Sum-Product Networks

STAT946 Deep Learning Guest Lecture by Pascal Poupart University of Waterloo October 17, 2017

Outline

- Introduction
 - What is a Sum-Product Network?
 - Inference
 - Applications
- In more depth
 - Relationship to Bayesian networks
 - Parameter estimation
 - Online and distributed estimation
 - Structure estimation

What is a Sum-Product Network?

- Poon and Domingos, UAI 2011
- Acyclic directed graph of sums and products
- Leaves can be indicator variables or univariate distributions

Two Views

Deep neural network with clear semantics

Tractable probabilistic graphical model

Deep Neural Network View

- Specific type of neural network
 - Sum node: $log(\sum_i w_i input_i)$
 - Product node: $exp(\sum_i input_i)$
- Advantages:
 - Clear semantics
 - Generative model
 - Efficient training
 - Structure estimation

Probabilistic Graphical Models

Bayesian Network

Graphical view of direct dependencies

Inference #P: intractable Markov Network

Graphical view of correlations

Inference #P: intractable

Sum-Product Network

Graphical view of computation

Inference P: tractable

Probabilistic Inference

- SPN represents a joint distribution over a set of random variables
 34.8
- Example: $Pr(X_1 = true, X_2 = false)$ $= \frac{34.8}{2}$

Probabilistic Inference

- SPN represents a joint distribution over a set of random variables
- Example: $Pr(X_1 = true, X_2 = false)$ $= \frac{34.8}{100}$
- Linear complexity!

Semantics

- Each node computes a probability over its scope
- Scope of a node: set of variables in sub-SPN rooted at that node
- Decomposable product node: children with disjoint scopes
- Complete/smooth sum node: children with identical scopes

decomposability
+ completeness

valid distribution linear inference

Queries

Queries

Relationship with other PGMs

- Any SPN can be converted into a Bayes net without any exponential blow up (Zhao, Melibari, Poupart, ICML-15)
- Naïve Bayes model

•

Relationship with other PGMs

Probability distributions

- **Compact:** space is polynomial in # of variables
- **Tractable:** inference time is polynomial in # of variables

Maximum likelihood: Stochastic gradient descent (SGD) (Poon & Domingos, 2011), expectation maximization (EM) (Perharz, 2015), signomial programming (Zhao & Poupart, 2016)
Bayesian learning: Bayesian Moment Matching (BMM) (Rashwan

et al., 2015), Collapsed Variational Inference (Zhao et al., 2016) 14

Applications

- Image completion (Poon, Domingos; 2011)
- Activity recognition (Amer, Todorovic; 2012)
- Language modeling (Cheng et al.; 2014)
- Speech modeling (Perhaz et al.; 2014)
- Mobile robotics (Pronobis, Rao; 2016)

Language Model

- An SPN-based n-gram model
- Fixed structure
- Discriminative weight estimation by gradient descent

Results

• From Cheng et al. 2014

Table 1: Perplexity scores (PPL) of different language models.

Model	Individual PPL	+KN5
TrainingSetFrequency	528.4	
KN5 [3]	141.2	
Log-bilinear model [4]	144.5	115.2
Feedforward neural network [5]	140.2	116.7
Syntactical neural network [8]	131.3	110.0
RNN [6]	124.7	105.7
LDA-augmented RNN [9]	113.7	98.3
SPN-3	104.2	82.0
SPN-4	107.6	82.4
SPN-4'	100.0	80.6

Maximum Log-Likelihood

• Objective: $w^* = argmax_{w \in R_+} \log \Pr(data|w)$ = $argmax_{w \in R_+} \sum_x \log \Pr(x|w)$ where $\Pr(x|w) = \frac{f(e(x)|w)}{f(\mathbf{1}|w)} = \frac{\sum_{tree \in e(x)} \prod_{ij \in tree} w_{ij}}{\sum_{tree \in 1} \prod_{ij \in tree} w_{ij}}$

