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Regularization

A central problem in machine learning is how to make an algorithm
that will perform well not just on the training data, but also on new
inputs.

Most machine learning tasks are estimation of a function f̂ (x)
parametrized by a vector of parameters θ.
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Classical Regularization: Parameter Norm Penalty

Most classical regularization approaches are based on limiting the
capacity of models, by adding a parameter norm penalty Ω(θ) to the
objective function J .

J(θ;X , y) = J(θ;X , y) + αΩ(θ)
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L2 Parameter Regularization, weight decay

L2 parameter norm penalty commonly known as weight decay .

Regularization term Ω(θ) = 1
2
‖w‖2

2

Gradient of the total objective function:

∇w J̃(w ;X , y) = αw +∇wJ(w ;X , y).

w := w − ε(αw +∇wJ(w ;X , y)).

Considering a quadratic approximation to the objective function

Ĵ(θ) = J(w ∗) +
1

2
(w − w ∗)TH(w − w ∗)

∇w Ĵ(w) = H(w − w ∗).
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αw + H(w − w ∗) = 0

(H + αI )w = Hw ∗

w̃ = (H + αI )−1Hw ∗.

what happens as α grows?
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H = QΛQT

w̃ = (QΛQTαI )−1QΛQTw ∗

= [Q(Λ + αI )QT ]−1QΛQTw ∗

= Q(Λ + αI )−1ΛQTw ∗,

QT w̃ = (Λ + αI )−1ΛQTw ∗.

The effect of weight decay is to rescale the coefficients of
eigenvectors. The ith component is rescaled by a factor of λi

λi+α
.

If λi � α, the effect of regularization is relatively small.

Components with λi � α will be shrunk to have nearly zero
magnitude.
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Directions along which the parameters contribute significantly to
reducing the objective function are preserved a small eigenvalue of
the Hessian tell us that movement in this direction will not
significantly increase the gradient
effective number of parameters, defined to be

γ =
∑
i

λi
λi + α

.

As α is increased, the effective number of parameters decreases.
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Dataset Augmentation

The best way to make a machine learning model generalize better is
to train it on more data.

The amount of data we have is limited.

Create fake data and add it to the training set.

Not applicable to all tasks.

For example, it is difficult to generate new fake data for a density
estimation task unless we have already solved the density estimation
problem.
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Dataset Augmentation

Operations like translating the training images a few pixels in each
direction can often greatly improve generalization.

One way to improve the robustness of neural networks is simply to
train them with random noise applied to their inputs.

This same approach also works when the noise is applied to the
hidden units, which can be seen as doing dataset augmentation at
multiple levels of abstraction.
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Noise injection

Two ways that noise can be used as part of a regularization strategy.

Adding noise to the input.

This can be interpreted simply as form of dataset augmentation.

Can also interpret it as being equivalent to more traditional forms of
regularization.
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Noise injection

Two ways that noise can be used as part of a regularization strategy.

Adding noise to the input.

This can be interpreted simply as form of dataset augmentation.

Can also interpret it as being equivalent to more traditional forms of
regularization.

Adding it to the weights.

This technique has been used primarily in the context of recurrent
neural networks (Jim et al., 1996; Graves, 2011a).

This can be interpreted as a stochastic implementation of a Bayesian
inference over the weights.
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Manifold Tangent Classifier

It is assumed that we are trying to classify examples and that
examples on the same manifold share the same category.

The classifier should be invariant to the local factors of variation that
correspond to movement on the manifold.

Use as nearest-neighbor distance between points x1 and x2 the
distance between the manifolds M1 and M2 to which they
respectively belong.
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Manifold Tangent Classifier

Approximate Mi by its tangent plane at xi and measure the distance
between the two tangent.

Train a neural net classifier with an extra penalty to make the output
f (x) of the neural net locally invariant to known factors of variation
(Tangent-Prop algorithm, Simard et al., 1992).
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Manifold Tangent Classifier

Require ∂f (x)
∂x

to be orthogonal to the known manifold tangent vectors
vi at x.

Or the directional derivative of f at x in the directions vi be small.

regulaizer = λ
∑
i

(
∂f (x)

∂x
.vi

)2

A recent paper introduces the Manifold Tangent Classifier (Rifai et
al.,2011), which eliminates the need to know the tangent vectors a
priori.
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Injecting Noise at the Input

Consider a regression setting

J = Ep(x ,y)[(ŷ(x)− y)2],

ε ∼ (0, νI ),

J̃x = Ep(x ,yε)[(ŷ(x + ε)− y)2]

= Ep(x ,yε)[ŷ
2(x + ε)− 2y ŷ(x + ε) + y 2]

= Ep(x ,yε)[ŷ
2(x + ε)]− 2Ep(x ,yε)[y ŷ(x + ε)] + Ep(x ,yε)[y

2]
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Assuming small noise, we can consider the Taylor series expansion of
ŷ(x + ε) around ŷ(x).

