sample 
ovarian
ematrix S. A similar argument 
an show that the d dominant eigenve
tors of
ovarian
e matrix S determine the �rst d prin
ipal 
omponents.Another ni
e property of PCA, 
losely related to the original dis
ussionby Pearson [14℄, is that the proje
tion onto the prin
ipal subspa
e minimizesthe squared re
onstru
tion error, Pti=1 jjxi � x̂ijj2. In other words, the prin-
ipal 
omponents of a set of data in <n provide a sequen
e of best linearapproximations to that data, for all ranks d � nConsider the rank-d linear approximation model as :f(�) = �x+ Ud�This is the parametri
 representation of a hyperplane of rank d.For 
onvenien
e, suppose �x = 0 (otherwise the observations 
an be simplyrepla
ed by their 
entered versions ~x = xi � �x). Under this assumption therank d linear model would be f(�) = Ud�, where Ud is a n � d matrixwith d orthogonal unit ve
tors as 
olumns and � is a ve
tor of parameters.Fitting this model to the data by least squares leaves us to minimize there
onstru
tion error: minUd;�i tXi jjxi � Ud�ijj2By partial optimization for �i we obtain:dd�i ) �i = UTd xiNow we need to �nd the orthogonal matrix Ud:minUd tXi jjxi � UdUTd xijj2De�ne Hd = UdUTd . Hd is a n � n matrix whi
h a
ts as a proje
tionmatrix and proje
ts ea
h data point xi onto its rank d re
onstru
tion.In other words, Hdxi is the orthogonal proje
tion of xi onto the subspa
espanned by the 
olumns of Ud. A unique H+ solution 
an be obtained by�nding the pseudo inverse of X, denoted as X+.6



H+ = X+XX = U�V TX+ = V �+UTH+ = U�V TV �+UT = UUTFor ea
h rank d, Ud 
onsists of the �rst d 
olumns of U .Algorithm 1Re
over basis: Cal
ulate XX> = Pti=1 xix>i and let U = eigenve
tors ofXX> 
orresponding to the top d eigenvalues.En
ode training data: C = U>X where C is a d � t matrix of en
odingsof the original data.Re
onstru
t training data: X̂ = UC = UU>X.En
ode test example: 
 = U>x where 
 is a d dimensional en
oding of x.Re
onstru
t test example: x̂ = U
 = UU>x.Figure 1: Dire
t PCA AlgorithmClearly the solution for U 
an be expressed as singular value de
omposi-tion (SVD) of X. X = U�V Tsin
e the 
olumns of U in the SVD 
ontain the eigenve
tors of XXT . ThePCA pro
edure is summarized in Algorithm 1.3 Kernel PCAThrough the use of kernels, prin
iple 
omponents 
an be 
omputed eÆ
ientlyin high-dimensional feature spa
es that are related to the input spa
e by somenonlinear mapping. PCA is an orthogonal transformation of the 
oordinatesystem in whi
h we des
ribe our data.7



Kernel PCA �nds prin
ipal 
omponents whi
h are nonlinearly related tothe input spa
e. PCA 
an be formulated entirely in terms of dot produ
tsbetween data points. In kernel PCA, this dot produ
t is repla
ed by theinner produ
t of a Hilbert spa
e. This is equivalent to performing PCA inthe spa
e produ
ed by the nonlinear mapping, where the low-dimensionallatent stru
ture is, hopefully, easier to dis
over.Consider a feature spa
e H su
h that:� : x! H; x 7! �(x)Suppose Pti �(xi) = 0 (we will return to this point and show how this
ondition 
an be satis�ed in Hilbert spa
e).This allows us to formulate the kernel PCA obje
tive as follows:min tXi jj�(xi)� UqUTq �(xi)jjBy the same argument used for PCA, the solution 
an be found by SVD:�(X) = U�V Twhere U 
ontains the eigenve
tors of �(X)�(X)THowever, the singular value de
omposition allows us to do mu
h morethan simply rederive the prin
iple 
omponents algorithm. In fa
t, giventhe matri
es � and V , one 
an derive a dual form of prin
iple 
omponentsanalysis whi
h allows us to limit the dire
t dependen
e on the original di-mensionality n, via the kernel tri
k.Assume that the dimensionality n of the n � t matrix of data X is large(i.e. n >> t). In this 
ase, Algorithm 1 is impra
ti
al. We would prefer arun time that depends only on the number of training examples t, or that atleast has a redu
ed dependen
e on n.To redu
e the dependen
e on n, �rst assume that we have a kernel k(�; �)that allows us to 
ompute k(x; y) = x>y. Given su
h a fun
tion, we 
an then
ompute the matrix X>X = K, su
h that kij = k(xi; xj). Let [X>X℄ denotethe fa
t that we 
ould 
ompute the matrix X>X eÆ
iently using the kerneltri
k.The eigenve
tors in U 
orresponding to nonzero singular values in �(square roots of eigenvalues) are in a one-to-one 
orresponden
e with theeigenve
tors in V . 8