• Non-convex optimization

$$\max_{w} \sum_{x} \log \sum_{tree \in e(x)} \prod_{ij \in tree} w_{ij} - \log \sum_{tree \in 1} \prod_{ij \in tree} w_{ij}$$

s.t. $w_{ij} \ge 0 \quad \forall ij$

Summary

Algo	Var	Update	Approximation	
	W	additive	linear	
PGD	$w_{ij}^{k+1} \leftarrow projection\left(w_{ij}^k + \right.$	$\gamma \left[\frac{\partial \log f(e(x) w)}{\partial w_{ij}} - \right]$	$-\frac{\partial \log f(1 w)}{\partial w_{ij}}\bigg]\bigg)$	
	W	multiplicative	linear	
EG	$w_{ij}^{k+1} \leftarrow w_{ij}^{k} \exp\left(\gamma \left[\frac{\partial \log f(e(x) w)}{\partial w_{ij}} - \frac{\partial \log f(1 w)}{\partial w_{ij}}\right]\right)$			
	log w	multiplicative	monomial	
SMA	$w_{ij}^{k+1} \leftarrow w_{ij}^k \exp\left(\gamma \left[\frac{\partial \log f(e(x) w)}{\partial \log w_{ij}} - \frac{\partial \log f(1 w)}{\partial \log w_{ij}}\right]\right)$			
CCCP	log w	multiplicative	Concave lower bound	
(EM)	$w_{ij}^{k+1} \propto w_{ij}^k$	$\frac{f_{v_j}(x w^k)}{f(x w^k)} \frac{\partial f(x w^k)}{\partial f_{v_i}(x w^k)}$)	

Results

• Zhao, Poupart et al. (NIPS 2016)

Streaming Data

Traffic classification

App recommendation

- Challenge: update model after each data vector
- Solution: online learning for SPNs

Scalability

- Online: process data sequentially once only
- Distributed: process subsets of data on different computers
- Mini-batches: SGD, online EG, online EM
- Problems: loss of information due to minibatches, how to adjust learning rate?
- Can we do better?

Thomas Bayes

Bayesian Learning

• Bayes' theorem (1764)

 $\Pr(\theta|X_{1:n}) \propto \Pr(\theta) \Pr(X_1|\theta) \Pr(X_2|\theta) \dots \Pr(X_n|\theta)$

- Broderick et al. (2013): facilitates
 - Online learning (streaming data)

 $\Pr(\theta|X_{1:n}) \propto \Pr(\theta)\Pr(X_1|\theta)\Pr(X_2|\theta)\dots\Pr(X_n|\theta)$

– Distributed computation

 $\begin{array}{c} \Pr(\theta) \Pr(X_1|\theta) \Pr(X_2|\theta) \Pr(X_3|\theta) \Pr(X_4|\theta) \Pr(X_5|\theta) \\ \hline \\ \text{core #1} \quad \text{core #2} \quad \text{core #3} \end{array}$

Exact Bayesian Learning

- Assume a normal SPN where the weights w_i . of each sum node *i* form a discrete distribution.
- Prior: $Pr(w) = \prod_{i.} Dir(w_{i.} | \alpha_{i.})$ where $Dir(w_{i.} | \alpha_{i.}) \propto \prod_{j} (w_{ij})^{\alpha_{ij}}$
- Likelihood: Pr(x|w) = f(e(x)|w) = $\sum_{tree \in e(x)} \prod_{ij \in tree} w_{ij}$
- Posterior: $\sum_{k} c_{k} \prod_{i} Dir(w_{i} | \alpha_{i}^{(k)})$ Exponentially large mixture of Dirichlets

Karl Pearson

Method of Moments (1894)

- Estimate model parameters by matching a subset of moments (i.e., mean and variance)
- Performance guarantees
 - Break through: First provably consistent estimation algorithm for several mixture models
 - HMMs: Hsu, Kakade, Zhang (2008)
 - MoGs: Moitra, Valiant (2010), Belkin, Sinha (2010)
 - LDA: Anandkumar, Foster, Hsu, Kakade, Liu (2012)