ŷ(x + ε) = ŷ(x) + εT∇xŷ(x) +
1

2
εT∇2

x ŷ(x)ε + 0(ε3)

Ep(ε)[ε] = 0

Ep(ε)[εε
T ] = γI
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Ĵx ≈ Ep(x,y,ε)

[(
ŷ(x) + ε

T∇x ŷ(x) +
1

2
ε
T∇2

x ŷ(x)ε

)2
]

− 2Ep(x,y,ε)

[
yŷ(x) + yεT∇x yŷ(x) +

1

2
yεT∇2

x ŷ(x)ε

]
+ Ep(x,y,ε)[y

2]

= Ep(x,y,ε)[(ŷ(x)− y)2] + Ep(x,y,ε)

[
ŷ(x)εT∇2

x ŷ(x)ε + (εT∇x ŷ(x))
2 + 0(ε3)

]
− 2Ep(x,y,ε)

[
1

2
yεT∇2

x ŷ(x)ε

]
= j + γEp(x,y,ε)[(ŷ(x)− y)∇2

x ŷ(x)] + γEp(x,y,ε)[‖∇x ŷ(x)‖2]
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Consider minimizing this objective function, by taking the functional
gradient of ŷ(x) and setting the result to zero

ŷ(x) = Ep(y |x)[y ] + 0(ν)

Ep(x ,y ,ε)[(ŷ(x)− y)∇2
x ŷ(x)],

reduces 0(ν)
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For small ν, the minimization of J with added noise on the input
(with covariance νI ) is equivalent to minimization of J with an
additional regularization term given by νEp(x ,y ,ε)[‖∇xy(x)‖2]. it has
the effect of penalizing large gradients of the function ŷ(x).
it has the effect of reducing the sensitivity of the output of the
network with respect to small variations in its input x .
for linear networks, this regularization term reduces to simple weight
decay
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Early Stopping as a Form of Regularization

Instead of running our optimization algorithm until we reach a (local)
minimum of validation error:

Run it until the error on the validation set has not improved for some
amount of time.

Every time the error on the validation set improves, we store a copy
of the model parameters.

When the training algorithm terminates, we return these parameters,
rather than the latest parameters.

It is probably the most commonly used form of regularization in deep
learning.
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Early Stopping as a Form of Regularization

Assume θ = w

Take a quadratic approximation to the objective function J in the
neighborhood of the empirically optimal value of the weights w ∗.

Ĵ(θ) = J(w ∗) +
1

2
(w − w ∗)TH(θ − θ)

∇w Ĵ(s) = H(w − w ∗).

w (0) = 0
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w (τ) = w (τ+1) − η∇wJ(w (τ+1))

= w τ+1 − ηH(w (τ+1) − w ∗)

w (τ) − w ∗ = (I − ηH)(w (τ−1) − w ∗)

H : H = QΛQ

w (τ) − w ∗ = (I − ηQΛQT )(w (τ+1) − w ∗)

QT (w (τ) − w ∗) = (I − ηΛ)QT (w (τ+1) − w ∗)
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Assuming w 0 = 0, and that |1− ηλi | < 1, we have after τ training
updates,

QTw (τ) = [I − (I − ηΛ)τ ]QTw ∗.

QT w̃ = (Λ + αI )−1ΛQTw ∗

QT w̃ = [I − (Λ + αI )−1α]ΛQTw ∗.

(I − ηΛ)τ = (Λ + αI )−1α

,
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by taking logs and using the series expansion for log(1 + x), we can
conclude that if all λi are small (i.e. ηλi � 1 and λi/α� 1 ) then

τ ≈ 1

ηα
,

α ≈ 1

τη
.

the number of training iterations τ plays a role inversely proportional
to the L2 regularization parameter, and the inverse of τη plays the
role of the weight decay coefficient.
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Parameter Tying and Parameter Sharing

Sometimes we may need other ways to express our prior knowledge
about suitable values of the model parameters.

Certain parameters should be close to one another
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Parameter Tying and Parameter Sharing

Consider model a with parameters w (a) and model b with parameters
w (b).

Suppose the two models map the input to two different, but related
outputs: ŷa = f (w (a), x) and ŷb = g(w (b), x).

Imagine that the tasks are similar enough (perhaps with similar input
and output distributions) that we believe the model parameters

should be close to each other, i.e. ∀i ,w (a)
i should be close to w (b)

use a parameter norm penalty of the form:
Ω(w (a),w (b)) = ‖w (a) − w (b)‖2

2
.
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Bagging and Other Ensemble Methods

Bagging (short for bootstrap aggregating) is a technique for reducing
generalization error by combining several models (Breiman, 1994).

Train several different models separately, then have all of the models
vote on the output for test examples.

This is an example of a general strategy in machine learning called
model averaging.

Techniques employing this strategy are known as ensemble methods.
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Bagging and Other Ensemble Methods

Consider for example a set of k regression models.

Suppose that each model makes an error εi on each example.

Suppose the errors drawn from a zero-mean multivariate normal
distribution with:

variances E[ε2i ] = ν

and covariances E[εiεj ] = c .
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Bagging and Other Ensemble Methods

Then the error made by the average prediction of all the ensemble
models is 1

k

∑
i εi .

The expected squared error of the ensemble predictor is

E[
1

k

∑
i

ε2i ]

=
1

k2
E[
∑
i

(
ε2i +

∑
j 6=1

εiεj

)
]

1

k
ν +

k − 1

k
c .
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Bagging and Other Ensemble Methods

1

k
ν +

k − 1

k
c .

the errors are perfectly correlated and c = ν, this reduces to ν, and
the model averaging does not help at all.

The errors are perfectly uncorrelated and c = 0, then the expected
squared error of the ensemble is only 1

k
ν.

On average,the ensemble will perform at least as well as any of its
members

If the members make independent errors, the ensemble will perform
significantly better than its members.
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