
Robust Locally-Linear Controllable Embedding

Ershad Banijamali Rui Shu Mohammad Ghavamzadeh
University of Waterloo Standford University DeepMind

Hung Bui Ali Ghodsi
Adobe Research University of Waterloo

Abstract

Embed-to-control (E2C) [17] is a model
for solving high-dimensional optimal con-
trol problems by combining variational auto-
encoders with locally-optimal controllers.
However, the current E2C model suffers from
two major drawbacks: 1) its objective func-
tion does not correspond to the likelihood
of the data sequence and 2) the variational
encoder used for embedding typically has
large variational approximation error, espe-
cially when there is noise in the system dy-
namics. In this paper, we present a new
model for learning robust locally-linear con-
trollable embedding (RCE). Our model di-
rectly estimates the predictive conditional
density of the future observation given the
current one, while introducing the bottle-
neck [11] between the current and future ob-
servations. Although the bottleneck provides
a natural embedding candidate for control,
our RCE model introduces additional specific
structures in the generative graphical model
so that the model dynamics can be robustly
linearized. We also propose a principled vari-
ational approximation of the embedding pos-
terior that takes the future observation into
account, and thus, makes the variational ap-
proximation more robust against the noise.
Experimental results demonstrate that RCE
outperforms the existing E2C model, and
does so significantly in the regime where the
underlying dynamics is noisy.

1 Introduction

Model-based locally optimal control algorithms are
popular in controlling non-linear dynamical systems
with continuous state and action spaces. Algorithms

from this class such as differential dynamic program-
ming (DDP) [3], iterative linear quadratic regulator
(iLQR) [8], and iterative linear quadratic Gaussian
(iLQG) [14] have been successfully applied to a va-
riety of complex control problems [1, 13, 7, 9]. The
general idea of these methods is to iteratively linearize
the non-linear dynamics around the current trajectory
and then use linear quadratic methodology to derive
Riccati-like equations to improve the trajectory. How-
ever, these methods assume that the model of the sys-
tem is known and need relatively low-dimensional state
representations. These requirements limit their usage
in control of dynamical systems from raw sensory data
(e.g., image and audio), a scenario often seen in mod-
ern reinforcement learning (RL) systems.

Although both model-based RL and methods to find
low-dimensional representations that are appropriate
for control (see e.g., [2]) have a long history, they have
recently witnessed major improvements due to the ad-
vances in the field of deep learning. Deep autoen-
coders [6, 15] have been used to obtain low-dimensional
representations for control, and deep generative mod-
els have been used to develop new model-based RL al-
gorithms. However, what is desirable in model-based
locally optimal control algorithms is a representation
that can be used for learning a model of the dynam-
ical system and can also be systematically incorpo-
rated into the existing tools for planning and control.
One such model is embed to control (E2C) [17]. E2C
turns the problem of locally optimal control in high-
dimensional non-linear systems into one of identifying
a low-dimensional latent space in which we can easily
perform locally optimal control. The low-dimensional
latent space is learned using a model based on varia-
tional autoencoders (VAEs) [5, 10] and the iLQG al-
gorithm [14] is used for locally optimal control.

While the idea of E2C is intriguing, it suffers from
two major statistical deficiencies. Firstly, to induce
the lower-dimensional embedding, at each time step
t, E2C models the pair-marginal distribution of two

Robust Locally-Linear Controllable Embedding

adjacent observations (xt,xt+1). As a result, its loss
function effectively is the sum over the pair-marginals,
which is clearly not the data likelihood for the en-
tire trajectory. Moreover, at every time step t, E2C
needs to enforce the consistency between the poste-
rior of the embedding and the predictive distribution
of the future embedding by minimizing their KL di-
vergence. These all indicate that the E2C loss is not
a lower bound of the likelihood of the data. The prac-
tice of modeling the pair-marginal of (xt,xt+1) using
a latent variable model also imposes a Gaussian prior
on the embedding space, which might be in conflict
with the locally-linear constraint that we would like to
impose. Secondly, the variational inference scheme
in E2C attempts to approximate the posterior of the
latent embedding via a recognition model that does
not depend on the future observation xt+1. We be-
lieve that this is done out of necessity, so that the
locally-linear dynamics can be encoded as a constraint
in the original E2C model. In an environment where
the future is uncertain (e.g., in the presence of noise or
other unknown factors), the future observation carries
significant information about the true posterior of the
latent embedding. Thus, a variational approximation
family that does not take future observation into ac-
count, while approximating the posterior, will result in
a large variational approximation error, leading to the
learning of a sub-optimal model that underperforms,
especially when the dynamics is noisy.

To address these issues, we take a more systematic
view of the problem. Instead of mechanically apply-
ing VAE to model the pair-marginal density, we build
on the recent bottleneck conditional density estimator
(BCDE) [11] and directly model the predictive con-
ditional density p(xt+1|xt). The BCDE model intro-
duces a bottleneck random variable zt in the middle
of the information flow from xt to xt+1. While this
bottleneck provides a natural embedding candidate for
control, these embeddings need to be structured in a
way to respect the locally linear constraint of the dy-
namics. Our proposed model, robust controllable em-
bedding (RCE), provides a rigorous answer to this ques-
tion in the form of a generative graphical model. A key
idea is to explicitly treat the reference linearization
point in the locally-linear model as an additional ran-
dom variable. We also propose a principled variational
approximation of the embedding posterior that takes
the future observation into account and optimizes a
variational lower bound of the likelihood of the data se-
quence. This allows our framework to provide a clean
separation of the generative graphical model and the
amortized variational inference mechanism (e.g., the
recognition model).

