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Abstract

Nonnegative matrix factorization (NMF) was
popularized as a tool for data mining by Lee
and Seung in 1999. NMF attempts to ap-
proximate a matrix with nonnegative entries
by a product of two low-rank matrices, also
with nonnegative entries. We propose an al-
gorithm called rank-one downdate (R1D) for
computing an NMF that is partly motivated
by the singular value decomposition. This al-
gorithm computes the dominant singular val-
ues and vectors of adaptively determined sub-
matrices of a matrix. On each iteration, R1D
extracts a rank-one submatrix from the origi-
nal matrix according to an objective function.
We establish a theoretical result that max-
imizing this objective function corresponds
to correctly classifying articles in a nearly
separable corpus. We also provide compu-
tational experiments showing the success of
this method in identifying features in realis-
tic datasets. The method is also much faster
than other NMF routines.

1. Nonnegative Matrix Factorization

Several problems in information retrieval can be posed
as low-rank matrix approximation. The seminal pa-
per by Deerwester et al. (1990) on latent semantic
indexing (LSI) showed that approximating a term-
document matrix describing a corpus of articles via
the SVD led to powerful query and classification tech-
niques. A drawback of LSI is that the low-rank fac-
tors in general will have both positive and negative
entries, and there is no obvious statistical interpreta-
tion of the negative entries. This led Lee and Seung
(1999) among others to propose nonnegative matrix
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factorization (NMF), that is, approximation of a ma-
trix A ∈ Rm×n as a product of two factors WHT ,
where W ∈ Rm×k, H ∈ Rn×k, both have nonnegative
entries, and k ≤ min(m,n). Lee and Seung showed
intriguing results with a corpus of images. In a re-
lated work, Hofmann (1999) showed the application
of NMF to text retrieval. Nonnegative matrix fac-
torization has its roots in work of Gregory and Pull-
man (1983), Paatero and Tapper (1994) and Cohen
and Rothblum (1993).

Since the problem is NP-hard (Vavasis, 2007), it is not
surprising that no algorithm is known to solve NMF
to optimality. Heuristic algorithms proposed for NMF
have generally been based on incrementally improving
the objective ‖A − WHT ‖ in some norm using local
moves. A particularly sophisticated example of local
search is due, e.g., to Kim and Park (2007). A draw-
back of local search is that it is sensitive to initial-
ization and it is also sometimes difficult to establish
convergence.

We propose an NMF method based on greedy rank-one
downdating that we call R1D. R1D is partly motived
by Jordan’s algorithm for computing the SVD, which
is described in Section 2. Unlike local search methods,
greedy methods do not require an initial guess. In
Section 3, we compare our algorithm to Jordan’s SVD
algorithm, which is the archetypal greedy downdat-
ing procedure. Previous work on greedy downdating
algorithms for NMF is the subject of Section 4. In Sec-
tion 5, we present the main theoretical result of this
paper, which states that in a certain model of text due
to Papadimitriou et al. (2000), optimizing our objec-
tive function means correctly identifying a topic in a
text corpus; and Section 6 discusses the complexity of
this problem. We then turn to computational exper-
iments: in Section 7, we present results for R1D on
image datasets, and in Section 8, we present results
on text.
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2. Algorithm and Objective Function

Rank-one downdate (R1D) is based on the simple ob-
servation that the leading singular vectors of a nonneg-
ative matrix are nonnegative. This is a consequence
of the Perron-Frobenius theorem (Golub & Van Loan,
1996). Based on this observation, it is trivial to com-
pute a rank-one NMF. This idea can be extended to
approximate a higher order NMF. Suppose we com-
pute the rank-one NMF and then subtract it from
the original matrix. The original matrix will not be
nonnegative any more but all negative entries can be
forced to be zero or positive and the procedure can be
repeated.

An improvement on this idea takes only a submatrix of
the original matrix and applies the Perron-Frobenius
theorem. The point is that taking the whole matrix
will in some sense average the features, whereas a sub-
matrix can pick out particular features. A second rea-
son to take a submatrix is that a correctly chosen sub-
matrix may be very close to having a rank of one, so
the step of forcing the residuals to be zero will not in-
troduce significant inaccuracy (since they will already
be close to zero).