Now assume that we perform dimensionality redu
tion on U and keeponly the �rst d eigenve
tors, 
orresponding to the top d nonzero singularvalues in �. These eigenve
tors will still be in a one-to-one 
orresponden
ewith the �rst d eigenve
tors in V :X V = U �where the dimensions of these matri
es are:X U � Vn� t n � d d� d t� ddiagonalCru
ially, � is now square and invertible, be
ause its diagonal has nonzeroentries. Thus, the following 
onversion between the top d eigenve
tors 
anbe derived: U = X V ��1 (2)Repla
ing all uses of U in Algorithm 1 with XV ��1 gives us the dual formof PCA, Algorithm 2 (see Figure 2).In the derivation of the kernel PCA we assumed that �(x) has zero mean.The following normalization of the kernel satis�es this 
ondition.~k(x; y) = k(x; y)� Ex[k(x; y)℄� Ey[k(x; y)℄ + Ex[Ey[k(x; y)℄℄In order to prove that, de�ne:~�(X) = �(X) � Ex[�(X)℄Finally, the 
orresponding kernel is:~k(x; y) = ~�(x) ~�(y)This expands as follows:~k(x; y) = (�(x)� Ex[�(x)℄):(�(y)�Ey[�(y)℄)= k(x; y)� Ex[k(x; y)℄� Ey[k(x; y)℄ + Ex[Ey[k(x; y)℄℄9



Algorithm 2Re
over basis: Cal
ulate [X>X℄ = Pti=1 k(xi; xi) and let V = eigenve
torsof X>X 
orresponding to the top d eigenvalues. Let � = diagonalmatrix of square roots of the top d eigenvalues.En
ode training data: C = U>X = �V > where C is a d � t matrix ofen
odings of the original data.Re
onstru
t training data: X̂ = UC = U�V > = XV ��1�V > =XV V >.En
ode test example: 
 = U>x = ��1V >X>x = ��1V >[X>x℄ where 
 isa d dimensional en
oding of x.Re
onstru
t test example: x̂ = U
 = UU>x = XV ��2V >X>x =XV ��2V >[X>x℄.Figure 2: Indire
t, Dual Form of PCA Algorithm4 Lo
ally linear embeddingLo
ally linear embedding (LLE), 
omputes low-dimensional, neighborhoodpreserving embeddings of high-dimensional data. A data set of dimension-ality n, whi
h is assumed to lie on or near a smooth nonlinear manifold ofdimensionality d < n, is mapped into a single global 
oordinate system oflower dimensionality, d. The global nonlinear stru
ture is re
overed by lo
allylinear �ts.Consider t n-dimensional real-valued ve
tors xi sampled from some un-derlying manifold. We 
an assume ea
h data point and its neighbors lie on,or are 
lose to, a lo
ally linear pat
h of the manifold. By a linear mapping,
onsisting of a translation, rotation, and res
aling, the high-dimensional 
o-ordinates of ea
h neighborhood 
an be mapped to global internal 
oordinateson the manifold. Thus, the nonlinear stru
ture of the data 
an be identi�edthrough two linear steps: �rst, 
ompute the lo
ally linear pat
hes, and se
-ond, 
ompute the linear mapping to the 
oordinate system on the manifold.The main goal here is to map the high-dimensional data points to thesingle global 
oordinate system of the manifold su
h that the relationships10



