Sum-Product Networks

STAT946 Deep Learning

Guest Lecture by Pascal Poupart University of Waterloo

October 17, 2017

Outline

- Introduction
- What is a Sum-Product Network?
- Inference
- Applications
- In more depth
- Relationship to Bayesian networks
- Parameter estimation
- Online and distributed estimation
- Structure estimation

What is a Sum-Product Network?

- Poon and Domingos, UAI 2011
- Acyclic directed graph of sums and products
- Leaves can be indicator variables or univariate distributions

Two Views

Deep neural network with clear semantics

Tractable probabilistic graphical model

Deep Neural Network View

- Specific type of neural network
- Sum node: $\log \left(\sum_{i} w_{i}\right.$ input $\left._{i}\right)$
- Product node: $\exp \left(\sum_{i}\right.$ input $\left._{i}\right)$
- Advantages:
- Clear semantics
- Generative model
- Efficient training
- Structure estimation

Probabilistic Graphical Models

Bayesian Network

Graphical view of direct dependencies

Inference
\#P: intractable

Markov
Network

Graphical view of correlations

Inference
\#P: intractable

Sum-Product Network

Graphical view of computation

Inference
P: tractable

Probabilistic Inference

- SPN represents a joint distribution over a set of random variables
- Example:

$$
\begin{aligned}
& \operatorname{Pr}\left(X_{1}=\text { true }, X_{2}=\text { false }\right) \\
& \quad=\underline{34.8}
\end{aligned}
$$

Probabilistic Inference

- SPN represents a joint distribution over a set of random variables
- Example:

$$
\begin{aligned}
& \operatorname{Pr}\left(X_{1}=\text { true }, X_{2}=\text { false }\right) \\
& \quad=\frac{34.8}{100}
\end{aligned}
$$

- Linear complexity!

Semantics

- Each node computes a probability over its scope
- Scope of a node: set of variables in sub-SPN rooted at that node
- Decomposable product node: children with disjoint scopes
- Complete/smooth sum node: children with identical scopes

> | decomposability |
| :--- |
| + completeness |

[^0]
Queries

Most Neural Nets

outputs=f(inputs)

$$
\operatorname{Pr}\left(X_{2}=F \mid X_{1}=T\right)=\frac{\operatorname{Pr}\left(X_{2}=F, X_{1}=T\right)}{\operatorname{Pr}\left(X_{1}=T\right)}=\frac{34.8}{}
$$

Queries

Most Neural Nets

outputs=f(inputs)

$$
\operatorname{Pr}\left(X_{2}=F \mid X_{1}=T\right)=\frac{\operatorname{Pr}\left(X_{2}=F, X_{1}=T\right)}{\operatorname{Pr}\left(X_{1}=T\right)}=\frac{34.8}{87}
$$

Relationship with other PGMs

- Any SPN can be converted into a Bayes net without any exponential blow up (Zhao, Melibari, Poupart, ICML-15)
- Naïve Bayes model

- Product of Naïve Bayes models

Relationship with other PGMs

Probability distributions

- Compact: space is polynomial in \# of variables
- Tractable: inference time is polynomial in \# of variables

Compact SPN = Tractable SPN = Tractable BN (MN)

Parameter Estimation

Maximum likelihood: Stochastic gradient descent (SGD) (Poon \& Domingos, 2011), expectation maximization (EM) (Perharz, 2015), signomial programming (Zhao \& Poupart, 2016)
Bayesian learning: Bayesian Moment Matching (BMM) (Rashwan et al., 2015), Collapsed Variational Inference (Zhao et al., 2016)

Applications

- Image completion (Poon, Domingos; 2011)
- Activity recognition (Amer, Todorovic; 2012)
- Language modeling (Cheng et al.; 2014)
- Speech modeling (Perhaz et al.; 2014)
- Mobile robotics (Pronobis, Rao; 2016)

Language Model

- An SPN-based n-gram model
- Fixed structure
- Discriminative weight estimation by gradient descent

Results

- From Cheng et al. 2014

Table 1: Perplexity scores $(P P L)$ of different language models.