The outer loop of the R1D algorithm may be described
as follows.

Algorithm 1 R1D
input A ∈ Rm×n, k > 0
output W ∈ Rm×k, H ∈ Rn×k

1: for µ = 1 to k do
2: [M,N,u,v, σ] = ApproxRankOneSubmatrix(A)
3: W (M,µ) = u(M)
4: H(N,µ) = σv(N)
5: A(M,N) = 0
6: end for

Here, M is a subset of {1, . . . ,m}, N is a sub-
set of {1, . . . , n}, u ∈ Rm, v ∈ Rn and σ ∈
R, and u,v are both unit vectors. The function
ApproxRankOneSubmatrix selects these five values so
that the submatrix of A indexed by rows M and N
is approximately rank one, and in particular, is ap-
proximately equal to u(M)σvT (N). We follow Mat-
lab subscripting conventions, so that A(M,N) denotes
this particular submatrix.

This outer loop for R1D may be called “greedy rank-
one downdating” since it greedily tries to fill the
columns of W and H from left to right by finding good
rank-one submatrices of A and subtracting them from
A. The classical greedy rank-one downdating algo-
rithm is Jordan’s algorithm for the SVD, described in
Section 3. Related work on greedy rank-one downdat-

ing for NMF is the topic of Section 4.

The subroutine ApproxRankOneSubmatrix, presented
later in this section, is a heuristic routine to maximize
the following objective function:

f(M,N,u, σ,v) = ‖A(M,N)‖2
F−γ‖A(M,N)−uσvT ‖2

F

(1)
Here, γ is a penalty parameter. The Frobenius norm
of an m× n matrix B, denoted ‖B‖F is defined to be√

B(1, 1)2 + B(1, 2)2 + · · ·+ B(m,n)2. The rationale
for (1) is as follows: the first term in (1) expresses the
objective that A(M,N) should be large, while the sec-
ond term penalizes departure of A(M,N) from being
a rank-one matrix.

Since the optimal u, σ,v come from the SVD (once
M,N are fixed), the above objective function can be
rewritten just in terms of M and N as

f(M,N) =
p∑

i=1

σi(A(M,N))2 − γ

p∑
i=2

σi(A(M,N))2

= σ1(A(M,N))2

− (γ − 1) ·
(
σ2(A(M,N))2

+ · · ·+ σp(A(M,N))2
)
, (2)

where p = min(|M |, |N |). The penalty parameter γ
should be greater than 1 so that the presence of low-
rank contributions is penalized rather than rewarded.

We conjecture that maximizing (1) is NP-hard (see
Section 6), so we instead propose a heuristic routine
for optimizing it. The procedure alternates improving
M , N , u, σ and v cyclically. First, observe that if
M,N are already known, then the optimal choice of
u, σ, v can be found with the SVD. For fixed (v, N),
the objective function (1) is separable by rows of the
matrix. In particular, the contribution of row i ∈ M
is

‖A(i,N)‖2 − γ‖A(i,N)− βivT ‖2,

where βi = uiσ. Note that βi may be undefined if
i /∈ M . Nonetheless, given v, the optimal βi (i.e.,
the choice that minimizes ‖A(i,N)−uivT ‖) is easy to
compute: it is A(i,N)v, the solution to a simple least-
squares minimization. Thus, we conclude that putting
column i into index set M is favorable for the overall
objective function provided that fi > 0, where

fi = ‖A(i,N)‖2 − γ‖A(i,N)−A(i,N)vvT ‖2.

The formula for fi can be simplified as follows:

fi = A(i,N)A(i,N)T − γ(A(i,N)
−A(i,N)vvT )(A(i,N)−A(i,N)vvT )T

= −(γ − 1)A(i,N)A(i,N)T + γ(A(i,N)v)2.
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If we rescale by γ−1 (which does not affect the accep-
tance criterion), and we define new penalty parameters
γ̄ := γ/(γ−1), then we see that row i is accepted pro-
vided that

γ̄(A(i,N)v)2 −A(i,N)A(i,N)T > 0.