between neighboring points are preserved. This pro
eeds in three steps:1. Identify the neighbors of ea
h data point xi. This 
an be done by�nding the K nearest neighbors, or by 
hoosing all points within some�xed radius, �.2. Compute the weights that best linearly re
onstru
t xi from its neigh-bors.3. Find the low-dimensional embedding ve
tor yi whi
h is best re
on-stru
ted by the weights determined in the previous step.After �nding the nearest neighbors in the �rst step, the se
ond step must
ompute a lo
al geometry for ea
h lo
ally linear pat
h. This geometry is
hara
terized by linear 
oeÆ
ients that re
onstru
t ea
h data point from itsneighbors. The following 
ost fun
tion measures the re
onstru
tion error."(W ) = tXi=1 jjxi � KXj=1Wijxjjj2where the neighbors of xi are represented by xj.Wij are 
omputed to minimize this 
ost fun
tion subje
t to the 
onstraintthat the rows of the weight matrix sum to one, Pj Wij = 1. The optimalweights Wij, subje
t to that 
onstraint, are found by solving a 
onstrainedleast squares problem.The ith data point is re
onstru
ted independently of all others, so theminimization 
an be done one term at a time. This is equivalent to solvinga system of equations with n equations and K unknowns.Ideally, the solution for the weights should be invariant under the linearmapping from the pat
h to the global 
oordinates on the manifold. Thisensures that the re
onstru
tion holds equally well in both high-dimensionaland low-dimensional spa
e. It 
an be shown that the weights are invariantto a transformation of the data point and its neighbors if and only if all rowsof the weight matrix sum to 1.Sin
e the optimization 
an be determined one term at a time, the 
ostfun
tion 
an be minimized individually for ea
h data point xi."i(w) = jjxi � KXj=1wj�j jj211



subje
t toXj wj = 1where �j denotes neighbors of ith data point. We 
an rewrite this as:"i(w) = jjxi �Nwjj2 = jj�w �Nwjj2where � is the matrix of 
olumns xi repeated K times, and N is the matrixof 
olumns of K nearest neighbors of xi. Continuing,"i(w) = jj(��N)wjj2 = ((��N)w)T ((��N)w)= wT (��N)T (��N) = wTGwwhere G = (� � N)T (� � N). To a

ommodate the 
onstraint that theweights sum to 1, a Lagrange multiplier, �, is introdu
ed. Let e be a 
olumnve
tor of ones. L(w; �) = wTGw + �(wT e� e)dLdw = 0 = 2Gw + �eGw = CeIn pra
ti
e, we 
an solve this with C set arbitrarily to 1 and then res
aleso w sums to 1.The third step of LLE is done by 
hoosing the d�dimensional ve
tor yito minimize the embedding 
ost fun
tion:�(Y ) = tXi=1 jjyi � tXj=1Wijyjjj2Note we are optimizing the 
oordinates yi while �xing the weights Wij.This is equivalent to: �(Y ) = tXi=1 jjY Ii � Y wijj2where Ii is the ith 
olumn of the identity matrix, and wi is the ith 
olumn ofW . minY tXi=1 jjY Ii � Y wijj2 =12



minY tra
e [Y (I �W )(I �W )TY T ℄ = minY tra
e(YMY T )The solution for Y 
an have an arbitrary origin and orientation. In or-der to make the problem well-posed, these two degrees of freedom must beremoved. Requiring the 
oordinates to be 
entered on the origin (Pi yi = 0),and 
onstraining the embedding ve
tors to have unit 
ovarian
e (Y TY = I),removes the �rst and se
ond degrees of freedom respe
tively.The 
ost fun
tion 
an be optimized initially by the se
ond of these two
onstraints: L(Y; �) = YMY T + �(Y Y T � (N � 1)I)dLdY = 0 = 2MY T + 2�YMY T = �Y TL is minimized when the 
olumns of Y T (rows of Y ) are the eigenve
torsasso
iated with the lowest eigenvalues of M .Dis
arding the eigenve
tor asso
iated with eigenvalue 0 satis�es the �rst
onstraint.4.1 Conne
tion to kernel PCALLE 
an be 
ast as a spe
ial form of kernel PCA [8℄. In kernel PCA, the �rstd 
oordinates are eigenve
tors asso
iated with the d greatest eigenvalues ofthe Gram matrix.Let � be the largest eigenvalue of (I �W )T (I �W ).De�ne the LLE kernel to be:kLLE(xi; xj) = (�I � (I �W )T (I �W ))ijThis kernel is, in fa
t, a similarity measure based on the similarity of theweights required to re
onstru
t two patterns in terms of K neighboring pat-terns. Kernel PCA using this kernel provides the LLE embedding 
oeÆ
ientsfor a d-dimensional embedding as the �rst d eigenve
tors.13



