Generative models

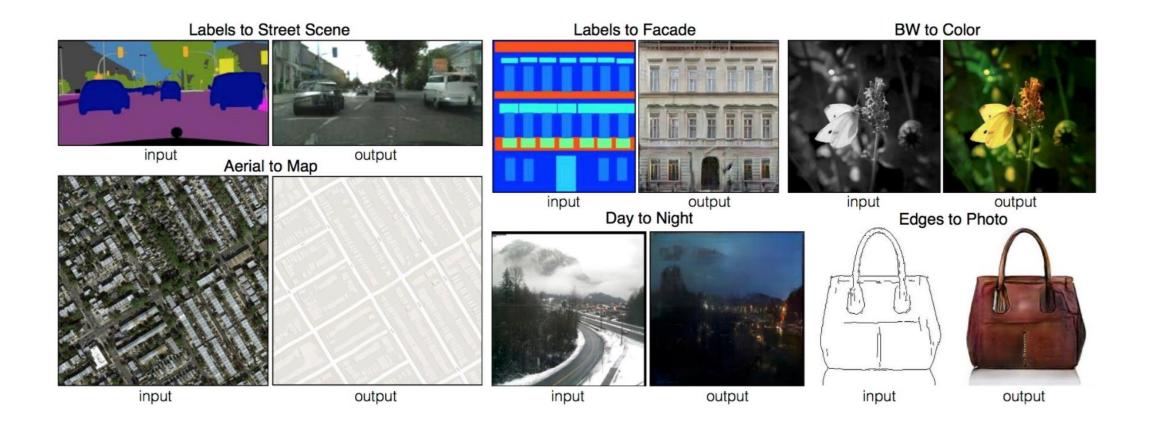
Generative models

• Generative Moment Matching Networks

• Generative Adversarial Networks (GAN)

Generative Moment Matching Networks

• Black board


- Original paper:
 - Generative Adversarial Nets
- Authors:
 - Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio (2014)
- Organization:
 - Université de Montréal
- URL:
 - https://arxiv.org/abs/1406.2661

• Bengio: This may hold the key to making computers a lot more intelligent.

• Bengio: This may hold the key to making computers a lot more intelligent.

• LeCun: The most important breakthrough, in my opinion, is adversarial training (also called GAN). This is the most interesting idea in the last 10 years in ML, in my opinion.

Different Applications

DCGANs for LSUN Bedrooms

(Radford et al 2015)

Vector Space Arithmetic

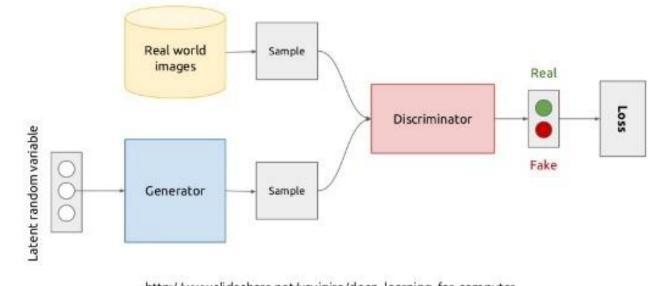
• Similar to word embedding (DCGAN paper)

with glasses

Woman with Glasses

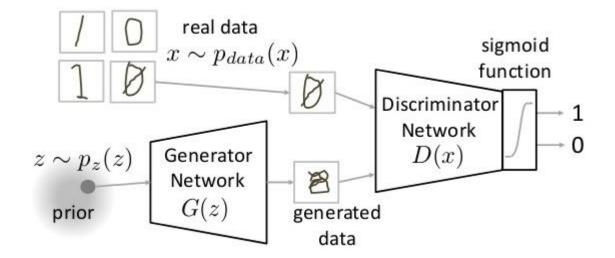
(Radford et al 2015)