Model	Individual $P P L$	+KN5
TrainingSetFrequency	528.4	
KN5 [3]	141.2	
Log-bilinear model [4]	144.5	115.2
Feedforward neural network [5]	140.2	116.7
Syntactical neural network [8]	131.3	110.0
RNN [6]	124.7	105.7
LDA-augmented RNN [9]	113.7	98.3
SPN-3	$\mathbf{1 0 4 . 2}$	$\mathbf{8 2 . 0}$
SPN-4	$\mathbf{1 0 7 . 6}$	$\mathbf{8 2 . 4}$
SPN-4	$\mathbf{1 0 0 . 0}$	$\mathbf{8 0 . 6}$

Maximum Log-Likelihood

- Objective: $w^{*}=\operatorname{argmax}_{w \in R_{+}} \log \operatorname{Pr}($ data $\mid w)$

$$
=\operatorname{argmax}_{w \in R_{+}} \sum_{x} \log \operatorname{Pr}(x \mid w)
$$

where $\operatorname{Pr}(x \mid w)=\frac{f(e(x) \mid w)}{f(\mathbf{1} \mid w)}=\frac{\sum_{\text {tree } e e(x)} \Pi_{i j \in \text { tree }} w_{i j}}{\sum_{\text {tree } \in 1} \Pi_{i j \in \text { tree }} w_{i j}}$

- Non-convex optimization

Summary

Algo	Var ${ }^{\text {a }}$ Update	Approximation
PGD	w additive	linear
	$w_{i j}^{k+1} \leftarrow \operatorname{projection}\left(w_{i j}^{k}+\gamma\left[\frac{\partial \log f(e(x) \mid w)}{\partial w_{i j}}-\frac{\partial \log f(\mathbf{1} \mid w)}{\partial w_{i j}}\right]\right)$	
EG	$w-$ multiplicative	linear
	$w_{i j}^{k+1} \leftarrow w_{i j}^{k} \exp \left(\gamma\left[\frac{\partial \log f(e(x) \mid w)}{\partial w_{i j}}-\frac{\partial \log f(\mathbf{1} \mid w)}{\partial w_{i j}}\right]\right)$	
SMA	$\log w \quad$ multiplicative	monomial
	$w_{i j}^{k+1} \leftarrow w_{i j}^{k} \exp \left(\gamma\left[\frac{\partial \log f(e(x) \mid w)}{\partial \log w_{i j}}-\frac{\partial \log f(\mathbf{1} \mid w)}{\partial \log w_{i j}}\right]\right)$	
$\begin{aligned} & \text { CCCP } \\ & \text { (EM) } \end{aligned}$	$\log w$ multiplicative	Concave lower bound
	$w_{i j}^{k+1} \propto w_{i j}^{k} \frac{f_{v_{j}}\left(x \mid w^{k}\right)}{f\left(x \mid w^{k}\right)} \frac{\partial f\left(x \mid w^{k}\right)}{\partial f_{v_{i}}\left(x \mid w^{k}\right)}$	

Results

- Zhao, Poupart et al. (NIPS 2016)

Streaming Data

Traffic classification
App recommendation

- Challenge: update model after each data vector
- Solution: online learning for SPNs

Scalability

- Online: process data sequentially once only
- Distributed: process subsets of data on different computers
- Mini-batches: SGD, online EG, online EM
- Problems: loss of information due to minibatches, how to adjust learning rate?
- Can we do better?

Thomas Bayes

Bayesian Learning

- Bayes' theorem (1764)

$$
\operatorname{Pr}\left(\theta \mid X_{1: n}\right) \propto \operatorname{Pr}(\theta) \operatorname{Pr}\left(X_{1} \mid \theta\right) \operatorname{Pr}\left(X_{2} \mid \theta\right) \ldots \operatorname{Pr}\left(X_{n} \mid \theta\right)
$$

- Broderick et al. (2013): facilitates
- Online learning (streaming data)
$\operatorname{Pr}\left(\theta \mid X_{1: n}\right) \propto \operatorname{Pr}(\theta) \operatorname{Pr}\left(X_{1} \mid \theta\right) \operatorname{Pr}\left(X_{2} \mid \theta\right) \ldots \operatorname{Pr}\left(X_{n} \mid \theta\right)$
- Distributed computation
$\underbrace{\operatorname{Pr}(\theta)}_{\text {core \#1 }} \underbrace{\operatorname{Pr}\left(X_{1} \mid \theta\right)}_{\text {core \#2 }} \underbrace{\operatorname{Pr}\left(X_{2} \mid \theta\right) \operatorname{Pr}\left(X_{3} \mid \theta\right)}_{\text {core \#3 }} \underbrace{\operatorname{Pr}\left(X_{4} \mid \theta\right)} \operatorname{Pr}\left(X_{5} \mid \theta\right)$,