After a brief overview of locally linear control and E2C

in Section 2, we present our proposed RCE model in
Section 3. Unlike E2C, RCE directly models the condi-
tional density of the next observation given the current
one via a form of bottleneck conditional density esti-
mators [11]. In Section 3, we first describe the RCE’s
graphical model in details and then present the pro-
posed variational approximation of the embedding’s
posterior. In Section 4, we apply RCE to four RL
benchmarks from [17] and show that it consistently
outperforms E2C in both prediction and planning.
Crucially, we demonstrate the robustness of RCE: as
the dynamics becomes more noisy, RCE continues to
perform reasonably well while E2C’s performance de-
grades sharply.

2 Preliminaries

In this section, we first define the non-linear control
problem that we are interested to solve, and then
provide a brief overview of stochastic locally optimal
control and the E2C model. We also motivate our
proposed robust controllable embedding (RCE) model
that will be presented in Section 3.

2.1 Problem Formulation

We are interested in controlling the non-linear dynam-
ical systems of the form

st+1 = fS(st,ut) + nS , (1)

where st ∈ Rns and ut ∈ Rnu denote the state and ac-
tion of the system at time step t, nS ∼ N (0,ΣnS)
is the Gaussian system noise, and fS is a smooth
non-linear system dynamics. Note that in this case
p(st+1|st,ut) would be the multivariate Gaussian dis-
tribution N

(
fS(st,ut),ΣnS

)
. We assume that we

only have access to the high-dimensional observation
xt ∈ Rnx of each state st (ns � nx) and our goal is
to learn a low-dimensional latent state space Z ⊂ Rnz
(nz � nx) in which we perform optimal control.

2.2 Stochastic Locally Optimal Control

Stochastic locally optimal control (SLOC) is based on
the idea of controlling the non-linear system (1), along
a reference trajectory {s̄1, ū1, . . . , s̄H , ūH , s̄H+1}, by
transforming it to a time-varying linear quadratic reg-
ulator (LQR) problem

min
u1:T

E

[
T∑
t=1

(
(st − sf)>Q(st − sf) + u>t Rut

)]
s.t yt+1 = Atyt + Btvt, (2)

where sf is the final (goal) state, Q and R are cost
weighting matrices, yt = st − s̄t, vt = ut − ūt, s̄t+1 =

Robust Locally-Linear Controllable Embedding

fS(s̄t, ūt), At = ∂fS
∂s (s̄t, ūt), and Bt = ∂fS

∂u (s̄t, ūt).
Eq. 2 indicates that at each time step t, the non-linear
system has been locally approximated with a linear
system around the reference point (s̄t, ūt) as

st+1 ≈ fS(st,ut) +

[
∂fS
∂s

(s̄t, ūt)

]
(st − s̄t) (3)

+

[
∂fS
∂u

(s̄t, ūt)

]
(ut − ūt).

The RHS of Eq. 2 sometimes contains an offset ct re-
sulted from the linear approximation and/or noise

yt+1 = Atyt + Btvt + ct. (4)

Eq. 4 can be seen as[
yt+1

1

]
=

[
At ct
0 1

] [
yt
1

]
+

[
Bt

0

]
vt,

and thus, can be easily transformed to the standard
from (2) by adding an extra dimension to the state as

y′t =

[
yt
1

]
, A′t =

[
At ct
0 1

]
, B′t =

[
Bt

0

]
.

Locally optimal actions in Eq. 2 can be computed in
closed-form by solving the local LQRs (3) using the
value iteration algorithm.

Since the quality of the control depends on the qual-
ity of the reference trajectory, SLOC algorithms are
usually iterative (e.g., iLQR and iLQG), and at each
iteration generate a better reference trajectory. At the
abstract level, a SLOC algorithm operates as follows:
at each iteration k, a reference trajectory is generated
using the current policy π(k), the LQR approximation
of the non-linear system is computed around this ref-
erence trajectory, and finally the next policy π(k+1) is
computed by solving this LQR. The algorithm stops
after a fixed number of iterations, e.g., 100.

As mentioned in Section 2.1, since we do not have ac-
cess to the true state s, we perform the optimal control
in the low-dimensional latent space z learned from the
observations x. Thus, all the s’s in this section should
be replaced by z in the following sections.

2.3 The Embed to Control (E2C) Model

We now return to the assumption that we only ob-
serve a finite number of high-dimensional sensory data
(e.g., images) xt ∈ Rnx from the system. We de-
note the high-dimensional observation sequence by
X = {x1,x2, ...,xN}. Note that the observations are
selected such that the sequence X is Markovian. For
example, x could be a set of buffered observed images
of the system that encodes all the information about

the past. Depending on the system, this set may have
only one or multiple images.

It is clear that direct control in Rnx is complicated be-
cause of its high-dimensional nature. However, when
the true underlying state space is low-dimensional, it
would be possible to embed the high-dimensional ob-
servations in a low-dimensional latent space Z, in a
way that the dynamics of the system can be captured
by a much simpler model, which can then be used for
optimal control. This general strategy is known as
embed to control (E2C) [17]. Note that a suitable em-
bedding function is sufficient for model-based control,
we do not need to recover the true state st.