PPGN for caption to image


• From natural language to pictures

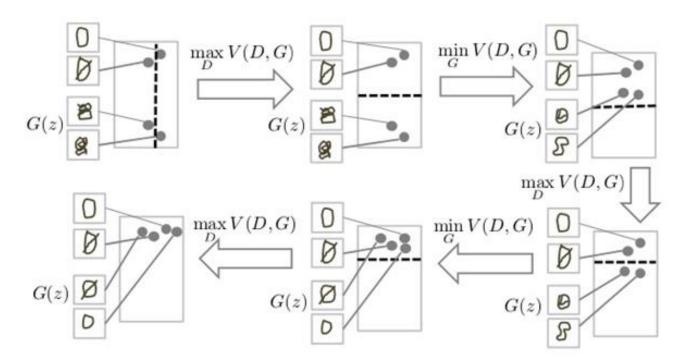
Oranges on a table next to liquor bottle

(Nguyen et al 2016)


Adversarial Learning

http://www.slideshare.net/xavigiro/deep-learning-for-computervision-generative-models-and-adversarial-training-upc-2016

 $\min_{G} \max_{D} V(D,G)$


 $V(D,G) = \mathbb{E}_{x \sim P_{data}(x)}[log D(x)] + \mathbb{E}_{z \sim P_{z}(z)}[1 - log D(G(z))]$

Credit: Mark Chang

Training Generative Adversarial Networks

 $\min_{G} \max_{D} V(D,G)$

Credit: Mark Chang

$$V(D, G) = \mathbb{E}_{x \sim p_{data}(x)}[log D(x)] + \mathbb{E}_{z \sim p_z(z)}[1 - log D(G(z))]$$

$$V(D, G) = \mathbb{E}_{x \sim p_{data}(x)}[log D(x)] + \mathbb{E}_{z \sim p_z(z)}[1 - log D(G(z))]$$
$$= \int_{x} p_{data}(x) log(D(x)) dx + \int_{z} p_z(z) log(1 - D(G(z))) dz$$

$$V(D, G) = \mathbb{E}_{x \sim p_{data}(x)}[log D(x)] + \mathbb{E}_{z \sim p_z(z)}[1 - log D(G(z))]$$
$$= \int_x p_{data}(x) log(D(x)) dx + \int_z p_z(z) log(1 - D(G(z))) dz$$
$$x = G(z) \Rightarrow z = G^{-1}(x) \Rightarrow dz = (G^{-1})'(x) dx$$

$$V(D, G) = \mathbb{E}_{x \sim p_{data}(x)}[log D(x)] + \mathbb{E}_{z \sim p_z(z)}[1 - log D(G(z))]$$
$$= \int_x p_{data}(x) log(D(x)) dx + \int_z p_z(z) log(1 - D(G(z))) dz$$
$$x = G(z) \Rightarrow z = G^{-1}(x) \Rightarrow dz = (G^{-1})'(x) dx$$
$$\Rightarrow p_g(x) = p_z(G^{-1}(x))(G^{-1})'(x)$$

$$V(D, G) = \mathbb{E}_{x \sim p_{data}(x)}[log D(x)] + \mathbb{E}_{z \sim p_{z}(z)}[1 - log D(G(z))]$$

= $\int_{x} p_{data}(x) log(D(x)) dx + \int_{z} p_{z}(z) log(1 - D(G(z))) dz$
 $x = G(z) \Rightarrow z = G^{-1}(x) \Rightarrow dz = (G^{-1})'(x) dx$
 $\Rightarrow p_{g}(x) = p_{z}(G^{-1}(x))(G^{-1})'(x)$
= $\int_{x} p_{data}(x) log(D(x)) dx + \int_{x} p_{z}(G^{-1}(x)) log(1 - D(x))(G^{-1})'(x) dx$

$$V(D, G) = \mathbb{E}_{x \sim p_{data}(x)}[logD(x)] + \mathbb{E}_{z \sim p_{z}(z)}[1 - logD(G(z))]$$

= $\int_{x} p_{data}(x)log(D(x))dx + \int_{z} p_{z}(z)log(1 - D(G(z)))dz$
 $x = G(z) \Rightarrow z = G^{-1}(x) \Rightarrow dz = (G^{-1})'(x)dx$
 $\Rightarrow p_{g}(x) = p_{z}(G^{-1}(x))(G^{-1})'(x)$
= $\int_{x} p_{data}(x)log(D(x))dx + \int_{x} p_{z}(G^{-1}(x))log(1 - D(x))(G^{-1})'(x)dx$
 $= \int_{x} p_{data}(x)log(D(x))dx + \int_{x} p_{g}(x)log(1 - D(x))dx$

$$V(D, G) = \mathbb{E}_{x \sim p_{data}(x)}[logD(x)] + \mathbb{E}_{z \sim p_{z}(z)}[1 - logD(G(z))]$$