5 Multidimensional s
aling (MDS)Multidimensional s
aling (MDS) is another 
lassi
al approa
h that maps theoriginal high dimensional spa
e to a lower dimensional spa
e that preservespairwise distan
es. MDS addresses the problem of 
onstru
ting a 
on�gura-tion of t points in Eu
lidean spa
e by using information about the distan
esbetween the t patterns.A t� t matrix D is 
alled a distan
e matrix if it is symmetri
 anddrr = 0; drs > 0; r 6= sGiven a distan
e matrix D, MDS �nds t data points y1; :::; yt in d dimen-sions su
h that if d̂rs denotes the Eu
lidean distan
e between yr and ys, thenD̂ is similar to D.Now, for a distan
e matrix D, letA = (ars); ars = �12d2rsand set B = HAHwhere H is a 
entering matrix de�ned as H = I� 1neeT , and e is a 
olumnve
tor 
ontaining all ones. When D is the distan
e matrix of X, the originalinput data, B 
an be interpreted as the 
entered inner produ
t matrix forX. B = (X � �X)T = (X � �X)or in di�erent form B = (HX)(HX)T . Let the eigende
omposition ofB be B = V �V T , where � is a diagonal matrix and V is a matrix whose
olumns are the eigenve
tors of B. If B is positive semi-de�nite of rank p,then a 
on�guration 
orresponding to B 
an be 
onstru
ted as follows:Suppose �1 � :::: � �p are the positive eigenvalues of B with 
orrespond-ing eigenve
tors Y = (Y(1); :::Y(p)) normalized byY T(i)Y(i) = �i; i = 1; :::; pThen the points Yr have interpoint distan
e given by D.14



MDS treats the distan
e matrix D as the starting point. However, allother te
hniques introdu
ed in previous se
tions start with a data matrix X.Similar to the argument in Se
tion 3, one 
an show that the eigenve
tors inV 
orresponding to nonzero eigenvalues are in a one-to-one 
orresponden
ewith the eigenve
tors of the sample 
ovarian
e (X� �X)(X� �X)T . As a matterof fa
t, as far as Eu
lidean distan
e is 
on
erned, MDS and PCA produ
ethe same results. However, the distan
es need not be based on Eu
lideandistan
es and 
an represent many types of dissimilarities between obje
ts.6 IsomapAnother re
ent approa
h to nonlinear dimensionality redu
tion is the Isomapalgorithm. Isomap is a nonlinear generalization of 
lassi
al MDS. The main
ontribution is to 
ompute the MDS, not in the input spa
e, but in thegeodesi
 spa
e of the manifold. The geodesi
 distan
es represent the short-est paths along the 
urved surfa
e of the manifold measured as if the surfa
ewere 
at. This 
an be approximated by a sequen
e of short steps betweenneighboring sample points. Isomap then applies MDS to the geodesi
 dis-tan
es to �nd a low-dimensional mapping with similar pairwise distan
es.Like LLE, the Isomap algorithm pro
eeds through three steps:1. Find the neighbors of ea
h data point in high-dimensional data spa
e.2. Compute the geodesi
 pairwise distan
es between all points.3. Embed the data via MDS so as to preserve these distan
es.Again like LLE, the �rst step 
an be performed by identifying the Knearest neighbors, or by 
hoosing all points within some �xed radius, �.These neighborhood relations are represented by a graph G in whi
h ea
hdata point is 
onne
ted to its nearest neighbors, with edges of weight dX(i; j)between neighbors.The geodesi
 distan
es dM (i; j) between all pairs of points on the manifoldM are then estimated in the se
ond step. Isomap approximates dM (i; j) asthe shortest path distan
e dG(i; j) in the graph G. This 
an be done indi�erent ways in
luding Dijkstra's algorithm [15℄ and Floyd's algorithm [16℄.These algorithms �nal matrix of graph distan
es DG 
ontains the shortestpath distan
e between all pairs of points in G.15