A similar analysis applies to the columns, and leads to
the conclusion that, given values for M and u, column
j should be accepted provided that

γ̄(uT A(M, j))2 −A(M, j)T A(M, j) > 0.

The next issue is the choice of a starting guess for
M,N,u, σ,v. The algorithm should be initialized with
a starting guess that has a positive score, or else the
rules for discarding rows and columns could conceiv-
ably discard all rows or columns. To put this more
strongly, in order to improve the score of a converged
solution, it seems sensible to select a starting guess
with a high score. For this reason, R1D uses a single
column of A as its starting guess, and in particular, the
column of A with the greatest norm. (A single row may
also be chosen.) It then chooses u to be the normaliza-
tion of this column. This column is exactly rank one,
so for the correct values of σ and v the first penalty
term of (1) is zero. We have derived the following al-
gorithm for the subroutine ApproxRankOneSubmatrix
occuring in statement 〈2〉 in R1D.

Algorithm 2 ApproxRankOneSubmatrix
input A ∈ Rm×n , parameter γ̄ > 1
output M ⊂ {1, . . . ,m}, N ⊂ {1, . . . , n},

u ∈ Rm, v ∈ Rn, σ ∈ R
1: Select j0 ∈ {1, . . . , n} to maximize ‖A(:, j0)‖
2: M = {1, . . . ,m}
3: N = {j0}
4: σ = ‖A(:, j0)‖
5: u = A(:, j0)/σ
6: repeat
7: Let v̄ = A(M, :)T u(M)
8: N = {j : γ̄v̄(j)2 − ‖A(M, j)‖2 > 0}
9: v(N) = v̄(N)/‖v̄(N)‖

10: Let ū = A(:, N)v(N)
11: M = {i : γ̄ū(i)2 − ‖A(i,N)‖2 > 0}
12: σ = ‖u(M)‖
13: u(M) = ū(M)/σ
14: until stagnation in M,N,u, σ,v

The ‘Repeat’ loop is guaranteed to make progress be-
cause each iteration increases the value of the objective
function. On the other hand, there does not seem to
be any easy way to derive a useful prior upper bound
on its number of iterations. In practice, it proceeds

quite quickly, usually converging in 10–15 iterations.
But to guarantee fast termination, monotonicity can
be forced on M and N by requiring M to shrink and N
to grow. In other words, statement 〈8〉 can be replaced
by

N = N ∪ {j : γ̄v̄(j)2 − ‖A(M, j)‖2 > 0},

and statement 〈11〉 by

M = M − {i : γ̄ū(i)2 − ‖A(i,N)‖2 ≤ 0}.

Our experiments indicate that this change does not
have a major impact on the performance of R1D.

Another possible modification to the algorithm is as
follows: we modify the objective function by adding a
second penalty term −ρ|M | · |N | to (1) where ρ > 0 is
a parameter. The purpose of this term is to penalize
very low-norm rows or columns from being inserted
into A(M,N) since they are probably noisy. For data
with larger norm, the first term of (1) should dominate
this penalty. Notice that this penalty term is also sep-
arable so it is easy to implement: the formula in 〈8〉 is
changed to γ̄v̄(j)2 − ‖A(M, j)‖2 − ρ̄|M | > 0 while the
formula in 〈11〉 becomes γ̄ū(i)2−‖A(i,N)‖2− ρ̄|N | >
0, where ρ̄ = ρ/(γ − 1). A good value for ρ̄ is to set it
so that in the initial starting point, the third penalty
term is a small fraction (say η̄ = 1/20) of the other
terms. This leads to the following definition for ρ:

ρ = η̄(γ̄ − 1)σ2/m,

which may be computed immediately after 〈4〉.

Greedy rank-one downdating appears to be much
faster than other NMF algorithms. Generating each
column of W and H requires approximately 20 matrix-
vector multiplications; these multiplications are always
at least as sparse as the original data. There is no it-
erative improvement phase. It can also be much faster
than the SVD, especially for sparse data.