Bayesian Moment Matching for Sum Product Networks

Bayesian Learning + Method of Moments

Online, distributed and tractable algorithm for SPNs

Approximate mixture of products of Dirichlets by a single product of Dirichlets that matches first and second order moments

Bayesian Moment Matching Bayes update Mixture of **Product of** Products of Dirichlets Dirichlets projection

Results (benchmarks)

• Rashwan, Zhao, Poupart (AISTATS 2016)

Dataset	Var#	LearnSPN	oBMM	SGD	oEM	oEG
NLTCS	16	-6.11	-6.07	↓-8.76	↓-6.31	↓-6.85
MSNBC	17	-6.11	-6.03	↓-6.81	↓-6.64	↓-6.74
KDD	64	-2.18	-2.14	\downarrow -44.53	↓-2.20	↓-2.34
PLANTS	69	-12.98	-15.14	\downarrow -21.50	↓-17.68	\downarrow -33.47
AUDIO	100	-40.50	-40.7	\downarrow -49.35	\downarrow -42.55	↓-46.31
JESTER	100	-53.48	-53.86	\downarrow -63.89	\downarrow -54.26	\downarrow -59.48
NETFLIX	100	-57.33	-57.99	\downarrow -64.27	\downarrow -59.35	↓-64.48
ACCIDENTS	111	-30.04	-42.66	\downarrow -53.69	-43.54	\downarrow -45.59
RETAIL	135	-11.04	-11.42	↓-97.11	↓-11.42	↓-14.94
PUMSB-STAR	163	-24.78	-45.27	↓-128.48	\downarrow -46.54	↓-51.84
DNA	180	-82.52	-99.61	↓-100.70	↓-100.10	\downarrow -105.25
KOSAREK	190	-10.99	-11.22	↓-34.64	↓-11.87	↓-17.71
MSWEB	294	-10.25	-11.33	\downarrow -59.63	\downarrow -11.36	↓-20.69
BOOK	500	-35.89	-35.55	↓-249.28	\downarrow -36.13	\downarrow -42.95
MOVIE	500	-52.49	-59.50	\downarrow -227.05	\downarrow -64.76	↓-84.82
WEBKB	839	-158.20	-165.57	↓-338.01	\downarrow -169.64	↓-179.34
REUTERS	889	-85.07	-108.01	\downarrow -407.96	-108.10	↓-108.42
NEWSGROUP	910	-155.93	-158.01	↓-312.12	\downarrow -160.41	\downarrow -167.89
BBC	1058	-250.69	-275.43	\downarrow -462.96	-274.82	\downarrow -276.97
AD	1556	-19.73	-63.81	\downarrow -638.43	\downarrow -63.83	↓-64.11

Results (Large Datasets)

Rashwan, Zhao, Poupart (AISTATS 2016)

Log likelihood

Dataset	Var#	LearnSPN	oBMM	oDMM	SGD	oEM	oEG
KOS	6906	-444.55	-422.19	-437.30	-3492.9	-538.21	-657.13
NIPS	12419	-	-1691.87	-1709.04	-7411.20	-1756.06	-3134.59
ENRON	28102	-	-518.842	-522.45	-13961.40	-554.97	-14193.90
NYTIMES	102660	-	-1503.65	-1559.39	-43153.60	-1189.39	-6318.71

oBMM and oDMM outperform other algos on 3 (out of 4) problems

• Time (minutes)

Dataset	Var#	LearnSPN	oBMM	oDMM	SGD	oEM	oEG
KOS	6906	1439.11	89.40	8.66	162.98	59.49	155.34
NIPS	12419	-	139.50	9.43	180.25	64.62	178.35
ENRON	28102	-	2018.05	580.63	876.18	694.17	883.12
NYTIMES	102660	-	12091.7	1643.60	5626.33	5540.40	6895.00

oDMM is significantly faster

Structure Estimation

- What is the most popular technique to estimate the structure of a deep neural network?
- Parameter estimation:
 - Gradient descent
- Structure estimation:
 - Graduate student descent
- State-of-the-art: evolutionary techniques, hyperparameter search