We denote by zt the low-dimensional embedding of xt.
E2C first introduces a new variable ẑt+1 as the result
of applying ut to the latent dynamics fZ , i.e.,

ẑt+1 = fZ(zt,ut) + nZt , (5)

where nZt denotes the transition noise in the latent
space. E2C employs the pair (zt, ẑt+1) as the latent
variables that model the pair-marginal p(xt,xt+1). It
uses the variational recognition network q(zt|xt), while
forcing q(ẑt+1|zt,ut) to be the generative dynamics of
Eq. 5. This leads to the following lower bound of the
pair-marginal

p(xt,xt+1|ut) ≥ Lbound
t (xt,ut,xt+1)

= Eq(zt|xt)q(ẑt+1|zt,ut)
[
− log p(xt|zt)

− log p(xt+1|ẑt+1) + KL(q(zt|xt) ‖ p(zt))
]

(6)

Local linearization of the dynamics is enforced inside
the recognition model q(ẑt+1|zt,ut), where mapping
from a linearization point z̄t to the linearization ma-
trices are estimated via neural networks.

Finally, we want zt+1 to be both the embedding of
xt+1 and the result of applying ut to zt. E2C at-
tempts to enforce this temporal consistency criterion
by encouraging the distributions of ẑt+1 and the next
step embedding zt+1 to be similar (in the KL sense).
Enforcing the temporal consistency leads to the mod-
ified objective

Lt = Lbound
t + λKL

(
q(ẑt+1|zt,ut) ‖ q(zt+1|xt+1)

)
,
(7)

where λ is an additional hyperparameter of the model.
We note that neither of the two objectives

∑
t Lbound

t

and
∑
t Lt is a lower bound of the data likelihood p(X).

The fact that E2C does not optimize a proper lower
bound of the data likelihood has also been observed
by [4].

Compared to E2C, our method is based on introducing
a graphical model that clearly separates the generative
model from the variational recognition model. This en-

Robust Locally-Linear Controllable Embedding

ables us to handle noise in the system and avoid heuris-
tic terms in the objective functions that need extra hy-
perparameter tuning. Furthermore, we can optimize a
lower bound on the likelihood of the data sequence us-
ing a better-designed recognition model more robust
w.r.t. noise. Note that our goal is not to purely ob-
tain the best predictive power as in [4], but to design
a predictive model that yields a suitable embedding
representation for locally optimal control. Unlike [4]
which does not report control performance, our ex-
periments focus on the performance of the controller
under various noise regime. In the next section, we de-
scribe our proposed RCE model and demonstrate how
it addresses the aforementioned issues of E2C.

3 Model Description

In this section, we first introduce our graphical model
that represents the relation between the observations
and latent variables in our model. We then derive a
lower bound on the likelihood of the observation se-
quence. The objective of training in our model is to
maximize this lower bound. Finally, we describe the
details of the method we use for planning in the latent
space learned by our model.

3.1 Graphical Model

We propose to learn an action-conditional density
model of the observations x1:N . Similar to E2C,
we assume that the observation sequence is Marko-
vian. Thus, optimizing the likelihood p(x1:N |u1:N)
reduces to learning an action-conditional generative
model that can be trained via maximum likelihood,
i.e.,

max
θ

log pθ(xt+1|xt,ut), (8)

where the prediction of the next observation xt+1 de-
pends only on the current xt and action ut. Note that
our generative model is parameterized by θ. For nota-
tional simplicity, we shall omit θ in our presentation.

We first discuss how to learn a low-dimensional repre-
sentation of x that adheres to globally linear dynamics
by incorporating several constraints into the structure
of our generative model. First, we introduce the la-
tent variables zt and ẑt+1 that serve as information
bottlenecks between xt and xt+1, such that

p(xt+1, zt, ẑt+1|xt,ut)
= p(zt|xt)p(ẑt+1|zt,ut)p(xt+1|ẑt+1). (9)

Intuitively, it is natural to interpret zt and ẑt+1 to be
stochastic embeddings of xt and xt+1, respectively.

Next, we enforce global linearity of p(ẑt+1|zt,ut) by
restricting it to be a deterministic, linear transition

𝑥𝑡 𝑥𝑡+1

 𝑧𝑡+1 𝑧𝑡

𝑢𝑡𝑧𝑡

Figure 1: RCE graphical model. Black arrows show
the generative links and dashed red arrows show the
recognition model. Parallel lines mean deterministic
links, while single lines mean stochastic links (a link
that involves in sampling). zt and z̄t are two samples
from p(z|x). We use a single network (the encoder
network) to model the conditional probability of the
links with the hatch marks.

function of the form

ẑt+1 = Azt + But + c, (10)

where A, B, and c are matrices that respectively define
the state dynamics, control dynamics, and the offset.
To emphasize the deterministic nature of this transi-
tion, we replace all the subsequent mentions of deter-
ministic p(·|·) transitions with δ(·|·).