3. Relationship to the SVD

The classical rank-one greedy downdating algorithm
is Jordan’s algorithm for computing the singular value
decomposition (SVD) (Stewart, 1993). Recall that the
SVD takes as input an m × n matrix A and returns
three factors U,Σ, V such that U ∈ Rm×k and U has
orthonormal columns (i.e., UT U = I), Σ ∈ Rk×k

and is diagonal with nonnegative diagonal entries, and
V ∈ Rn×k also with orthonormal columns, such that
UΣV T is the optimal rank-k approximation to A in
either the 2-norm or Frobenius norm. (Recall that
the 2-norm of an m × n matrix B, denoted ‖B‖2, is
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Algorithm 3 JordanSVD
input A ∈ Rm×n and k ≤ min(m,n)
output U,Σ, V as above.
1: for µ = 1 to k do
2: Select a random nonzero ū ∈ Rm

3: σ = ‖ū‖
4: u = ū/σ
5: repeat {power method}
6: v̄ = AT u
7: v = v̄/‖v̄‖
8: ū = Av
9: σ = ‖ū‖

10: u = ū/σ
11: until stagnation in u, σ,v
12: A = A− uσvT

13: U(:, µ) = u
14: V (:, µ) = v
15: Σ(µ, µ) = σ
16: end for

defined to be
√

λmax(BT B), where λmax denotes the
maximum eigenvalue.)

Thus, we see that R1D is quite similar to the SVD. The
principal difference is that R1D tries to find a subma-
trix indexed by M ×N at the same time that it tries
to identify the optimal u and v. Hence, the formulas
for u and v occurring in 〈9〉 and 〈13〉 of subroutine
ApproxRankOneSubmatrix, which were presented ear-
lier as solutions to a least-squares problem, may also
be regarded as steps in a power method. In particular,
this means that if M and N are fixed, then the inner
repeat loop of this subroutine will indeed converge to
the dominant singular triple of A(M,N).

As mentioned earlier, a shortcoming of the SVD is that
its factors contain both positive and negative numbers.
It has another subtler shortcoming when used for clus-
tering which is as follows: because the SVD always
operates on the entire matrix, it can return a singular
vector that averages the results from two nearly dis-
joint topics in a corpus (see Biggs et al. (2008) for an
example). R1D avoids this pitfall by seeking a subma-
trix that is approximately rank-one as it applies the
power method.

4. Related Work

As mentioned in the introduction, most algorithms
proposed in the literature are based on forming an
initial W and H and then improving them by local
search on an objective function. The objective func-
tion usually includes a term of the form ‖A−WHT ‖
in some norm, and may include other terms.

A few previous works follow an approach similar to
ours, namely, greedy subtraction of rank-one matrices.
This includes the work of Bergmann et al. (2003), who
identify the rank-one matrix to subtract as the fixed
point of an iterative process. Asgarian and Greiner
(2006) find the dominant singular pair and then trun-
cate it. Gillis (2006) finds a rank-one understimator
and subtracts that. Boutsidis and Gallopoulos (2007)
consider the use of a greedy algorithm for initializing
other algorithm and make the following interesting ob-
servation: The nonnegative part of a rank-one matrix
has rank at most 2.

The main innovation herein is the idea that the search
for the rank-one submatrix should itself be an opti-
mization subproblem. This observation allows us to
compare one candidate submatrix to another. (Gillis
also phrases his subproblem as optimization, although
his optimization problem does not explicitly seek sub-
matrices like ours.) A second innovation is our anal-
ysis in Section 5 showing that if the subproblem were
solved optimally, then R1D would be able to accu-
rately find the topics in the model of ε-separable cor-
pora (Papadimitriou et al., 2000).

5. Behavior of this objective function
on a nearly separable corpus

In this section, we establish the main theoretical result
of the paper, namely, that the objective function given
by (1) is able to correctly identify a topic in a nearly
separable corpus. We define our text model as fol-
lows. There is a universe of terms numbered 1, . . . ,m.
There is also a set of topics numbered 1, . . . , t. Topic
k, for k = 1, . . . , t, is a probability distribution over
the terms. Let P (i, k) denote the probability of term i
occurring in topic k. Thus, P is a singly stochastic ma-
trix, i.e., it has nonnegative entries with column sums
exactly 1. We assume also that there is a probability
distribution over topics; say the probability of topic k
is τk, for k = 1, . . . , t. The text model is thus specified
by P and τ1, . . . , τt. We use the Zipf distribution as
the model of document length. In particular, there is
a number L such that all documents have length less
than L, and the probability that a document of length
l occurs is

1/l

1 + 1/2 + · · ·+ 1/(L− 1)
.

