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Outline

• Introduction to Reinforcement Learning
• AlphaGo (Deep RL for Computer Go)

– Mastering the Game of Go with Deep 
Reinforcement Learning and Tree Search, 
Nature 2016 
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Machine Learning

• Supervised Learning
– Teacher tells learner what to remember

• Reinforcement Learning
– Environment provides hints to learner

• Unsupervised Learning
– Learner discovers on its own
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What is RL?
• Reinforcement learning is learning what 

to do so as to maximize a numerical 
reward signal
– Learner is not told what actions to take, 

but must discover them by trying them out 
and seeing what the reward is
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Animal Psychology

• Negative reinforcements:
– Pain and hunger

• Positive reinforcements:
– Pleasure and food

• Reinforcements used to train animals

• Let’s do the same with computers!
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RL Examples
• Game playing (go, atari, backgammon)
• Operations research (pricing, vehicle routing)
• Elevator scheduling
• Helicopter control
• Spoken dialog systems
• Data center energy optimization
• Self-managing network systems
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Reinforcement Learning Problem

Agent

Environment

State
Reward Action

s0 s1 s2
r0

a0 a1

r1 r2

a2 …

Goal: Learn to choose actions that maximize r0+g r1+g2r2+…, where 0· g <1
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Reinforcement Learning
• Definition:

– Markov decision process with unknown 
transition and reward models

• Set of states S
• Set of actions A

– Actions may be stochastic
• Set of reinforcement signals (rewards)

– Rewards may be delayed
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Example: Inverted Pendulum

• State: x(t), x’(t), q(t), 
q’(t)

• Action: Force F 
• Reward: 1 for any step 

where pole balanced

Problem: Find δ:S®A that
maximizes rewards
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Policy optimization

• Value-based techniques:
– Find best possible 𝑉 𝑠 = ∑ 𝛾&�

& 𝐸)[𝑟&|𝑠&, 𝑎&]
– Then extract policy 𝛿
– Example: Q-learning

• Policy search techniques:
– Search for 𝛿 that maximizes 𝑉(𝑠)
– Example: policy gradient
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Supervised Learning
• Consider a stochastic policy Pr

5
(𝑎|𝑠)

parametrized by weights 𝑤. 
• Data: state-action pairs { 𝑠8, 𝑎8∗ , 𝑠:, 𝑎:∗ , … }

• Maximize log likelihood of the data

𝑤∗ = 𝑎𝑟𝑔𝑚𝑎𝑥5@logPr
5
(𝑎&∗|𝑠&)

�

&
• Gradient update

𝑤&D8 ← 𝑤& + 𝛼	𝛻5 log Pr5 (𝑎&
∗|𝑠&)
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Reinforcement Learning
• Consider a stochastic policy Pr

5
(𝑎|𝑠)

parametrized by weights 𝑤. 
• Data: state-action-reward triples
{ 𝑠8, 𝑎8, 𝑟8 , 𝑠:, 𝑎:, 𝑟: , … }

• Maximize discounted sum of rewards
𝑤∗ = 𝑎𝑟𝑔𝑚𝑎𝑥5 	∑ 𝛾&�

& 𝐸5[𝑟&|𝑠&, 𝑎&]	
• Gradient update

𝑤&D8 ← 𝑤& + 𝛼	𝛾&𝑅&	𝛻5 log Pr5 (𝑎&|𝑠&)
where 𝑅& = ∑ 𝛾K𝑟KD&L

KMN
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Gradient Policy Theorem
• Gradient	Policy	Theorem

𝛻𝑉5 𝑠N =@𝜇5 𝑠
�

]

@𝛻Pr
5
𝑎 𝑠

�

^

𝑄5 𝑠, 𝑎

𝜇5(𝑠): stationary state distribution when executing 
policy parametrized by 𝑤

𝑄5 𝑠, 𝑎 : discounted sum of rewards when starting in 
𝑠, executing 𝑎 and following the policy parametrized 
by 𝑤 thereafter.
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Derivation
• 𝛻𝑉5 𝑠 = 𝛻 ∑ Pr

