
logistic regression

Referred to as Binomial regression in the two class problem.

Goal: Model the probability of being in each class given its predictors
by estimating the following functions:

P(Y = 1|X = x) =
eβ

T x

1 + eβT x

P(Y = 0|X = x) = 1− eβ
T x

1 + eβT x
=

1

1 + eβT x
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Maximum likelihood

Given n data points {xi}ni=1 drawn independently from p(x ; θ), where
the form of p(x) is known but θ is unknown, then θ̂MLE is the
Maximum Likelihood Estimate which maximizes the Likelihood of the
data.

θ̂MLE = argmaxθl(θ)

In this case, we wish to find β̂ which maximizes `(β) where

`(β) = log(L(β)) =
∑n

i=1 log(f (xi ; β))

f (xi ; β) =
(

eβ
T xi

1+eβ
T xi

)yi(
1

1+eβ
T xi

)1−yi
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logistic regression

In order to find β̂ which maximizes `(β), we set ∂`
∂β

= 0 and solve β.

`(β) =
n∑

i=1

logf (xi ; β)

=
n∑

i=1

yi log
( eβ

T xi

1 + eβT xi

)
+ (1− yi)log

( 1

1 + eβT xi

)
=

n∑
i=1

yi
[
βTxi − log(1 + eβ

T xi )
]

+ (1− yi)
[
− log(1 + eβ

T xi )
]

=
n∑

i=1

yiβ
Txi − log(1 + eβ

T xi )
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logistic regression

∂`
∂β

=
∑n

i=1 yixi −
eβ

T xi

1+eβ
T xi

xi

We see that β̂ cannot be found analytically so we can use a
numerical method; the Newton Raphson algorithm is widely used:

1) initialize x0

2) xk+1 = xk − f ′′(xk)−1f ′(xk)

3) repeat until convergence (ie. |xk+1 − xk | < ε)
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logistic regression

For convenience, let pi = eβ
T xi

1+eβ
T xi

and 1− pi = 1

1+eβ
T xi

.

Compute the first derivative (Score vector)

∂`
∂β

=
∑n

i=1

(
yi − pi

)
xi

Compute the second derivative (Hessian matrix)

∂2`
∂β∂βT = −

∑n
i=1 xipi

(
1− pi

)
xTi

Now we can apply the Newton Raphson algorithm to maximize `(β)

βt+1 ← βt −
(

∂2`
∂βt∂βtT

)−1
∂`
∂βt
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logistic regression

Recalling some matrix algebra, We can convert all summations to
matrix operations.

∂`
∂β

= XT (y− p)

∂2`
∂β∂βT = −XTWX; Wii = pi(1− pi),Wij = 0

The Newton Raphson algorithm can now be expressed as

βt+1 ← βt + (XTWX)−1XT (y− p)
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logistic regression

Alternatively, the algorithm can be expressed as:

βt+1 ← βt + (XTWX)−1XT (y− p)

← (XTWX)−1
[
XTWXβt + XT (y− p)

]
← (XTWX)−1XTWZ

where Z = Xβt + W−1(y− p)

This algorithm is also known as Iteratively Re-weighted Least Squares
(IRLS)

βnew ← argminβ(Z− Xβ)TW(Z− Xβ)
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logistic regression

Note: For a d-dimensional x this model has d adjustable parameters.
By contrast to LDA we have: 2d parameters for the means and
d(d + 1)/2 parameters for the covariance matrix. Together with the
class priors, LDA gives a total of d(d + 5)/2 + 1 parameters which
grows quadratically in d, in contrast to the linear growth of
parameters (d parameters) of logistic regression. For large d , there is
a clear advantage for working with the logistic regression model
directly.
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