We have checked that the Zipf model is a good fit for
several common datasets.

A document is generated from this text model as fol-
lows. First, topic k is chosen at random according
to the probability distribution {τ1, . . . , τt}. Then, a
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length l is chosen at random from {1, . . . , L − 1} ac-
cording to the Zipf distribution. Finally, the docu-
ment itself is chosen at random by selecting l terms in-
dependently according to the probability distribution
P (:, k). A corpus is a set of n documents chosen in-
dependently using this text model. Its term-document
matrix is the m × n matrix A such that A(i, j) is the
frequency of term i in document j.

We further assume that the text model is ε-separable,
meaning that each topic k is associated with a set of
terms Tk ⊂ {1, . . . ,m}, that T1, . . . , Tt are mutually
disjoint, and that P (i, k) ≤ ε for i /∈ Tk, i.e., the prob-
ability that a document on topic k will use a term
outside of Tk is small. Let Pmin = min{P (i, k) : i ∈
Tk, k = 1, . . . , t}. Without loss of generality, Pmin > 0
since any row i ∈ Tk such that P (i, k) = 0 may be
removed from Tk without affecting the validity of the
model. Parameter ε must satisfy an inequality men-
tioned below. This corpus model is quite similar to
that of Papadimitriou et al. (2000). One difference
is in the the document length model. Our model also
relaxes several assumptions of Papadimitriou et al.

Our main theorem is that the objective function given
by (1) correctly finds documents associated with a par-
ticular topic in a corpus.

Theorem 1. Let (P, (τ1, . . . , τt)) specify a text model,
and let α > 0 be chosen arbitrarily. Assume ε > 0
is chosen smaller than a function ε(Pmin,m, t, α) (see
Biggs et al. (2008) for this function). Suppose that the
text-model is ε-separable with respect to T1, . . . , Tt, the
subsets of terms defining the topics. Let A be the term-
document matrix of a corpus of n documents drawn
from this model when the document-length parameter
is L.

Choose γ = 4 in (1). Then with probability tending to
1 as n → ∞ and L → ∞, the optimizing pair (M,N)
of (1) satisfies the following. Let D1, . . . , Dt be the
partitioning of the columns of A according to topics.
There exists a topic k ∈ {1, . . . , t} such that A(M,N)
and A(Tk, Dk) are nearly coincident in the following
sense. ∑

(i,j)∈(M×N)4(Tk×Dk)

A(i, j)2 ≤ α
∑

(i,j)∈M×N

A(i, j)2.

Here, X 4 Y denotes the set-theoretic symmetric dif-
ference (X −Y )∪ (Y −X). The proof of this theorem
is lengthy and appears in Biggs et al. (2008). It re-
lies on Chernoff-Hoeffding estimates and perturbation
results for singular vectors such as Theorem 8.6.5 of
Golub and Van Loan (1996).

6. On the complexity of maximizing
f(M, N)

In this section, we observe that the problem of globally
maximizing (2) is NP-hard at least in the case that γ
is treated as an input parameter. This observation
explains why R1D settles for a heuristic maximization
of (2) rather than exact maximization. First, observe
that the maximum biclique (MBC) problem is NP-
hard as proved by Peeters (2003). We show that the
MBC problem can be transformed to an instance of
(2).

Let us recall the definition of the MBC problem. The
input is a bipartite graph G. The problem is to find
an (m,n)-complete bipartite subgraph K (sometimes
called a biclique) of G such that mn is maximized, i.e.,
the number of edges of K is maximized.

Suppose we are given G, an instance of the maximum
biclique problem. Let A be the left-right adjacency
matrix of G, that is, if G = (U, V,E) where U ∪ V is
the bipartition of the node set, then A has |U | rows
and |V | columns, and A(i, j) = 1 if (i, j) ∈ E for i ∈ U
and j ∈ V , else A(i, j) = 0.

