Neural Network

* A neural network is a multistate regression model which is
typically represented by a network diagram.

Input Layer 1 Layer2 % % % Layern-1 Layer n

X, O O***
X: O O***O\

* ipes

* *

* ¥ ¥

* *
L
]

Hidden Layers

X b

Feed Forward Neural Network

Feedforward Neural Network

Input Hidden Output

layer layer layer
X1 /?*
X2 %
® n
X3
\.

Feedforward Deep Networks

Hidden Hidden Hidden Output
' layer layer layer

e For regression, typically k = 1 (the number of nodes in the last layer),
there is only one output unit y; at the end.

e For c-class classification, there are typically c units at the end with the
¢ unit modelling the probability of class ¢, each y. is coded as 0-1
variable for the cth class.

Backpropagation

[i J

Nodes from three hidden layers within the neural network. Each node is divided into the weighted sum of the inputs and the

output of the activation function.

dj = Z;ZIUH

Zi = a(a,-)
o(a) = 1+1e—a

Backpropagation

Take the derivative with respect to /
weight uj,
Oy — 9I°
dujy
3W—?P_d.
dujj -0

dly —yI°
83,-

where 0; =

Backpropagation

5. — Oly —yI° — [l]
: 8a,- .
A2
5 Oly —9I” 0a
J 8aj 88,‘
83j 82,-
6i N Zj 5j | 82,- . 83,-
6:’ — Zj 51' - Uji - O',(a,‘)
where ,
9ly —
5 — ly — 9|

8aj

Backpropagation

Note that if o(x) is the sigmoid function, then

0'(x) = a(x)(1 = a(x))

The recursive definition of 9;

5,: — 0’(3,-) Zj CSJ' - Ujj

Backpropagation

Now considering 0, for the output layer:

aak

Fal

where a, =y

Assume an activation function is not applied in the output layer.

a _/\2
5, — (y =)

Backpropagation

Ay —7)°
dujy

The network weights are updated using the backpropagation algorithm
when each training data point x is fed into the feed forward neural

network (FFNN).

Uy <— uj — P

10

Backpropagation

Backpropagation procedure is done using the following steps:

e First arbitrarily choose some random weights (preferably close to zero)
for your network.

11

Backpropagation

e Apply x to the FFNN's input layer, and calculate the outputs of all
input neurons.

12

Backpropagation

e Propagate the outputs of each hidden layer forward, one hidden layer
at a time, and calculate the outputs of all hidden neurons.

13

Backpropagation

e Once x reaches the output layer, calculate the output(s) of all output

neuron(s) given the outputs of the previous hidden layer.

14

Backpropagation

e At the output layer, compute 0, = —2(yx — Vi) for each output
neuron(s).

15

Backpropagation
Backpropagation procedure is done using the following steps:

e First arbitrarily choose some random weights (preferably close to zero)
for your network.

e Apply x to the FFNN's input layer, and calculate the outputs of all
Input neurons.

e Propagate the outputs of each hidden layer forward, one hidden layer
at a time, and calculate the outputs of all hidden neurons.

e Once x reaches the output layer, calculate the output(s) of all output
neuron(s) given the outputs of the previous hidden layer.

e At the output layer, compute d, = —2(yx — yx) for each output
neuron(s).

16

e Compute each ¢; , starting from i/ = k — 1 all the way to the first
hidden layer, where 6; = o'(a;) »_; 9; - uji -

Oy —9)° |
e Compute 5 = 0,z for all weights u; .
Uiy
(v — 0)2
e Then update u}}®V < u9d — p- (ya 2 for all weights wj; .
Ujy

e Continue for next data points and iterate on the training set until
weights converge.

17

Epochs

It is common to cycle through the all of the data points multiple times in
order to reach convergence. An epoch represents one cycle in which you
feed all of your datapoints through the neural network. It is good practice
to randomized the order you feed the points to the neural network within
each epoch; this can prevent your weights changing in cycles. The number
of epochs required for convergence depends greatly on the learning rate &
convergence requirements used.

Stochastic gradient descent

Suppose that we want to minimize an objective function that is written
as a sum of differentiable functions.

Q(w) =i, Qi(w)
Each term Q; is usually associated with the i_th data point.

Standard gradient descent (batch gradient descent):
w=w-—nVQ(w)=w—n>,VQi(w)

where 7 is the learning rate (step size).

19

Stochastic gradient descent

Stochastic gradient descent (SGD) considers only a subset of summand
functions at every iteration.

This can be quite effective for large-scale problems.

Bottou, Leon; Bousquet, Olivier (2008). The Tradeoffs of Large Scale Learning. Advances in Neural Information Processing Systems

20. pp. 161168.

The gradient of Q(w) is approximated by a gradient at a single example:

w=w —nVQ;(w).
This update needs to be done for each training example.

Several passes might be necessary over the training set until the
algorithm converges.

n might be adaptive.

20

Stochastic gradient descent

e Choose an initial value for w and 7.

e Repeat until converged
- Randomly shuffle data points in the training set.
-Fori=1,2,...,n, do:
-w=w —nVQi(w).

21

Example

Suppose y = wy + whrx

The objective function is:

Q(w) =X, Qi(w) = 30, (wr + waxi — ;).

Update rule will become:

) = [

|-

2(wy + wox; — y;)
2x;(wy + wox; — yi) |

Example from Wikipedia

22

Mini-batches

Batch gradient decent uses all n data points in each iteration.
Stochastic gradient decent uses 1 data point in each iteration.
Mini-batch gradient decent uses b data points in each iteration.

b is a parameter called Mini-batch size.

23

Mini-batches

e Choose an initial value for w and 7.

e Say b =10

e Repeat until converged
- Randomly shuffle data points in the training set.
- Fori=1,11,21,...,n =9, do:
W= w—n Y VQw).

24

Tuning n

If n is too high, the algorithm diverges.
If n is too low, makes the algorithm slow to converge.

A common practice is to make 73; a decreasing function of the iteration

____constantl
number t. €.8. Nt — t-+constant2

The first iterations cause large changes in the w, while the later ones do
only fine-tuning.

25