Exact Bayesian Learning

- Assume a normal SPN where the weights w_{i}. of each sum node i form a discrete distribution.
- Prior: $\operatorname{Pr}(w)=\prod_{i .} \operatorname{Dir}\left(w_{i} . \mid \alpha_{i}.\right)$
where $\operatorname{Dir}\left(w_{i} \mid \alpha_{i}.\right) \propto \Pi_{j}\left(w_{i j}\right)^{\alpha_{i j}}$
- Likelihood: $\operatorname{Pr}(x \mid w)=f(e(x) \mid w)=$ $\sum_{\text {tree } \in e(x)} \prod_{i j \in \text { tree }} w_{i j}$
- Posterior: $\sum_{k} c_{k} \prod_{i} \operatorname{Dir}\left(w_{i} \mid \alpha_{i .}^{(k)}\right)$

Exponentially large mixture of Dirichlets

Karl Pearson

Method of Moments (1894)

- Estimate model parameters by matching a subset of moments (i.e., mean and variance)
- Performance guarantees
- Break through: First provably consistent estimation algorithm for several mixture models
- HMMs: Hsu, Kakade, Zhang (2008)
- MoGs: Moitra, Valiant (2010), Belkin, Sinha (2010)
- LDA: Anandkumar, Foster, Hsu, Kakade, Liu (2012)

Bayesian Moment Matching for Sum Product Networks

Approximate mixture of products of Dirichlets by a single product of Dirichlets that matches first and second order moments

Bayesian Moment Matching

Results (benchmarks)

- Rashwan, Zhao, Poupart (AISTATS 2016)

Dataset	Var\#	LearnSPN	oBMM	SGD	oEM	oEG
NLTCS	16	-6.11	$\mathbf{- 6 . 0 7}$	$\downarrow-8.76$	$\downarrow-6.31$	$\downarrow-6.85$
MSNBC	17	-6.11	$\mathbf{- 6 . 0 3}$	$\downarrow-6.81$	$\downarrow-6.64$	$\downarrow-6.74$
KDD	64	-2.18	$\mathbf{- 2 . 1 4}$	$\downarrow-44.53$	$\downarrow-2.20$	$\downarrow-2.34$
PLANTS	69	-12.98	$\mathbf{- 1 5 . 1 4}$	$\downarrow-21.50$	$\downarrow-17.68$	$\downarrow-33.47$
AUDIO	100	-40.50	$\mathbf{- 4 0 . 7}$	$\downarrow-49.35$	$\downarrow-42.55$	$\downarrow-46.31$
JESTER	100	-53.48	$\mathbf{- 5 3 . 8 6}$	$\downarrow-63.89$	$\downarrow-54.26$	$\downarrow-59.48$
NETFLIX	100	-57.33	$\mathbf{- 5 7 . 9 9}$	$\downarrow-64.27$	$\downarrow-59.35$	$\downarrow-64.48$
ACCIDENTS	111	-30.04	$\mathbf{- 4 2 . 6 6}$	$\downarrow-53.69$	-43.54	$\downarrow-45.59$
RETAIL	135	-11.04	$\mathbf{- 1 1 . 4 2}$	$\downarrow-97.11$	$\downarrow-11.42$	$\downarrow-14.94$
PUMSB-STAR	163	-24.78	$\mathbf{- 4 5 . 2 7}$	$\downarrow-128.48$	$\downarrow-46.54$	$\downarrow-51.84$
DNA	180	-82.52	$\mathbf{- 9 9 . 6 1}$	$\downarrow-100.70$	$\downarrow-100.10$	$\downarrow-105.25$
KOSAREK	190	-10.99	$\mathbf{- 1 1 . 2 2}$	$\downarrow-34.64$	$\downarrow-11.87$	$\downarrow-17.71$
MSWEB	294	-10.25	$\mathbf{- 1 1 . 3 3}$	$\downarrow-59.63$	$\downarrow-11.36$	$\downarrow-20.69$
BOOK	500	-35.89	$\mathbf{- 3 5 . 5 5}$	$\downarrow-249.28$	$\downarrow-36.13$	$\downarrow-42.95$
MOVIE	500	-52.49	$\mathbf{- 5 9 . 5 0}$	$\downarrow-227.05$	$\downarrow-64.76$	$\downarrow-84.82$
WEBKB	839	-158.20	$\mathbf{- 1 6 5 . 5 7}$	$\downarrow-338.01$	$\downarrow-169.64$	$\downarrow-179.34$
REUTERS	889	-85.07	$\mathbf{- 1 0 8 . 0 1}$	$\downarrow-407.96$	-108.10	$\downarrow-108.42$
NEWSGROUP	910	-155.93	$\mathbf{- 1 5 8 . 0 1}$	$\downarrow-312.12$	$\downarrow-160.41$	$\downarrow-167.89$
BBC	1058	-250.69	-275.43	$\downarrow-462.96$	$\mathbf{- 2 7 4 . 8 2}$	$\downarrow-276.97$
AD	1556	-19.73	$\mathbf{- 6 3 . 8 1}$	$\downarrow-638.43$	$\downarrow-63.83$	$\downarrow-64.11$