5
𝑎 𝑠 𝑄5 𝑠, 𝑎�

^ ∀𝑠 ∈ 𝑆	

= ∑ 𝛻 Pr
5
𝑎 𝑠 𝑄5 𝑠, 𝑎 + Pr

5
𝑎 𝑠 𝛻𝑄5 𝑠, 𝑎�

^

= ∑ 𝛻 Pr
5
𝑎 𝑠 𝑄5 𝑠, 𝑎 + Pr

5
𝑎 𝑠 𝛻 ∑ Pr 𝑠d, 𝑟 𝑠, 𝑎 𝑟 + 𝛾𝑉5 𝑠d�

]e,f 	�
^

= ∑ 𝛻 Pr
5
𝑎 𝑠 𝑄5 𝑠, 𝑎 + Pr

5
𝑎 𝑠 ∑ 𝛾 Pr 𝑠d 𝑠, 𝑎 𝛻Vh(sd)�

]e 	�
^

= ∑ [𝛻 Pr
5
𝑎 𝑠 𝑄5 𝑠, 𝑎 + Pr

5
𝑎 𝑠 ∑ 𝛾 Pr 𝑠d 𝑠, 𝑎�

]e
�
^

										∑ [𝛻 Pr
5
𝑎d 𝑠d 𝑄5 𝑠d, 𝑎d + Pr 𝑎d 𝑠d ∑ 𝛾 Pr 𝑠dd 𝑠d, 𝑎d 𝛻Vh(sdd)�

]ee
�
^e ]

= ∑ ∑ 𝛾&Pr	(𝑠 → 𝑥, 𝑡, 𝑤)L
lMN ∑ 𝛻 Pr

5
𝑎 𝑥 𝑄5(𝑥, 𝑎)�

^
�
m∈n

• 𝛻𝑉5 𝑠N = ∑ ∑ 𝛾&Pr	(𝑠N → 𝑥, 𝑡, 𝑤)L
lMN ∑ 𝛻 Pr

5
𝑎 𝑠 𝑄5(𝑠, 𝑎)�

^
�
m∈n

= ∑ 𝜇5(𝑠)�
] ∑ 𝛻 Pr

5
𝑎 𝑠 𝑄5(𝑠, 𝑎)�

^
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REINFORCE: Monte Carlo 
Policy Gradient

• 𝛻𝑉5 = ∑ 𝜇5 𝑠�
] ∑ 𝑄5 𝑠, 𝑎 𝛻 Pr

5
𝑎 𝑠�

^

= 𝐸5 𝛾& ∑ 𝑄5 𝑆&, 𝑎 𝛻 Pr
5
𝑎 𝑆&�

^

= 𝐸5 𝛾& ∑ Pr
5
𝑎 𝑆& 𝑄5 𝑆&, 𝑎

o pq
r
𝑎 𝑆&

pq
r
(^|ns)

�
^

= 𝐸5 𝛾&𝑄5 𝑆&, 𝐴&
o pq
r
𝐴& 𝑆&

pq
r
(us|ns)

= 𝐸5 𝛾&𝑅&
o pq
r
𝐴& 𝑆&

pq
r
(us|ns)

= 𝐸5 𝛾&𝑅&𝛻 log Pr5 𝐴& 𝑆&

• Stochastic gradient
𝛻𝑉5 = 𝛾&𝑅&𝛻 log Pr5 𝑎& 𝑠&
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Outline

• Introduction to Reinforcement Learning
• AlphaGo (Deep RL for Computer Go)

– Mastering the Game of Go with Deep 
Reinforcement Learning and Tree Search, 
Nature 2016 
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Game of Go
• (simplified) rules:

– Two players 
(black and white)

– Players alternate to place 
a stone of their color on 
a vacant intersection.

– Connected stones without
any liberty (i.e., no adjacent 
vacant intersection) are 
captured and removed from the board

– Winner: player that controls the largest number of 
intersections at the end of the game 
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Computer Go

• Oct 2015:

Monte Carlo Tree SearchDeep RL
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Computer Go

• March 2016: AlphaGo defeats Lee Sedol (9-dan)

• May 2017: AlphaGo defeats Ke Jie (world 
champion)
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“[AlphaGo] can’t beat me” Ke Jie (world champion)

“Last year, [AlphaGo] was still quite humanlike 
when it played.  But this year, it became like a 
god of Go” Ke Jie (world champion)
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Winning Strategy
• Four steps:

1. Supervised Learning of Policy Networks
2. Reinforcement Learning of Policy Networks
3. Reinforcement Learning of Value Networks
4. Searching with Policy and Value Networks
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Policy Network
• Train policy network to imitate Go experts 

based on a database of 30 million board 
configurations from the KGS Go Server. 