Consider maximizing (2) for this choice of A. We re-
quire the following preliminary lemmas whose proofs
are omitted.

Lemma 2. Let A be a matrix that has either of the
following as a submatrix:

U1 =
(

1 0
0 1

)
or U2 =

(
1 1
0 1

)
. (3)

Then σ2(A) > 0.618.

This lemma leads to the following lemma.

Lemma 3. Suppose all entries of A ∈ Rm×n are ei-
ther 0 or 1, and suppose and at least one entry is 1.
Suppose M,N are the optimal solution for maximizing
f(M,N) given by (2). Suppose also that the parameter
γ is chosen to be 2.7mn + 1 or larger. Then the op-
timal choice of M,N must yield a matrix A(M,N) of
all 1’s, possibly augmented with some rows or columns
that are entirely zeros.

Now consider the main claim, namely, that optimize
(M,N) of the objective function for this A corresponds
to the max biclique. If A(M,N) includes a row or col-
umn entirely of zeros, then this row or column may be
dropped without affecting the value of the objective
function (2). Hence it follows from the lemma that
without loss of generality that the optimizer (M,N)
of (2) indexes a matrix of all 1’s. In that case,
σ1(A(M,N)) =

√
|M | · |N | while σ2(A(M,N)) =
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(a)

(b)

(c)

Figure 1. A binary image dataset is depicted in (a); white
indicates zeros. The result of R1D on this dataset is shown
in (b), and LSI in (c).

· · · = σp(A(M,N)) = 0 (where p = min(|M |, |N |)),
and hence f(M,N) = |M | · |N |. Thus, the value of the
objective function corresponds exactly to the number
of edges in the biclique. This completes the proof that
biclique is reducible in polynomial time to maximizing
(2).

We note that Gillis (2006) also uses the result of
Peeters for a similar purpose, namely, to show that
the subproblem arising in his NMF algorithm is also
NP-hard.

The NP-hardness result in this section requires that γ
be an input parameter. We conjecture that (2) is NP-
hard even when γ is fixed (say γ = 4 as used herein).

7. Image dataset test cases

We first demonstrate the performance of R1D on a
simple binary image dataset, depicted in Figure 1 (a).
Each of the ten dataset images is composed of one or
two “basis” triangles. The results of R1D (with pa-
rameter γ̄ = 4) and LSI on this dataset are shown in
Figure 1 (b) and (c), respectively, and the interpre-
tation is as follows. The leftmost column illustrates
the four leading columns of W , which are the learned
features. For each of these, the images on the right
are the dataset images with the largest entries in the
corresponding column of H; they should be closely as-

(a)

(b)

(c)

Figure 2. Three algorithms applied to the Frey face dataset
(black indicates zeros): (a) NMF with divergence criterion,
(b) our R1D algorithm for NMF, and (c) LSI

sociated with the feature on the left.

R1D discovered the four triangles as a basis, and to
each it associated exactly the dataset images which
contain the appropriate triangle. Alternatively, the
LSI factorization is not as interpretable.

We have also compared results against NMFDIV from
nmfpack (Hoyer, 2000; Hoyer, 2004). NMFDIV re-
quires k, the number of basis vectors to compute, as
an input parameter which globally affects the factors
W and H. If k is correctly set to 4, NMFDIV is able
to compute the same correct result as R1D. Otherwise,
some or all of the basis vectors will appear incorrect,
including the first ones. R1D and LSI will each com-
pute the same leading columns regardless of k, and
on this dataset they will not compute more than 4
columns; all subsequent columns of W and H will be
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Table 1. The amount of sparsity in the NMF computed by
R1D (γ̄ = 2) on the Frey face dataset. It is presented as
the percentage of zero values in the first few columns of W
and H.

Column % zeros in W % zeros in H

1 0.00 0.00
2 0.82 0.69
3 0.69 0.68
4 0.82 0.88
5 0.94 0.73

zero.

Figure 2 conducts a similar experiment on the Frey
face dataset, which consists of 1965 registered face im-
ages of size 28×20. Again, the leading columns of
W present the “eigenfaces” or “features” discovered
in the dataset, and the corresponding column of H
selects dataset images that are classified as carrying
the feature most prominently. R1D seems to be the
most successful at finding features and classifying im-
ages; in each case, the column of W shows a particular
highlight that distinguishes some images in the dataset
from others. NMFDIV appears to be slightly inferior
to R1D, while LSI is noticeably worse.