Results (Large Datasets)

Rashwan, Zhao, Poupart (AISTATS 2016)

- Log likelihood

Dataset	Var\#	LearnSPN	oBMM	oDMM	SGD	oEM	oEG
KOS	6906	-444.55	$\mathbf{- 4 2 2 . 1 9}$	-437.30	-3492.9	-538.21	-657.13
NIPS	12419	-	$\mathbf{- 1 6 9 1 . 8 7}$	-1709.04	-7411.20	-1756.06	-3134.59
ENRON	28102	-	$\mathbf{- 5 1 8 . 8 4 2}$	-522.45	-13961.40	-554.97	-14193.90
NYTIMES	102660	-	-1503.65	-1559.39	-43153.60	$\mathbf{- 1 1 8 9 . 3 9}$	-6318.71

oBMM and oDMM outperform other algos on 3 (out of 4) problems

- Time (minutes)

Dataset	Var\#	LearnSPN	oBMM	oDMM	SGD	oEM	oEG
KOS	6906	1439.11	89.40	$\mathbf{8 . 6 6}$	162.98	59.49	155.34
NIPS	12419	-	139.50	$\mathbf{9 . 4 3}$	180.25	64.62	178.35
ENRON	28102	-	2018.05	$\mathbf{5 8 0 . 6 3}$	876.18	694.17	883.12
NYTIMES	102660	-	12091.7	$\mathbf{1 6 4 3 . 6 0}$	5626.33	5540.40	6895.00

oDMM is significantly faster

Structure Estimation

- What is the most popular technique to estimate the structure of a deep neural network?
- Parameter estimation:
- Gradient descent
- Structure estimation:
- Graduate student descent
- State-of-the-art: evolutionary techniques, hyperparameter search

Structure Estimation in SPNs

Instances

- LearnSPN (Gens \& Domingos, 2013): alternate between
- Data clustering: sum nodes
- Variable partition (independence testing): product nodes

Improved Structure Estimation

- Prometheus (Jaini, Ghose et al, 2017): alternate between
- Data clustering: sum nodes
- Multiple variable partitions: product nodes

Results (log likelihood)

- From Jaini, Ghose and Poupart (2017)