In its �nal step, Isomap applies 
lassi
al MDS to DG to generate anembedding of the data in a d-dimensional Eu
lidean spa
e Y .The global minimum of the 
ost fun
tion is obtained by setting the 
oor-dinates of yi to the top d eigenve
tors of the inner-produ
t matrixB obtainedfrom DG7 Future work7.1 MotivationHistori
ally, two key approa
hes to dis
overing low-dimensional manifoldsin high-dimensional data have been to �nd a mapping from the originalspa
e to a lower dimensional spa
e that: (1) preserves pairwise distan
es(e.g. multidimensional s
aling ); or (2) preserves mutual linear re
onstru
tionability (e.g. prin
iple 
omponents analysis ). In ea
h 
ase, globally optimalsolutions are linear manifolds. Interestingly, the more re
ent methods formanifold dis
overy, Isomap and LLE, are based on exa
tly these same twoprin
iples, with the generalization that the new methods only seek manifolddes
riptions that lo
ally preserve distan
es and linear re
onstru
tions. Inthis way, they avoid re
overing global linear solutions.There have been many new variants of these ideas [17, 18, 19, 20, 21℄,but, even though these te
hniques produ
e nonlinear manifolds in di�erentways, they are generally based on the 
ore assumption that, in natural data,1. Eu
lidean distan
es lo
ally preserve geodesi
 distan
es on the manifold[12℄, or2. data obje
ts 
an be linearly re
onstru
ted from other data obje
tsnearby in Eu
lidean spa
e. [10℄.However, these 
ore notions are neither universally appli
able nor alwayse�e
tive. For example, in image data it is easy to appre
iate the short
om-ings of these ideas. For images, weighted linear 
ombinations amount to anawkward transformation whereby sour
e images have their brightness levelsadjusted and then are summed dire
tly on top of one another. This is of-ten an unnatural way to 
apture the image transformations that manifoldsare intended to 
hara
terize. Figure 3 shows that 
entered and normalizedtarget images 
an be fairly well re
onstru
ted from likewise aligned sour
e16



Figure 3: From the left: the �rst three frames are nearest neighbors, themiddle frame is the re
onstru
ted image and the right one is the target. The�rst row: re
onstru
tion of 
entered images. Se
ond row: re
onstru
tion ofthe same images after a shift.images, but that even a minor shift, rotation or res
aling will qui
kly limitthe ability of this approa
h to re
onstru
t a target image. Similarly, measur-ing Eu
lidean distan
es between images 
an sometimes be a dubious pra
ti
esin
e these distan
es do not always 
orrespond to meaningful per
eptual dif-feren
es.We propose to 
hara
terize manifolds lo
ally by identifying lo
al transfor-mations that preserve invariants of the underlying data. That is, we attemptto 
hara
terize those transformations that 
ause points on the manifold tostay on the manifold. More spe
i�
ally, we approximate the lo
al tangentspa
e around a data obje
t by 
onsidering transformations of that obje
tthat 
ause it to stay on (or near) the manifold. Examining transformationsthat re
onstru
t neighboring obje
ts from the input data set is one obviousway to a
hieve this.7.1.1 Lo
al image transformationsAlthough our approa
h is general, to illustrate the 
on
epts 
on
retely wewill fo
us on the spe
ial 
ase of modeling manifolds in natural image data.For images, it is easy to propose simple lo
al transformations that 
apturenatural invariants in image data better than simply averaging nearby imagestogether. Consider a very simple 
lass of transformations based on re
eptive�elds of pixel neighborhoods: Given an n1�n2 image x, imagine transformingit into a nearby image ~x = T (x; �), where for ea
h pixel ~xi 2 ~x we determineits value from 
orresponding nearby pixels in x. Spe
i�
ally, we determine17



N(i)

iFigure 4: Illustration of lo
al pixel transformation from left image to right
Figure 5: From the left: the �rst three frames are nearest neighbors, themiddle frame is the re
onstru
ted image and the right one is the target. The�rst row shows re
onstru
tion by adjusting brightness level. The se
ond rowillustrates the re
onstru
tion obtained by �lter transformation.~xi a

ording to ~xi = �>xN(i) (3)where N(i) denotes the set of neighboring pixels of pixel xi. Thus T (�; �)de�nes a simple lo
al �lter passed over the image, parameterized by a singleweight ve
tor �, as shown in Figure 4.Although this de�nes a limited 
lass of image transformations, it obvi-ously enhan
es the image modeling 
apabilities of weighted image 
ombina-tions (whi
h are only based on adjusting the brightness level of sour
e im-ages). Figure 5 shows that similar images 
an be mu
h better re
onstru
tedby simple �lter transformations rather than merely adjusting brightness lev-els prior to summing. Here minor translations and appearan
e 
hanges 
anbe adequately modeled in 
ir
umstan
es where brightness 
hanges fail.18