= $\int_{x} p_{data}(x)log(D(x))dx + \int_{z} p_{z}(z)log(1 - D(G(z)))dz$
 $x = G(z) \Rightarrow z = G^{-1}(x) \Rightarrow dz = (G^{-1})'(x)dx$
 $\Rightarrow p_{g}(x) = p_{z}(G^{-1}(x))(G^{-1})'(x)$
= $\int_{x} p_{data}(x)log(D(x))dx + \int_{x} p_{z}(G^{-1}(x))log(1 - D(x))(G^{-1})'(x)dx$
 $= \int_{x} p_{data}(x)log(D(x))dx + \int_{x} p_{g}(x)log(1 - D(x))dx$
 $= \int_{x} p_{data}(x)log(D(x)) + p_{g}(x)log(1 - D(x))dx$

 $\max_{D} V(D, G) = \max_{D} \int_{x} p_{data}(x) log(D(x)) + p_g(x) log(1 - D(x)) dx$

 $\max_{D} V(D, G) = \max_{D} \int_{x} p_{data}(x) log(D(x)) + p_g(x) log(1 - D(x)) dx$

$$\frac{\partial}{\partial D(x)}(p_{data}(x)\log(D(x)) + p_g(x)\log(1 - D(x))) = 0$$

 $\max_{D} V(D,G) = \max_{D} \int_{x} p_{data}(x) log(D(x)) + p_g(x) log(1 - D(x)) dx$

$$\frac{\partial}{\partial D(x)} (p_{data}(x) \log(D(x)) + p_g(x) \log(1 - D(x))) = 0$$
$$\Rightarrow \frac{p_{data}(x)}{D(x)} - \frac{p_g(x)}{1 - D(x)} = 0$$

 $\max_{D} V(D, G) = \max_{D} \int_{x} p_{data}(x) log(D(x)) + p_g(x) log(1 - D(x)) dx$

$$\frac{\partial}{\partial D(x)} (p_{data}(x) \log(D(x)) + p_g(x) \log(1 - D(x))) = 0$$
$$\Rightarrow \frac{p_{data}(x)}{D(x)} - \frac{p_g(x)}{1 - D(x)} = 0$$
$$\Rightarrow D(x) = \frac{p_{data}(x)}{p_{data}(x) + p_g(x)}$$

Suppose the discriminator is optimal $D_G^*(x)$, the optimal generator makes: $p_{data}(x) = p_g(x)$

$$\Rightarrow D_G^*(x) = \frac{p_{data}(x)}{p_{data}(x) + p_g(x)}$$

 $C(G) = \max_D V(G,D)$

 $C(G) = \max_D V(G,D)$

$$= \max_{D} \int_{x} p_{data}(x) log(D(x)) + p_g(x) log(1 - D(x)) dx$$

 $C(G) = \max_{D} V(G, D)$ $= \max_{D} \int_{x} p_{data}(x) \log(D(x)) + p_{g}(x) \log(1 - D(x)) dx$ $= \int_{x} p_{data}(x) \log(D_{G}^{*}(x)) + p_{g}(x) \log(1 - D_{G}^{*}(x)) dx$

 $C(G) = \max_D V(G, D)$

$$= \max_{D} \int_{x} p_{data}(x) log(D(x)) + p_g(x) log(1 - D(x)) dx$$
$$= \int_{x} p_{data}(x) log(D_G^*(x)) + p_g(x) log(1 - D_G^*(x)) dx$$

$$= \int_{x} p_{data}(x) \log(\frac{p_{data}(x)}{p_{data}(x) + p_{g}(x)}) + p_{g}(x) \log(\frac{p_{g}(x)}{p_{data}(x) + p_{g}(x)}) dx$$

