
Deep Learning

Recurrent Neural Network (RNNs)

Ali Ghodsi

University of Waterloo

October 23, 2015

Slides are partially based on Book in preparation, Deep Learning
by Bengio, Goodfellow, and Aaron Courville, 2015

Ali Ghodsi Deep Learning



Sequential data

Recurrent neural networks (RNNs) are often used for handling
sequential data.

They introduced first in 1986 (Rumelhart et al 1986).

Sequential data usually involves variable length inputs.

Ali Ghodsi Deep Learning



Parameter sharing

Parameter sharing makes it possible to extend and apply the model
to examples of different lengths and generalize across them.

x1

x2

y1

x1

x2

y1

Ali Ghodsi Deep Learning



Recurrent neural network

Figure: Richard Socher

Ali Ghodsi Deep Learning



Dynamic systems

The classical form of a dynamical system:

st = fθ(st−1)

Ali Ghodsi Deep Learning



Dynamic systems

Now consider a dynamic system with an external signal x

st = fθ(st−1, xt)

The state contains information about the whole past sequence.

st = gt(xt , xt−1, xt−s , . . . , x2, x1)

Ali Ghodsi Deep Learning



Parameter sharing

We can think of st as a summary of the past sequence of inputs up to
t.

If we define a different function gt for each possible sequence length,
we would not get any generalization.

If the same parameters are used for any sequence length allowing
much better generalization properties.

Ali Ghodsi Deep Learning



Recurrent Neural Networks

at = b + W st−1 + Uxt

st = tanh(at)

ot = c + V st

pt = softmax(ot)

Ali Ghodsi Deep Learning



Computing the Gradient in a Recurrent Neural

Network

Using the generalized back-propagation algorithm one can obtain the
so-called Back-Propagation Through Time (BPTT) algorithm.

Ali Ghodsi Deep Learning



Exploding or Vanishing Product of Jacobians

In recurrent nets (also in very deep nets), the final output is the
composition of a large number of non-linear transformations.

Even if each of these non-linear transformations is smooth. Their
composition might not be.

The derivatives through the whole composition will tend to be either
very small or very large.

Ali Ghodsi Deep Learning



Exploding or Vanishing Product of Jacobians

The Jacobian (matrix of derivatives) of a composition is the product
of the Jacobians of each stage.
If

f = fT ◦ fT−1 ◦ . . . , f2 ◦ f1
where (f ◦ g)(x) = f (g(x))

(f ◦ g)′(x) = (f ′ ◦ g)(x) · g ′(x) = f ′(g(x))g ′(x)

Ali Ghodsi Deep Learning



Exploding or Vanishing Product of Jacobians

The Jacobian matrix of derivatives of f (x) with respect to its input
vector x is

f ′ = f ′T f
′
T−1 . . . , f

′
2 f1

where

f ′ =
∂f (x)

∂x

and

f ′t =
∂ft(at)

∂at
,

where at = ft−1(ft−2(. . . , f2(f1(x)))).

Ali Ghodsi Deep Learning



Exploding or Vanishing Product of Jacobians

Simple example

Suppose: all the numbers in the product are scalar and have the
same value α.

multiplying many numbers together tends to be either very large or
very small.

If T goes to ∞, then

αT goes to ∞ if α > 1

αT goes to 0 if α < 1

Ali Ghodsi Deep Learning



Difficulty of Learning Long-Term Dependencies

Consider a general dynamic system

st = fθ(st−1, xt)

ot = gw (st),

A loss Lt is computed at time step t as a function of ot and some
target yt . At time T :

∂LT
∂θ

=
∑
t≤T

∂Lt
∂st

∂st
∂θ

∂LT
∂θ

=
∑
t≤T

∂Lt
∂sT

∂sT
∂st

∂fθ(st−1, xt)

∂θ

∂sT
∂st

=
∂sT
∂sT−1

∂sT−1
∂sT−2

. . .
∂st+1

∂st

Ali Ghodsi Deep Learning



Facing the challenge

Gradients propagated over many stages tend to either vanish (most
of the time) or explode.

Ali Ghodsi Deep Learning



Echo State Networks

set the recurrent and input weights such that the recurrent hidden
units do a good job of capturing the history of past inputs, and only
learn the output weights.

st = σ(W st−1 + Uxt)

Ali Ghodsi Deep Learning



Echo State Networks

If a change ∆s in the state at t is aligned with an eigenvector v of
jacobian J with eigenvalue λ > 1, then the small change ∆s becomes
λ∆s after one time step, and λt∆s after t time steps.

If the largest eigenvalueλ < 1, the map from t to t + 1 is contractive.

The network forgetting information about the long-term past.

Set the weights to make the Jacobians slightly contractive.