• Policy network: Pr	(𝑎|𝑠)
– Input: state 𝑠

(board configuration)
– Output: distribution 

over actions 𝑎
(intersection on which 
the next stone will be placed)

Pr	(𝑎|𝑠)
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Supervised Learning of the 
Policy Network

• Let 𝒘 be the weights of the policy network

• Training: 
– Data: suppose 𝑎 is optimal in 𝑠
– Objective: maximize log Pr

𝒘
(a|s)

– Gradient: 𝛻𝑤 =
w xyz pq

𝒘
𝑎 𝑠

w𝒘
– Weight update: 𝒘 ← 𝒘+ 𝛼𝛻𝒘
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Reinforcement Learning of the 
Policy Network

• How can we update a policy network based on 
reinforcements instead of the optimal action? 

• Let 𝑅& = ∑ 𝛾K	𝑟&DK�
K be the discounted sum of 

rewards in a trajectory that starts in 𝑠 at 
time 𝑡 by executing 𝑎.

• Gradient: 𝛻𝒘 = w xyz {f𝒘 𝑎 𝑠
w𝒘

	𝛾&𝑅&
– Intuition rescale supervised learning gradient by 𝑅

• Weight update: 𝒘 ← 𝒘+ 𝛼𝛻𝒘
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Reinforcement Learning of the 
Policy Network

• In computer Go, program repeatedly plays 
games against its former self.  

• For each game 𝑅& = | 1 𝑤𝑖𝑛
−1 𝑙𝑜𝑠𝑒

• For each (𝑠&, 𝑎&) of turn 𝑡 of the game, assume 
𝛾 = 1 then compute

– Gradient: 𝛻𝒘 = w xyz {f𝒘 𝑎& 𝑠&
w𝒘

	𝑅&
– Weight update: 𝒘 ← 𝒘+ 𝛼𝛻𝒘
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Value Network

• Predict 𝑉(𝑠′) (i.e., who will 
win game) in each state 𝑠d
with a value network
– Input: state 𝑠

(board configuration)
– Output: expected discounted

sum of rewards 𝑉(𝑠d)

𝑉(𝑠d)
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Reinforcement Learning of 
Value Networks

• Let 𝒗 be the weights of the value network

• Training: 

– Data: (𝑠, 𝑅) where 𝑅 = | 1 𝑤𝑖𝑛
−1 𝑙𝑜𝑠𝑒

– Objective: minimize 8
:
𝑉𝒗 𝑠 − 𝑅 :

– Gradient: 𝛻𝒗 = w�𝒗 ]
w𝒗

(𝑉𝒗 𝑠 − 𝑅)

– Weight update: 𝒗 ← 𝒗 − 𝛼𝛻𝒗
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Searching with Policy and 
Value Networks

• AlphaGo combines policy 
and value networks into 
a Monte Carlo Tree 
Search algorithm

• Idea: construct 
a search tree
– Node: 𝑠
– Edge: 𝑎
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Search Tree
• At each edge store 

𝑄(𝑠, 𝑎), Pr
𝒘
	(𝑎|𝑠), 𝑁(𝑠, 𝑎)

• Where 𝑁 𝑠, 𝑎 is the
visit count of (𝑠, 𝑎)

Sample 
trajectory
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Simulation
• At each node, select edge 𝑎∗ that maximizes

𝑎∗ = 𝑎𝑟𝑔𝑚𝑎𝑥^	𝑄 𝑠, 𝑎 + 𝑢(𝑠, 𝑎)

• where 𝑢 𝑠, 𝑎 ∝ { 𝑠 𝑎
8D� ],^

is an exploration bonus

𝑄 𝑠, 𝑎 = 8
� ],^

∑ 1K 𝑠, 𝑎�
K [𝜆𝑉𝒗 𝑠 + 1 − 𝜆 𝑅K]

1K 𝑠, 𝑎 = |1 𝑖𝑓	 𝑠, 𝑎 	𝑤𝑎𝑠	𝑣𝑖𝑠𝑖𝑡𝑒𝑑	𝑎𝑡	𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛	𝑖	
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																																																
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Competition



Summary

• Policy gradient technique
– Example: AlphaGo

• Upcoming course:
– CS885: Deep Reinforcement Learning

• Instructor: Pascal Poupart
• Spring 2018
• Deep Q Networks, Recurrent deep RL, memory 

network, Conversational systems, robotics
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