In order to learn more expressive transition dynam-
ics, we relax the global linearity constraint to a local
one. Unlike global linearity, local linearity requires a
linearization point. To account for this, we introduce
an additional variable z̄t to serve as the linearization
point, which results in a new generative model (see the
black arrows in Fig. 1),

p(xt+1, zt, z̄t, ẑt+1|xt,ut)
= p(zt|xt)p(z̄t|xt)
δ(ẑt+1|zt, z̄t,ut)p(xt+1|ẑt+1), (11)

whose corresponding deterministic transition function
for δ(ẑt+1|zt, z̄t,ut) is

ẑt+1 = At(z̄t,ut)zt + Bt(z̄t,ut)ut + ct(z̄t,ut). (12)

Here, A, B, and c are functions of (z̄t,ut), and can
be parameterized by neural networks. Since the lin-
earization point z̄t is not known in advance, we treat
z̄t as a random variable with distribution p(z̄t|xt). A
natural consideration for p(z̄t|xt) is to set it to be iden-
tical to p(zt|xt) a priori. This has the effect of making
the iLQR controller robust to stochastic sampling of
zt during planning.

Robust Locally-Linear Controllable Embedding

3.2 Deep Variational Learning

Training the generative model in Eq. 11 using max-
imum likelihood is intractable, since it requires the
marginalization of the latent variables. Therefore,
we propose to use deep variational inference [5, 10]
and maximize the variational lower bound of the log-
likelihood, instead. The variational lower bound re-
quires us to define a variational approximation to the
true posterior

q(z, z̄t, ẑt+1|xt,xt+1,ut) ≈ p(z, z̄t, ẑt+1|xt,xt+1,ut).

In adherence to the interpretation of zt and ẑt+1 as
stochastic embeddings of xt and xt+1, it is important
to enforce consistency between p(ẑt+1|xt,xt+1,ut) and
the next step probability of the embedding given the
observation p(zt+1|xt+1). Since we do not have access
to p(ẑt+1|xt,xt+1,ut), we instead encourage this con-
sistency through posterior regularization by explicitly
setting

qφ(ẑt+1|xt+1) = p(zt+1|xt+1). (13)

Next, we propose a novel factorization of the full vari-
ational posterior as

q(z, z̄t, ẑt+1|xt,xt+1,ut) (14)

= qφ(ẑt+1|xt+1)qϕ(z̄t|xt, ẑt+1)δ(zt|ẑt+1, z̄t,ut),

where qϕ(z̄t|xt, ẑt+1) is the backward encoder and
δ(zt|ẑt+1, z̄t,ut) is the deterministic reverse transi-
tion. Our choice of factorization results in a recog-
nition model that contrasts sharply with that in E2C.
First, our recognition model properly conditions the
inference of ẑt+1 on the observation xt+1. Second,
our recognition model explicitly accounts for the de-
terministic transition in the generative model; infer-
ence of the deterministic transition can be performed
in closed-form using a deterministic reverse transition
that recovers zt as a function of z̄t,ut and ẑt+1. To be
consistent with Eq. 12, we require that

zt = A−1
t (z̄t,ut)

(
ẑt+1 −Bt(z̄t,ut)ut − ct(z̄t,ut)

)
.

(15)

During the training of the generative model, we only
need to access the inverse of At. As such, we propose
to directly train a network that outputs its inverse
Mt(z̄t,ut) = A−1

t (z̄t,ut). To make sure that Mt is
an invertible matrix and to enable efficient estimation,
we restrict Mt to be a rank-one perturbation of the
identity matrix, i.e.,

Mt = Inz + wt(z̄t,ut)r
>
t (z̄t,ut), (16)

where Inz is the identity matrix of size nz, and wt

and rt are two column vectors in Rnz . We constraint

these vectors to be non-negative using a non-negative
activation at their corresponding output layers.

We now formally the give the RCE loss and its lower
bound property.

Lemma 1. Let LRCEt be defined as

LRCEt = Eqφ(ẑt+1|xt+1)

[
log p(xt+1|ẑt+1)

]
−Eqφ(ẑt+1|xt+1)

[
KL
(
qϕ(z̄t|ẑt+1,xt) ‖ p(z̄t|xt)

)]
+H
(
qφ(ẑt+1|xt+1)

)
+ Eqφ(ẑt+1|xt+1)

qϕ(z̄t|xt,ẑt+1)

[
log p(zt|xt)

]
.

(17)
Subject to the constraints we explicitly impose on q,
LRCEt is a lower bound of the conditional log-likelihood
log p(xt+1|xt,ut).

Proof. See Appendix A.

Figure 1 contains a graphical representation of our
model. We report a complete derivation of Eq. 17 in
Appendix A. It is important to note that unlike the
E2C encoder (Eq. 8 in [17]), our recognition model
takes the future state xt+1 as input. In the case of
noisy dynamics, the future state heavily influences the
posterior. Thus, E2C’s failure to incorporate the fu-
ture state into the variational approximation of the
posterior could be detrimental to the performance of
the system in the noisy regime. We clearly demon-
strate this phenomenon in our experiments.

3.3 Network Structure

For the four problems used in our experiments in Sec-
tion 4, we use feedforward networks for encoding, de-
coding, and transition. Depending on the input im-
age size, the encoder and decoder can have fully-
connected layers or convolutional layers. The transi-
tion networks always have fully-connected layers. Ac-
cording to Eq. 17, we need to model four different
conditional probabilities: p(xt+1|ẑt+1), qφ(ẑt+1|xt+1),
qϕ(z̄t|ẑt+1,xt), and p(zt|xt). Figure 2 shows the high-
level depiction of the networks and the connection be-
tween different variables used in these probabilities.

3.4 Planning

We use the iLQR algorithm to plan in the latent space
Z. A good latent space representation should allow us
not only to reconstruct and predict the images accu-
rately, but also to plan well in this space using fZ .