Ali Ghodsi Deep Learning



Long delays

Use recurrent connections with long delays.

Figure from Benjio et al 2015

Ali Ghodsi Deep Learning



Leaky Units

Recall that
st = σ(W st−1 + Uxt)

Consider

st,i = (1− 1

τi
)st−1 +

1

τi
σ(W st−1 + Uxt)

1 ≤ τi ≤ ∞

τi = 1, Ordinary RNN

τi > 1, gradients propagate more easily.

τi >> 1 , the state changes very slowly, integrating the past values
associated with the input sequence.

Ali Ghodsi Deep Learning



Gated RNNs

It might be useful for the neural network to forget the old state in
some cases.

Example: a a b b b a a a a b a b

It might be useful to keep the memory of the past.

Example:

Instead of manually deciding when to clear the state, we want the
neural network to learn to decide when to do it.

Ali Ghodsi Deep Learning



Gated RNNs, the Long-Short-Term-Memory

The Long-Short-Term-Memory (LSTM) algorithm was proposed in
1997 (Hochreiter and Schmidhuber, 1997).

Several variants of the LSTM are found in the literature:

Hochreiter and Schmidhuber 1997

Graves, 2012

Graves et al., 2013

Sutskever et al., 2014

the principle is always to have a linear self-loop through which
gradients can flow for long duration.

Ali Ghodsi Deep Learning



Gated Recurrent Units (GRU)

Recent work on gated RNNs, Gated Recurrent Units (GRU) was
proposed in 2014

Cho et al., 2014

Chung et al., 2014, 2015

Jozefowicz et al., 2015

Chrupala et al., 2015

Ali Ghodsi Deep Learning



Gated RNNs

Ali Ghodsi Deep Learning



Gated Recurrent Units (GRU)

Standard RNN computes hidden layer at next time step directly:
ht = f (Wht−1 + Uxt)

GRU first computes an update Gate (another layer) based on current
input vector and hidden state

zt = σ(W (z)xt + U (z)ht−1)

compute reset gate similarly but with different weights

rt = σ(W (r)xt + U (r)ht−1)

Credit: Richard Socher

Ali Ghodsi Deep Learning



Gated Recurrent Units (GRU)

Update gate: zt = σ(W (z)xt + U (z)ht−1)

Reset gate: rt = σ(W (r)xt + U (r)ht−1)

New memory content: h̃t = tanh(wxt + rt ◦ Uht−1)
If reset gate is 0, then this ignores previous memory and only stores
the new information

Final memory at time step combines current and previous time steps:
ht = zt ◦ hh−1 + (1− zt) ◦ h̃t

Ali Ghodsi Deep Learning



Gated Recurrent Units (GRU)

Update gate:
zt = σ(W (z)xt + U (z)ht−1)

Reset gate:
rt = σ(W (r)xt + U (r)ht−1)

New memory content:
h̃t = tanh(wxt + rt ◦ Uht−1)

ht = zt ◦ hh−1 + (1− zt) ◦ h̃t

Ali Ghodsi Deep Learning



Gated Recurrent Units (GRU)

zt = σ(W (z)xt + U (z)ht−1)
rt = σ(W (r)xt + U (r)ht−1)
h̃t = tanh(wxt + rt ◦ Uht−1)
ht = zt ◦ hh−1 + (1− zt) ◦ h̃t

If reset is close to 0, ignore previous hidden state → Allow model to
drop information that is irrelevant

Update gate z controls how much of past state should matter now.
If z close to 1, then we can copy information in that unit through
many time steps.
Units with short term dependencies often have reset gates very active.

Ali Ghodsi Deep Learning



The Long-Short-Term-Memory (LSTM)

We can make the units even more complex
Allow each time step to modify
Input gate (current cell matters) it = σ(W (i)xt + U (i)ht−1)
Forget (gate 0, forget past) ft = σ(W (f )xt + U (f )ht−1)
Output (how much cell is exposed) ot = σ(W (o)xt + U (o)ht−1)
New memory cell c̃t = tanh(W (c)xt + U (c)ht−1)

Final memory cell: ct = ft ◦ ct−1 + (it) ◦ c̃t

Final hidden state: ht = ot ◦ tanh(ct)

Ali Ghodsi Deep Learning



Clipping Gradients

Figure: Pascanu et al., 2013

Strongly non-linear functions tend to have derivatives that can be
either very large or very small in magnitude.

Ali Ghodsi Deep Learning



Clipping Gradients

Simple solution for clipping the gradient. (Mikolov, 2012; Pascanu et
al., 2013):

Clip the parameter gradient from a mini batch element-wise
(Mikolov, 2012) just before the parameter update.

Clip the norm g of the gradient g (Pascanu et al., 2013a) just before
the parameter update.

Ali Ghodsi Deep Learning