7.2 Lo
al tangent spa
e modelingThe key to our proposal is to model the lo
al tangent spa
e around high-dimensional data points by a small number of transformations that lo
allypreserve membership in the manifold. Thus, in our approa
h, a manifold islo
ally 
hara
terized by the invariants it preserves.We model transformations over the data spa
e by using an operatorT (x; �) whi
h 
ombines a data obje
t x and a parameter ve
tor � to pro-du
e a transformed obje
t ~x = T (x; �). In general, we will need to assumevery little about this operator, but, by making some very simple (and fairlyweak) assumptions about the nature of T , we will be able to formulate nat-ural geometri
 properties that one 
an preserve in a dimensionality redu
ingembedding.First, we assume that T is a bilinear operator. That is, T be
omes alinear operator on ea
h argument when the other argument is held �xed.Spe
i�
ally, T (ax1+ bx2; �) = aT (x1; �) + bT (x2; �)T (x; a�1+ b�2) = aT (x; �1) + bT (x; �2) (4)Se
ond, we require the operator to have a lo
al origin ! in the se
ond argu-ment that gives an identity map:T (x; !) = x for all x (5)With these properties, we 
an then naturally equate parameterized transfor-mations with tangent ve
tors as follows. First note that T (x; �) = x+T (x; Æ)for Æ = � � !, sin
e by bilinearity we haveT (x; �) = T (x; ! + Æ) = T (x; !) + T (x; Æ)and also T (x; !) = xThus, we 
an interpret every transformation of an obje
t x as a ve
tor sum.That is, if ~x = T (x; �) then the di�eren
e ~x� x is just T (x; Æ).Now imagine transforming a sour
e obje
t xi to approximate a nearbytarget obje
t xj, where both reside on the manifold. The best approximationof xj by xi is given by ~xij = T (xi; ~�ij)19



where ~�ij = argmin� kxj � T (xi; �)kIf the approximation error is small, we 
an 
laim that the di�eren
e ve
tor~xij � xi = T (~Æij), for ~Æij = ~�ij � !, is approximately tangent to the manifoldat xi. Consider the norm of the di�en
e ve
tor:kxi � ~xijk = kT (x; ~Æij)k = k~Æijk kT (x; ~�ij)kwhere ~�ij = ~Æij=k~Æijk. Here T (x; ~�ij) gives the dire
tion of the approximatetangent ve
tor at xi, and k~Æijk gives the 
oeÆ
ient in dire
tion ~�ij. This saysthat ~xij is the proje
tion of xj onto the tangent plane 
entered at xi, sin
e~xij = xi + k~ÆijkT (x; ~�ij) is the best approximation of xj in the lo
al tangentspa
e of xi.Intuitively, when we embed xi and ~xij in a lower dimensional spa
e, sayby a mapping xi 7! yi and ~xij 7! ~yij, we would like to preserve the 
oeÆ
ient:kyi � ~yijk � k~ÆijkThat is, in the lower-dimensional spa
e, the ve
tor yi � ~yij en
odes the em-bedded dire
tion of the transformation, T (xi; ~�ij), and the length kyi � ~yijken
odes the 
oeÆ
ient of the transformation, k~Æijk.7.3 Lo
al tangent spa
e embedding algorithmThe lo
al tangent spa
e embedding (LTSE) algorithm pro
eeds through threesteps:In the �rst step, the neighbors of ea
h data point xi are identi�ed asfollows:Compute the best point-to-point approximations. The best approxima-tion of xj by xi is given by ~xij = T (xi; ~�ij)where ~�ij = argmin� kxj � T (xi; �)kThe K nearest neighbors of data point xi are the K best approximationsamongst all ~xij. 20