The inputs to the planning algorithm are the two high-
dimensional observations xi and xf , corresponding to
the initial and final (goal) states si and sf . We encode
these two high-dimensional observations to the latent

Robust Locally-Linear Controllable Embedding

µ�

⌃�
sampling

sampling

(a) (b)

(c) (d)

Mt

ct

sampling

Bernoulli
Distribution

encoder
backward

linearization

⌃'

µ'

µ�

⌃�

Figure 2: Schematic of the networks that are used for modeling the probabilities in our model. The gray boxes
contain input (observable) variables. (a) Encoder network that models qφ(ẑt+1|xt+1) = N

(
µφ(xt+1),Σφ(xt+1)

)
.

(b) Transition network that contains two parts. One part, denoted by “backward encoder”, models
qϕ(z̄t|xt, ẑt+1) = N

(
µϕ(xt, ẑt+1),Σϕ(xt, ẑt+1)

)
, and the other part, denoted by “linearization”, is used to obtain

Mt, Bt, and ct, which are the parameters of the locally linear model in the latent space. (c) Decoder network
that models p(xt+1|ẑt+1). In our experiments we assume that this distribution is Bernoulli. Therefore, we use
sigmoid nonlinearity at the last layer of the decoder. x̄t+1 is the reconstructed version of xt+1. (d) The network
that models p(zt|xt). According to Eq. 13, since p(zt|xt) = qφ(zt|xt) and therefore we tie the parameters of this
network with the encoder network, p(zt|xt) = N (µφ(xt),Σφ(xt)). Note that p(zt|xt) is the same as p(z̄t|xt).
Thus, the KL term in (17) can be written as KL

(
N (µϕ,Σϕ) ‖ N (µφ(xt),Σφ(xt))

)
.

space observations zi and zf . We sample a random
set of H actions u1:H and apply them to the system,
starting from the initial state si (represented in the
latent space by zi). This generates a reference tra-
jectory {z̄1 = zi, ū1 = u1, z̄2, ū2 = u2, . . . , z̄H , ūH =
uH , z̄H+1} of size H. We pass this reference trajectory
to iLQR and it returns the set of actions u∗1:H that has
been iteratively optimized to minimize a quadratic cost
similar to (2) in the latent space Z. We apply u∗1 to
the dynamical system, observe the next state’s obser-
vation x2, and encode it to the latent space observa-
tion z2. We then generate another reference trajectory
by starting from z2 and applying the sequence of H
actions {u∗2, . . . ,u∗H ,uH+1}, where uH+1 is a random
action. We then run iLQR with this trajectory and
apply the first action in the set of H actions it returns
to the system. We continue this process for T (the
planning horizon) steps.

4 Experiments

In this section, we compare the performance of our pro-
posed RCE model with that of E2C in terms of both
prediction and planning in the four domains of [17].
To generate our training and test sets, each consists
of triples (xt,ut,xt+1), we first sample a state st and
generate its corresponding observation xt. We then
take an action ut and add a Gaussian noise with co-

variance ΣnS according to Eq. 1 to obtain the next
state st+1, which is used to generate the next observa-
tion xt+1. We consider both deterministic (ΣnS = 0)
and stochastic scenarios. In the stochastic case, we
add noise to the system with different values of ΣnS

and evaluate the models performance under noise.

In each of the four domains used in our experiments,
we compare the performance of RCE and that of E2C
in terms of four different factors (see Tables 1– 4).
1) Reconstruction Loss is the loss in reconstructing xt
using the encoder and decoder. 2) Prediction Loss is
the loss in predicting xt+1, given xt and ut, using the
encoder, decoder, and transition network. 3) Planning
Loss is computed based on the following quadratic loss:

J =

T∑
t=1

(st − sf)>Q(st − sf) + u>t Rut. (18)

We apply the sequence of actions returned by iLQR
to the dynamical system and report the value of the
loss in Eq. 18. 4) Success Rate shows the number of
times the agents reaches the goal within the planning
horizon T , and remains near the goal in case it reaches
it in less than T steps. For each of the domains, all
the results are averaged over 20 runs. The details of
our implementations, including the network’s struc-
ture, the size of the latent space, and the planning
horizon are specified in Appendix B.

Robust Locally-Linear Controllable Embedding

4.1 Planar System

Consider an agent in a surrounded area, whose goal is
to navigate from a corner to the opposite one, while
avoiding the six obstacles in this area. The system is
observed through a set of 40 × 40 pixel images taken
from the top, which specify the agent’s location in the
area. Actions are two-dimensional and specify the di-
rection of the agent’s movement.

Table 1 shows that RCE outperforms E2C in both pre-
diction/reconstruction and planning in this domain.
The Gaussian noise we add to the system has a diag-
onal covariance matrix with equal variance in all di-
mensions. The values mentioned in the table for ΣnS

are the standard deviation in each dimension.

Figure 3 shows the latent space representation of data
points in the planar system dataset for both RCE and

E2C models. RCE has clearly a more robust repre-
sentation against the noise and is able to predict the
defined trajectory with a much higher quality.

4.2 Inverted Pendulum (Acrobat)

This is the classic problem of controlling an inverted
pendulum [16] from 48× 48 pixel images. The goal in
this task is to swing up and balance an underactuated
pendulum from a resting position (pendulum hanging
down). The true state space of the system S has two
dimensions: angle and angular velocity. To keep the
Markovian property in the observation space, we need
to have two images in each observation xt, since each
image shows only position of the pendulum and does
not have any information about its velocity.