Structure Estimation in SPNs

- LearnSPN (Gens & Domingos, 2013): alternate between
 - Data clustering: sum nodes
 - Variable partition (independence testing): product nodes

Improved Structure Estimation

- Prometheus (Jaini, Ghose et al, 2017): alternate between
 - Data clustering: sum nodes
 - Multiple variable partitions: product nodes

Results (log likelihood)

• From Jaini, Ghose and Poupart (2017)

Discrete Datasets						
Data set	Learn-	ID-SPN	CCCP	Prome-		
	SPN			theus		
NLTCS	-6.10↓	-6.05↓	-6.03↓	-6.01		
MSNBC	-6.11↓	-6.05	-6.05	-6.04		
KDD	-2.23↓	-2.15↓	-2.13	-2.13		
Plants	-12.95↓	-12.55^{\uparrow}	-12.87↓	-12.81		
Audio	-40.51↓	-39.82	-40.02↓	-39.80		
Jester	-53.45↓	-52.91↓	-52.88↓	-52.80		
Netflix	-57.38↓	-56.55	-56.78↓	-56.47		
Accidents	-29.07↓	-27.23^{\uparrow}	-27.70	-27.91		
Retail	-11.14↓	-10.94↓	-10.92↓	-10.87		
Pumsbstar	-24.58↓	-22.55	-24.23↓	-22.75		
DNA	-85.24↓	-84.69↓	-84.92↓	-84.45		
Kosarek	-11.06↓	-10.61	-10.88↓	-10.59		
MSWeb	-10.27↓	-9.80	-9.97↓	-9.86		
Book	-36.25↓	-34.44	-35.01↓	-34.40		
Movie	-52.82↓	-51.55↓	-52.56↓	-51.49		
WebKB	-158.54↓	-153.3↑	-157.49↓	-155.21		
Reuters	-85.98↓	-84.39	-84.63	-84.59		
Newsgroup	-156.61↓	-151.6↑	-153.20↓	-154.17		
BBC	-249.79↓	-252.60↓	-248.60	-248.5		
AD	-27.41↓	-40.01↓	-27.20↓	-23.96		

Continuous Datasets						
Data set	SRBMs	oSLRAU	oBMM	Prome-		
(Attributes)				theus		
Abalone (8)	-2.28↓	-1.12↓	-1.21↓	-0.85		
CA (22)	-4.95↓	17.10↓	-1.78↓	27.82		
Quake (4)	-2.38↓	-1.86↓	-3.84↓	-1.50		
Sensorless(48)	-26.91↓	54.82↓	$1.58\downarrow$	62.03		
Banknote(4)	-2.76↓	-2.04↓	-4.81↓	-1.96		
Flowsize (3)	-0.79↓	14.78↓	4.80↓	18.03		
Kinematics(8)	$-5.55\uparrow$	-11.15↓	-11.2↓	-11.12		

Continuous Datasets						
Data set	iSPT	GMM	Prome-			
			theus			
Iris	-3.744↓	-3.943↓	-1.06			
Old Faithful	-1.700↓	-1.737↓	-1.48			
Chemical Diabetes	-2.879↓	-3.022↓	-2.59			

MNIST dataset

DSPN-	SPN-	SPN-	ID-	Prome-
SVD	SVD	Gens	SPN	theus
97.6%	85%	81.8%	84.4%	98.1%

Conclusion

- Sum-Product Networks
 - Deep architecture with clear semantics
 - Tractable probabilistic graphical model
- Related work
 - Decision SPNs (Melibari et al., AAAI-2016)
 - Dynamic (recurrent) SPNs (Melibari et al., PGM-2016)
- Future work:
 - PyTorch library for SPNs
 - SPNs for conversational agents