In this experiment, the algorithms computed 30 basis
vectors of the NMF. NMFDIV was allowed 500 itera-
tions which took 727 seconds; in contrast, LSI required
20 seconds and R1D took 47 seconds.

Additionally, R1D is effective at finding a sparse fac-
torization. Table 1 demonstrates the sparsity in the
first few columns of W and H. The first column of W
and H is fully dense, because the data matrix appears
to be approximately rank-one; its first singular value is
dominant. Apart from this, the other columns of the
NMF are sparse, and the sparsity can be controlled
by the γ̄ parameter (here we have used γ̄ = 2). Al-
ternatively, both NMFDIV and LSI perform a dense
factorization with very few values near zero in any col-
umn.

8. Text dataset test cases

In Tables 2 and 3 we illustrate LSI versus R1D (with
parameter γ̄ = 4) on the TDT Pilot Study (TDT
Study, 1997). The columns of each table are the lead-
ing columns of W , with the leading terms per column
displayed. The LSI results show that the topics are
not properly separated and terms from different top-
ics recur or are mixed. The columns in the R1D table
are clearly identifiable topics, and the terms in each

Table 2. Topics found by LSI on the TDT Pilot Study cor-
pus (tf-idf normalization).

Topic 1 Topic 2 Topic 3 Topic 4

simpson israel israel bosnian
president israeli israeli serbs
clinton bosnian palestinian serb
police peace gaza sarajevo
house serbs arafat bosnia
israel bosnia plo nato
bosnian serb jerusalem simpson
haiti sarajevo peace bihac
united palestinian palestinians air
government nato simpson troops

Table 3. Topics found by R1D on the TDT Pilot Study cor-
pus (tf-idf normalization). Note that all words in a column
do in fact refer to the same news event.

Topic 1 Topic 2 Topic 3 Topic 4

simpson masters korea deng
judge pairings korean xiaoping
ito augusta north rong
jury amateur kim paramount
defense tournament pyongyang china
trial round seoul health
angeles golf sung chinese
los noted nuclear kong
prosecution players south hong
case georgia communist daughters

columns are all correctly associated with the given top-
ics.

NMFDIV (and the other implementations of NMF in
nmfpack) were not run on this dataset because they
would exhaust all of the computer’s memory. As noted
earlier, R1D on text datasets is able to efficiently work
with sparse matrices throughout its operation. R1D
was able to compute 80 basis vectors of the TDT cor-
pus in 171 seconds, whereas LSI required 269 seconds.

9. Conclusions

We have proposed an algorithm called R1D for non-
negative matrix factorization. It is based on greedy
rank-one downdating according to an objective func-
tion, which is heuristically maximized. We have shown
that the objective function is well suited for identifying
topics in the ε-separable text model. Finally, we have
shown that the algorithm performs well in practice.
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This work raises several interesting open questions.
First, the ε-separable text model seems rather too sim-
ple to describe real text, so it would be interesting to
see if the results generalize to more realistic models.

A second arising question asks whether a re-
sult like Theorem 1 will hold for the R1D algo-
rithm. In other words, if the heuristic subroutine
ApproxRankOneSubmatrix is applied to an ε-separable
corpus, does it successfully identify a topic? Here is an
example of a difficulty. Suppose n → ∞ much faster
than L. In this case, the document j with the highest
norm will be the one in which lj is very close to L and
in which one entry A(i, j) is very close to L while the
rest are mostly zeros. This is because the maximizer
of ‖x‖2 subject to the constraint that ‖x‖1 = C oc-
curs when one entry of x is equal to C and the rest
are zero. It is likely that at least one instance of such
a document will occur regardless of the matrix P (·, ·)
if n is sufficiently large. This document will then act
as the seed for expanding M and N , but it may not
be similar to any topic. This scenario can perhaps be
prevented by a more intelligent selection of a starting
vector for ApproxRankOneSubmatrix.
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