Table 2 contains our results of comparing RCE and

Table 1: RCE and E2C Comparison – Planar System

ΣnS Algorithm Reconstruction Loss Prediction Loss Planning Loss Success Rate

0
RCE 3.6± 1.7 6.2± 2.8 21.4± 2.9 100%
E2C 7.4± 1.7 9.3± 2.8 26.3± 4.9 100%

1
RCE 8.3± 5.5 10.1± 6.2 25.4± 3.6 100%
E2C 19.2± 5.1 28.3± 10.2 34.1± 9.5 95%

2
RCE 12.3± 4.9 17.3± 6.2 36.4± 10.3 95%
E2C 37.1± 10.5 45.8± 13.1 63.7± 16.3 75%

5
RCE 25.2± 6.1 27.3± 8.2 50.3± 14.5 85%
E2C 60.3± 18.2 78.3± 15.0 112.4± 30.2 45%

No Noise

⌃nS = 1

⌃nS = 2

⌃nS = 5

(a)

(b)

True Map

(c)

Figure 3: (a) Left: The true state space of the planar system. Each point on the map corresponds to one image
in the dataset. (a) Right: A random trajectory. Each image is 40 × 40 black and white. The circles show the
obstacles and the square is the agent in the domain. (b) Reconstructed map and predicted trajectory in the
latent space of the E2C model for different noise levels. (c) Reconstructed map and predicted trajectory in the
latent space of the RCE model for different noise levels.

Robust Locally-Linear Controllable Embedding

Table 2: RCE and E2C Comparison – Inverted Pendulum (Acrobat)

ΣnS Algorithm Reconstruction Loss Prediction Loss Planning Loss Success Rate

0
RCE 43.1± 13.2 48.1± 17.2 14.2± 4.6 95%
E2C 73.2± 20.1 79.6± 32.6 16.1± 2.9 90%

1
RCE 61.1± 16.2 70.2± 36.1 17.3± 7.1 85%
E2C 97.1± 34.1 109.7± 58.2 29.9± 9.2 60%

2
RCE 92.11± 35.4 106.4± 53.2 27.5± 6.6 70%
E2C 140.2± 47.1 179.5± 61.1 40.7± 11.8 40%

E2C models in this task. Learning the dynamics in
this problem is harder than reconstructing the images.
Therefore, at the beginning of the training we set the
weights of the two middle terms in Eq. 17 to 10, and
eventually decrease them to 1. The results show that
RCE outperforms than E2C, and the difference is sig-
nificant under noisy conditions.

4.3 Cart-pole Balancing

This is the visual version of the classic task of con-
trolling a cart-pole system [12]. The goal in this task
is to balance a pole on a moving cart, while the cart
avoids hitting the left and right boundaries. The con-
trol (action) is 1-dimensional and is the force applied
to the cart. The original state of the system st is 4-
dimensional. The observation xt is a history of two
80×80 pixel images (to maintain the Markovian prop-
erty). Due to the relatively large size of the images,
we use convolutional layers in encoder and decoder.
To make a fair comparison with E2C, we also set the
dimension of the latent space Z to 8.

Table 3 contains our results of comparing RCE and
E2C models in this task. We again observe a similar
trend: RCE outperforms E2C in both noiseless and
noisy settings and is significantly more robust.

4.4 Three-link Robot Arm

The goal in this task is to move a three-link planar
robot arm from an initial position to a final position

(both chosen randomly). The real state of the system
S is 6-dimensional and the actions are 3-dimensional,
representing the force applied to each joint of the arm.
We use two 128 × 128 pixel images of the arm as ob-
servation x. To be consistent with the E2C model, we
choose the latent space Z to be 8-dimensional.

Table 4 contains our results of comparing RCE and
E2C models in this task. Similar to the other domains,
our results show that the RCE model is more robust
to noise than E2C.

5 Conclusions

In summary, we proposed a new method to embed
the high-dimensional observations of a MDP in such
a way that both the embeddings and locally optimal
controllers are robust w.r.t. the noise in the system’s
dynamics. Our RCE model enjoys a clean separation
between the generative graphical model and its recog-
nition model. The RCE’s generative model explic-
itly treats the unknown linearization points as random
variables, while the recognition model is factorized in
reverse direction to take into account the future obser-
vation as well as exploiting determinism in the transi-
tion dynamics. Our experimental results demonstrate
that the RCE’s predictive and planning performance
are better and significantly more robust than that of
E2C in all the four benchmarks where E2C perfor-
mance has been measured [17].

Table 3: RCE and E2C Comparison – Cart-pole Balancing

ΣnS Algorithm Reconstruction Loss Prediction Loss Planning Loss Success Rate

0
RCE 33.2± 15.6 42.1± 26.9 21.2± 6.3 90%
E2C 44.9± 17.0 57.3± 22.9 25.3± 4.8 85%

1
RCE 52.1± 20.3 63.3± 27.2 28.4± 5.5 80%
E2C 70.2± 23.7 90.5± 42.4 39.8± 5.2 70%

2
RCE 77.6± 30.2 88.4± 38.3 42.2± 8.3 70%
E2C 112.6± 39.2 133.0± 56.5 67.2± 9.3 40%

Table 4: RCE and E2C Comparison – Robot Arm

ΣnS Algorithm Reconstruction Loss Prediction Loss Planning Loss Success Rate

0
RCE 60.5± 27.1 69.9± 32.2 81.3± 35.5 90%
E2C 71.3± 19.5 83.4± 28.6 90.23± 47.38 90%

1
RCE 96.5± 34.4 112.6± 42.2 106.2± 50.8 80%
E2C 138.1± 42.5 172.2± 58.3 155.2± 70.1 65%

Robust Locally-Linear Controllable Embedding

References

[1] C. Atkeson and J. Murimoto. Non-parametric
representations of policies and value functions: A
trajectory-based approach. In Advances in Neural
Information Processing Systems, 2002.