 $C(G) = \max_D V(G,D)$

$$= \max_{D} \int_{x} p_{data}(x) \log(D(x)) + p_g(x) \log(1 - D(x)) dx$$
$$= \int_{x} p_{data}(x) \log(D^*(x)) + p_g(x) \log(1 - D^*(x)) dx$$

$$=\int_{x} p_{data}(x) \log(D_{G}^{*}(x)) + p_{g}(x) \log(1 - D_{G}^{*}(x)) dx$$

$$= \int_{x} p_{data}(x) \log\left(\frac{p_{data}(x)}{p_{data}(x) + p_{g}(x)}\right) + p_{g}(x) \log\left(\frac{p_{g}(x)}{p_{data}(x) + p_{g}(x)}\right) dx$$
$$= \int_{x} p_{data}(x) \log\left(\frac{p_{data}(x)}{\frac{p_{data}(x) + p_{g}(x)}{2}}\right) + p_{g}(x) \log\left(\frac{p_{g}(x)}{\frac{p_{data}(x) + p_{g}(x)}{2}}\right) dx - \log(4)$$

 $C(G) = \max_D V(G, D)$

$$= \max_{D} \int_{x} p_{data}(x) \log(D(x)) + p_{g}(x) \log(1 - D(x)) dx$$

$$= \int_{x} p_{data}(x) \log(D_{G}^{*}(x)) + p_{g}(x) \log(1 - D_{G}^{*}(x)) dx$$

$$= \int_{x} p_{data}(x) \log\left(\frac{p_{data}(x)}{p_{data}(x) + p_{g}(x)}\right) + p_{g}(x) \log\left(\frac{p_{g}(x)}{p_{data}(x) + p_{g}(x)}\right) dx$$

$$= \int_{x} p_{data}(x) \log(\frac{p_{data}(x)}{\frac{p_{data}(x) + p_g(x)}{2}}) + p_g(x) \log(\frac{p_g(x)}{\frac{p_{data}(x) + p_g(x)}{2}}) dx - \log(4)$$

$$= KL[p_{data}(x)||\frac{p_{data}(x) + p_g(x)}{2}] + KL[p_g(x)||\frac{p_{data}(x) + p_g(x)}{2}] - log(4)$$

Understanding the objective function $C(G) = KL[p_{data}(x)||\frac{p_{data}(x)+p_{g}(x)}{2}] + KL[p_{g}(x)||\frac{p_{data}(x)+p_{g}(x)}{2}] - log(4)$ ≥ 0

Understanding the objective function $C(G) = KL[p_{data}(x)||\frac{p_{data}(x) + p_g(x)}{2}] + KL[p_g(x)||\frac{p_{data}(x) + p_g(x)}{2}] - log(4)$ ≥ 0 $\lim_{G} C(G) = 0 + 0 - log(4) = -log(4)$

Understanding the objective function $C(G) = KL[p_{data}(x)||\frac{p_{data}(x) + p_g(x)}{2}] + KL[p_g(x)||\frac{p_{data}(x) + p_g(x)}{2}] - log(4)$ > 0 _____ > 0 $\min_{C} C(G) = 0 + 0 - \log(4) = -\log(4)$ $KL[p_{data}(x)||\frac{p_{data}(x) + p_g(x)}{2}] = 0$

Understanding the objective function $C(G) = KL[p_{data}(x)||\frac{p_{data}(x) + p_g(x)}{2}] + KL[p_g(x)||\frac{p_{data}(x) + p_g(x)}{2}] - log(4)$ > 0 _ > 0 $\min_{G} C(G) = 0 + 0 - \log(4) = -\log(4)$ $KL[p_{data}(x)||\frac{p_{data}(x) + p_g(x)}{2}] = 0$ $p_{data}(x) = \frac{p_{data}(x) + p_g(x)}{2}$ when

Understanding the objective function $C(G) = KL[p_{data}(x)||\frac{p_{data}(x) + p_g(x)}{2}] + KL[p_g(x)||\frac{p_{data}(x) + p_g(x)}{2}] - log(4)$ > 0 > 0 $\min_{C} C(G) = 0 + 0 - \log(4) = -\log(4)$ $KL[p_{data}(x)||\frac{p_{data}(x) + p_g(x)}{2}] = 0$ $p_{data}(x) = \frac{p_{data}(x) + p_g(x)}{2}$ when $\Rightarrow p_{data}(x) = p_g(x)$