Discrete Datasets				
Data set	Learn- SPN	ID-SPN	CCCP	Prome theus
NLTCS	$-6.10 \downarrow$	$-6.05 \downarrow$	$-6.03 \downarrow$	$\mathbf{- 6 . 0 1}$
MSNBC	$-6.11 \downarrow$	-6.05	-6.05	$\mathbf{- 6 . 0 4}$
KDD	$-2.23 \downarrow$	$-2.15 \downarrow$	-2.13	$\mathbf{- 2 . 1 3}$
Plants	$-12.95 \downarrow$	$\mathbf{- 1 2 . 5 5} \uparrow$	$-12.87 \downarrow$	-12.81
Audio	$-40.51 \downarrow$	-39.82	$-40.02 \downarrow$	$\mathbf{- 3 9 . 8 0}$
Jester	$-53.45 \downarrow$	$-52.91 \downarrow$	$-52.88 \downarrow$	$\mathbf{- 5 2 . 8 0}$
Netflix	$-57.38 \downarrow$	-56.55	$-56.78 \downarrow$	$\mathbf{- 5 6 . 4 7}$
Accidents	$-29.07 \downarrow$	$\mathbf{- 2 7 . 2 3} \uparrow$	-27.70	-27.91
Retail	$-11.14 \downarrow$	$-10.94 \downarrow$	$-10.92 \downarrow$	$\mathbf{- 1 0 . 8 7}$
Pumsbstar	$-24.58 \downarrow$	-22.55	$-24.23 \downarrow$	$\mathbf{- 2 2 . 7 5}$
DNA	$-85.24 \downarrow$	$-84.69 \downarrow$	$-84.92 \downarrow$	$\mathbf{- 8 4 . 4 5}$
Kosarek	$-11.06 \downarrow$	-10.61	$-10.88 \downarrow$	$\mathbf{- 1 0 . 5 9}$
MSWeb	$-10.27 \downarrow$	$\mathbf{- 9 . 8 0}$	$-9.97 \downarrow$	$\mathbf{- 9 . 8 6}$
Book	$-36.25 \downarrow$	-34.44	$-35.01 \downarrow$	$\mathbf{- 3 4 . 4 0}$
Movie	$-52.82 \downarrow$	$-51.55 \downarrow$	$-52.56 \downarrow$	$\mathbf{- 5 1 . 4 9}$
WebKB	$-158.54 \downarrow$	$\mathbf{- 1 5 3 . 3} \uparrow$	$-157.49 \downarrow$	-155.21
Reuters	$-85.98 \downarrow$	$\mathbf{- 8 4 . 3 9}$	-84.63	-84.59
Newsgroup	$-156.61 \downarrow$	$\mathbf{- 1 5 1 . 6 \uparrow}$	$-153.20 \downarrow$	-154.17
BBC	$-249.79 \downarrow$	$-252.60 \downarrow$	-248.60	$\mathbf{- 2 4 8 . 5}$
AD	$-27.41 \downarrow$	$-40.01 \downarrow$	$-27.20 \downarrow$	$\mathbf{- 2 3 . 9 6}$

Continuous Datasets				
Data set (Attributes)	SRBMs	oSLRAU	oBMM	Prome- theus
Abalone (8)	$-2.28 \downarrow$	$-1.12 \downarrow$	$-1.21 \downarrow$	$\mathbf{- 0 . 8 5}$
CA (22)	$-4.95 \downarrow$	$17.10 \downarrow$	$-1.78 \downarrow$	$\mathbf{2 7 . 8 2}$
Quake (4)	$-2.38 \downarrow$	$-1.86 \downarrow$	$-3.84 \downarrow$	$\mathbf{- 1 . 5 0}$
Sensorless(48)	$-26.91 \downarrow$	$54.82 \downarrow$	$1.58 \downarrow$	$\mathbf{6 2 . 0 3}$
Banknote(4)	$-2.76 \downarrow$	$-2.04 \downarrow$	$-4.81 \downarrow$	$\mathbf{- 1 . 9 6}$
Flowsize (3)	$-0.79 \downarrow$	$14.78 \downarrow$	$4.80 \downarrow$	$\mathbf{1 8 . 0 3}$
Kinematics(8)	$\mathbf{- 5 . 5 5} \uparrow$	$-11.15 \downarrow$	$-11.2 \downarrow$	$\mathbf{- 1 1 . 1 2}$

Continuous Datasets			
Data set	iSPT	GMM	Prome- theus
Iris	$-3.744 \downarrow$	$-3.943 \downarrow$	$\mathbf{- 1 . 0 6}$
Old Faithful	$-1.700 \downarrow$	$-1.737 \downarrow$	$\mathbf{- 1 . 4 8}$
Chemical Diabetes	$-2.879 \downarrow$	$-3.022 \downarrow$	$\mathbf{- 2 . 5 9}$

MNIST dataset

DSPN- SVD	SPN- SVD	SPN- Gens	ID- SPN	Prome- theus
97.6%	85%	81.8%	84.4%	$\mathbf{9 8 . 1} \%$

Conclusion

- Sum-Product Networks
- Deep architecture with clear semantics
- Tractable probabilistic graphical model
- Related work
- Decision SPNs (Melibari et al., AAAI-2016)
- Dynamic (recurrent) SPNs (Melibari et al., PGM-2016)
- Future work:
- PyTorch library for SPNs
- SPNs for conversational agents

[^0]: valid distribution linear inference