[2] W. Böhmer, J. Springenberg, J. Boedecker,
M. Riedmiller, and K. Obermayer. Autonomous
learning of state representations for control:
An emerging field aims to autonomously learn
state representations for reinforcement learning
agents from their real-world sensor observations.
Künstliche Intelligenz, 29(4):353–362, 2015.

[3] D. Jacobson and D. Mayne. Differential Dynamic
Programming. American Elsevier, 1970.

[4] M. Karl, M. Soelch, J. Bayer, and P. van der
Smagt. Deep variational bayes filters: Unsuper-
vised learning of state space models from raw
data. In Proceedings of ICLR, 2017.

[5] D. Kingma and M. Welling. Auto-encoding vari-
ational Bayes. In Proceedings of ICLR, 2014.

[6] S. Lange and M. Riedmiller. Deep auto-encoder
neural networks in reinforcement learning. In Pro-
ceedings of the International Joint Conference on
Neural Networks, pages 1–8, 2010.

[7] S. Levine and V. Koltun. Variational policy search
via trajectory optimization. In Advances in Neu-
ral Information Processing Systems, 2013.

[8] W. Li and E. Todorov. Iterative linear quadratic
regulator design for nonlinear biological move-
ment systems. In Proceedings of ICINCO, pages
222–229, 2004.

[9] Y. Pan and E. Theodorou. Probabilistic differen-
tial dynamic programming. In Advances in Neural
Information Processing Systems, 2014.

[10] D. Rezende, S. Mohamed, and D. Wierstra.
Stochastic backpropagation and approximate in-
ference in deep generative models. In Proceedings
of the 31st International Conference on Machine
Learning, pages 1278–1286, 2014.

[11] R. Shu, H. Bui, and M. Ghavamzadeh. Bottleneck
conditional density estimation. In Proceedings of
the International Conference on Machine Learn-
ing, 2017.

[12] R. Sutton and A. Barto. Introduction to Rein-
forcement Learning. MIT Press, 1998.

[13] Y. Tassa, T. Erez, and W. Smart. Receding hori-
zon differential dynamic programming. In Ad-
vances in Neural Information Processing Systems,
2008.

[14] E. Todorov and W. Li. A generalized iterative
LQG method for locally-optimal feedback control
of constrained non-linear stochastic systems. In
Proceedings of the American Control Conference,
2005.

[15] N. Wahlström, T. Schön, and M. Desienroth.
From pixels to torques: Policy learning with
deep dynamical models. In arXiv preprint
arXiv:1502.02251, 2015.

[16] H. Wang, K. Tanaka, and M. Griffin. An ap-
proach to fuzzy control of nonlinear systems; sta-
bility and design issues. IEEE Transactions on
Fuzzy Systems, 4(1), 1996.

[17] M. Watter, J. Springenberg, J. Boedecker, and
M. Riedmiller. Embed to control: A locally lin-
ear latent dynamics model for control from raw
images. In Advances in Neural Information Pro-
cessing Systems, pages 2746–2754, 2015.

Robust Locally-Linear Controllable Embedding

A Objective Function

Proof of Lemma 1. Suppose q? = q(zt, z̄t, ẑt+1|xt,xt+1). Consider the factorization of q? based on Eq. 15
and also the factorization of p(xt+1, zt, z̄t, ẑt+1|xt,ut) based on Eq. 11. The variational lower bound on the
conditional probability distribution p(xt+1|xt,ut) can be derived as following:

log p(xt+1|xt,ut) ≥ Eq?
[

log p(xt+1, zt, z̄t, ẑt+1|xt,ut)− log q?)
]

= Eqφ(ẑt+1|xt+1)

[
log p(xt+1|ẑt+1)

]
− Eq?

[
log qφ(ẑt+1|xt+1) + log qϕ(z̄t|ẑt+1,xt)

+ log δ(zt|z̄t, ẑt+1,ut)− log p(zt|xt)− log p(z̄t|xt)− log δ(ẑt+1|zt, z̄t,ut)
] (19)

We can simply ignore the δ(.|.) terms, because the cross entropy for these terms are zero. Therefore the lower
bound can be written as:

log p(xt+1|xt,ut) ≥ Eqφ(ẑt+1|xt+1)

[
log p(xt+1|ẑt+1)

]
− Eqφ(ẑt+1|xt+1)

qϕ(z̄t|xt,ẑt+1)

[
log

qϕ(z̄t|ẑt+1,xt)

p(z̄t|xt)
]

−Eqφ(ẑt+1|xt+1)

[
log qφ(ẑt+1|xt+1)

]
− Eqφ(ẑt+1|xt+1)

qϕ(z̄t|xt,ẑt+1)

[
log p(zt|xt)