The se
ond step of LTSE is to re
onstru
t ea
h data point from its nearestneighbors. Consider a parti
ular data point xi with K nearest neighbors andre
onstru
tion weights wj. The re
onstru
tion error 
an be written as:minW Xi jjxi � ~xNxiwijj2where ~xNxi denotes the K nearest neighbors of xi. This 
ost fun
tion shouldbe minimized subje
t to two 
onstraints: �rst, that ea
h data point xi isre
onstru
ted only from its neighbors (Wij = 0 if xj is not among the nearestneighbors of xi). Se
ond, the rows of the weight matrix sum to one (Pj Wij =1). This is a 
onstrained least squares problem and, similar to LLE, 
an be
omputed in 
losed form.In the third step LTSE embeds both X and ~X (a t� t matrix 
ontainesall ~xij), into Y and ~Y . Re
all that LLE in its third step 
omputes a lowdimensional embedding Y based on the re
onstru
tion weights Wij of pointxi. LTSE should minimize a similar 
ost fun
tion while preserving ~Æij, the
oeÆ
ient of the transformation in the original spa
e. A
tually, the 
ostfun
tion of LTSE in this step 
onsists of two parts. The �rst part ensuresmutual linear re
onstru
tion ability (similar to LLE) and the se
ond partpreserves pairwise distan
es (similar to MDS).minY;~Y jjY � ~Y W jj2 + jj � 12HD(Æ)H � [Y; ~Y ℄T [Y; ~Y ℄jj2where D(Æ) is a distan
e matrix 
ontaining all transformation 
oeÆ
ients Æijand [Y; ~Y ℄ denotes a d� (K + 1)t matrix 
ontaining the d� t matrix Y andthe d�K � t matrix ~Y .The individual parts of this 
ost fun
tion are 
lassi
al problems. Wehave seen the solution of the �rst part in LLE and the se
ond part has beenaddressed by MDS. Omitting the details, it 
an be shown that, even withtwo parts, the problem is still tra
table and has a 
losed form solution. Thissolution 
an be represented as eigenve
tors of �12HD(Æ)H, together with anadjustment from the �rst part of the 
ost fun
tion.7.4 Experimental resultsWe present preliminary experimental results on natural image data. Herewe use the transformation operator on images (3) that was des
ribed inSe
tion 7.1.1. First, we need to verify that the bilinearity property (4) and21



Figure 6: Top: Original data. Middle: 1-dimensional manifold dis
overed byLLE. Bottom: 1-dimensional manifold dis
overed by LTSEorigin property (5) are both satis�ed. Bilinearity follows trivially from thelinearity of (3). Here, the identity transformation T (x; !) = x is given byparameters ! that are zero for all neighboring pixels, ex
epting the 
enterpixel aligned with the target pixel, where the parameter is 1.Our �rst experiment is on a single fa
e image We have 
ondu
ted exper-iments on various sets of fa
e images. Although the data is 
omplex, manyof these data sets demonstrate manifold behavior over a small number ofdegrees of freedom.that has been translated verti
ally. Figure 6 shows the result of run-ning LLE and Lo
al Tangent Spa
e Embedding (LTSE) on the original datashown at the top. This �gure shows that the 1-dimensional manifold dis
ov-ered by LLE is inferior to that dis
overed by LTSE, whi
h had no problemtra
king the verti
al shift in the image set. We then repeated this experi-ment with a larger number of fa
e images appearing at random translations.Figure 7 again shows improved performan
e for LTSE over LLE. Here, atwo-dimensional manifold was dis
overed by ea
h te
hnique. LTSE dis
ov-ered verti
al translation as its �rst dimension, whi
h LLE failed to 
apturein this 
ase.Finally, we 
ondu
ted an experiment on a database of rotating fa
e im-ages. Figure 8 shows the two-dimensional manifold dis
overed by LLE,whereas Figure 9 shows the two-dimensional manifold re
overed by LTSE.In both 
ases, the �rst dimension (top) 
aptured the rotation angle of theimages, although on
e again LLE's result is not as good as LTSE's. Interest-ingly, LTSE (and to a lesser extent LLE) learned to distinguish frontal frompro�le views in its se
ond dimension.22



Figure 7: Top: Original data. 2nd and 3rd rows: 2-dimensional manifolddis
overed by LLE. 4th and 5th rows: 2-dimensional manifold dis
overed byLTSE
Figure 8: Two-dimensional manifold dis
overed by LLE

Figure 9: Two-dimensional manifold dis
overed by LTSE. Note: �rst di-mension 
aptures rotation, whereas se
ond 
aptures frontal views versus sideviews 23
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