KL (Kullback-Leibler) divergence

Jensen-Shannon Divergency (symmetric KL):

$$JSD(P||Q) = rac{1}{2}D_{KL}(P||M) + rac{1}{2}D_{KL}(Q||M),$$

 $M = rac{1}{2}(P+Q)$

► Generator *G*, Discriminator *D*

 $egin{aligned} V &= \mathbb{E}_{x \sim P_{data}}[log D(x)] \ &+ \mathbb{E}_{x \sim P_G}[log (1 - D(x))] \end{aligned}$

- ► Generator *G*, Discriminator *D*
- ► Looking for *G*^{*} such that

 $G^* = \arg\min_{G}\max_{D}V(G,D)$

 $egin{aligned} V &= \mathbb{E}_{x \sim P_{data}}[log D(x)] \ &+ \mathbb{E}_{x \sim P_G}[log (1 - D(x))] \end{aligned}$

 $V = \mathbb{E}_{x \sim P_{data}}[log D(x)] + \mathbb{E}_{x \sim P_G}[log(1 - D(x))]$

- Generator G, Discriminator D
- Looking for G* such that

 $G^* = \arg\min_{G}\max_{D}V(G,D)$

• Given G, max_D V(G, D)

 $= -2log(2) + 2JSD(P_{data}(x)||P_G(x))$

 $egin{aligned} V &= \mathbb{E}_{x \sim P_{data}}[log D(x)] \ &+ \mathbb{E}_{x \sim P_G}[log (1 - D(x))] \end{aligned}$

- Generator G, Discriminator D
- Looking for G* such that

 $G^* = \arg\min_{G}\max_{D}V(G,D)$

• Given G, max_D V(G, D)

 $= -2log(2) + 2JSD(P_{data}(x)||P_G(x))$

• What is the optimal G? It is G that makes JSD smallest = 0:

 $P_G(x) = P_{data}(x)$

Text to Image, by conditional GAN

Caption	Image
a pitcher is about to throw the ball to the batter	
a group of people on skis stand in the snow	
a man in a wet suit riding a surfboard on a wave	

Text to Image - Results

From CY Lee lecture

Caption	Image
this flower has white petals and a yellow stamen	**************************************
the center is yellow surrounded by wavy dark purple petals	
this flower has lots of small round pink petals	

Project topic: Code and data are all on web, many possibilities!

Text to Image - Results

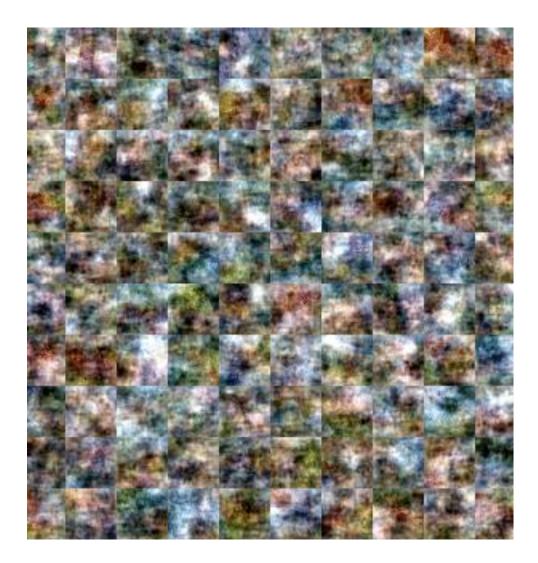
"red flower with black center"

From CY Lee lecture

Caption	Image
this flower has white petals and a yellow stamen	* * * * * * * * * * * * *
the center is yellow surrounded by wavy dark purple petals	
this flower has lots of small round pink petals	

Project topic: Code and data are all on web, many possibilities!

Text to Image - Results


"red flower with black center"

From CY Lee lecture

Caption	Image
this flower has white petals and a yellow stamen	* * * * * * * * * * * * * *
the center is yellow surrounded by wavy dark purple petals	
this flower has lots of small round pink petals	

Project topic: Code and data are all on web, many possibilities!

VAE

يبعر المراجع							1
			i and				
Le le marte Marte	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			800 100	and the second	301-31	
					a damage	15 Maria	
			1000	and the second			
and and							
	1		10000	The second			
		1.500					
				in and	Justin		
	and the second second						
国际市民 (335)							
		40				- Sectores	
The second							
			4.00				
							The

GAN

VAE


GAN

Real images (CIFAR-10)

Generated images

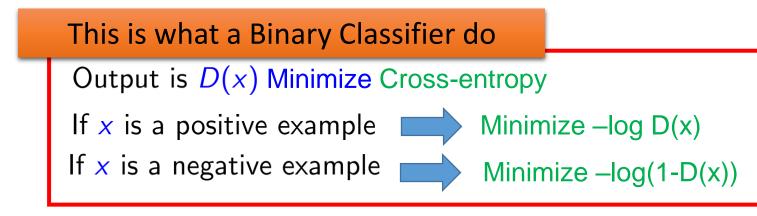
Source Code

- Original paper (theano):
 - <u>https://github.com/goodfeli/adversarial</u>
- Tensorflow implementation:
 - https://github.com/ckmarkoh/GAN-tensorflow

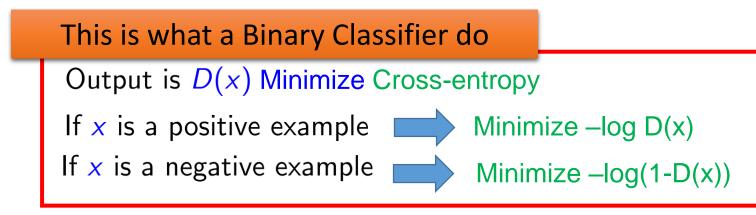
• Given G, how to compute $\max_D V(G, D)$?

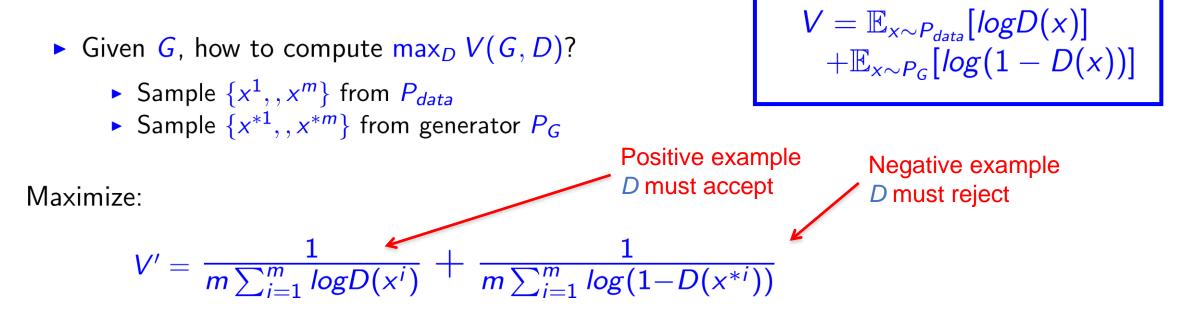
$$egin{aligned} V &= \mathbb{E}_{x \sim P_{data}}[log D(x)] \ &+ \mathbb{E}_{x \sim P_G}[log (1 - D(x))] \end{aligned}$$

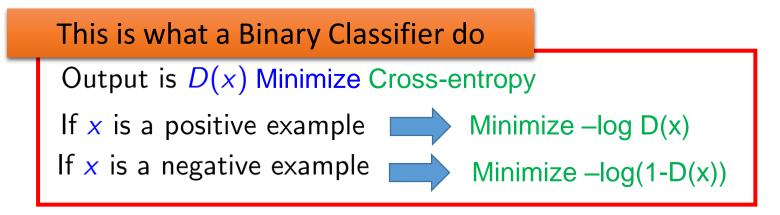
Maximize:


$$V' = \frac{1}{m \sum_{i=1}^{m} \log D(x^i)} + \frac{1}{m \sum_{i=1}^{m} \log (1 - D(x^{*i}))}$$


• Given G, how to compute $\max_D V(G, D)$?


$$egin{aligned} V &= \mathbb{E}_{x \sim P_{data}}[log D(x)] \ &+ \mathbb{E}_{x \sim P_G}[log (1 - D(x))] \end{aligned}$$


Maximize:


$$V' = \frac{1}{m \sum_{i=1}^{m} \log D(x^{i})} + \frac{1}{m \sum_{i=1}^{m} \log (1 - D(x^{*i}))}$$