]
= Eqφ(ẑt+1|xt+1)

[
log p(xt+1|ẑt+1)

]
− Eqφ(ẑt+1|xt+1)

[
KL
(
qϕ(z̄t|ẑt+1,xt) ‖ p(z̄t|xt)

)]
+H
(
qφ(ẑt+1|xt+1)

)
+ Eqφ(ẑt+1|xt+1)

qϕ(z̄t|xt,ẑt+1)

[
log p(zt|xt)

]
= LRCEt

(20)

The terms in LRCEt can be written in closed forms:

1. Eqφ(ẑt+1|xt+1)

[
log p(xt+1|ẑt+1)

]
Using the reparameterization trick [5], we should first sample from N (µφ(xt+1),Σφ(xt+1)). Considering a
Bernoulli distribution for the posterior of xt+1, the term inside the expectation is a binary cross entropy.

2. Eqφ(ẑt+1|xt+1)

[
KL
(
qϕ(z̄t|ẑt+1,xt) ‖ p(z̄t|xt)

)]
Again, we first need to sample from N (µφ(xt+1),Σφ(xt+1)). Note that p(z̄t|xt) = p(zt|xt) and p(zt|xt) =
q(zt|xt) = N (µφ(xt),Σφ(xt)). For the qϕ network, which is the transition network in our model, we have
qϕ(z̄t|ẑt+1,xt) = N (µϕ,Σϕ). The KL term can be written as

KL
(
qϕ(z̄t|ẑt+1,xt) ‖ p(z̄t|xt)

)
=

1

2

(
Tr(Σφ(xt)

−1
Σϕ)+(µφ(xt)−µϕ)>Σφ(xt)

−1
(µφ(xt)−µϕ)+log(

|Σφ(xt)|
|Σϕ|

)−nz
)

(21)

3. H
(
qφ(ẑt+1|xt+1)

)
The entropy term for the encoding network can be easily written as

H
(
qφ(ẑt+1|xt+1)

)
=

1

2
log
(
(2πe)nz |Σφ(xt+1)|

)
(22)

4. Eqφ(ẑt+1|xt+1)
qϕ(z̄t|xt,ẑt+1)

[
log p(zt|xt)

]
Here we first need to sample from N (µφ(xt+1),Σφ(xt+1)) and N (µϕ,Σϕ). Given that p(zt|xt) =
N (µφ(xt),Σφ(xt)), the log term inside the expectation means that we want the output of transition network
to be close to the mean of its distribution, up to some constant.

log p(zt|xt) = −1

2

(
log
(
(2πe)nz |Σφ(xt)|

)
+ (zt − µφ(xt))

>Σφ(xt)
−1

(zt − µφ(xt))
)

(23)

Robust Locally-Linear Controllable Embedding

B Implementation

Transition model structure: xt goes through one hidden layer with `1 units and ẑt+1 goes through one hidden
layer with `2 units. The outputs of the two hidden layers are concatenated and go through a network with two
hidden layers of size `3 and `4, respectively, to build µϕ and Σϕ. z̄t is sampled from this distribution and is
concatenated by the action. The result goes through a three-layer network with `5, `6, and `7 units to build Mt,
Bt, and ct.

In the following we will specify the values for `i’s for each of the four tasks used in our experiments.

B.1 Planar system

Input: 40×40 images (1600 dimensions). 2-dimensional actions. 5000 training samples of the form (xt,ut,xt+1)

Latent space: 2-dimensional

Encoder: 3 Layers: 300 units- 300 units- 4 units (2 for mean and 2 for the variance of the Gaussian distribution)

Decoder: 3 Layers: 300 units- 300 units- 1600 units

Transition: `1 = 100- `2 = 5- `3 = 100- `4 = 4- `5 = 20- `6 = 20- `7 = 10

Number of control actions: or the planning horizon T = 40

B.2 Inverted Pendulum

Input: Two 48 × 48 images (4608 dimensions). 1-dimensional actions. 5000 training samples of the form
(xt,ut,xt+1)

Latent space: 3-dimensional

Encoder: 3 Layers: 500 units- 500 units- 6 units (3 for mean and 3 for the variance of the Gaussian distribution)

Decoder: 3 Layers: 500 units- 500 units- 4608 units

Transition: `1 = 200- `2 = 10- `3 = 200- `4 = 6- `5 = 30- `6 = 30- `7 = 12

Number of control actions: or the planning horizon T = 100

B.3 Cart-pole Balancing

Input: Two 80 × 80 images (12800 dimensions). 1-dimensional actions. 15000 training samples of the form
(xt,ut,xt+1)

Latent space: 8-dimensional

Encoder: 6 Layers: convolutional layer: 32× 5× 5; stride (1,1) - convolutional layer: 32× 5× 5; stride (2,2) -
convolutional layer: 32× 5× 5; stride (2,2) -convolutional layer: 10× 5× 5; stride (2,2) - 200 units- 16 units (8
for mean and 8 for the variance of the Gaussian distribution)

Decoder: 6 Layers: 200 units- 1000 units- convolutional layer: 32 × 5 × 5; stride (1,1)- Upsampling (2,2)-
convolutional layer: 32 × 5 × 5; stride (1,1)- Upsampling (2,2)- convolutional layer: 32 × 5 × 5; stride (1,1)-
Upsampling (2,2)- convolutional layer: 2× 5× 5; stride (1,1)

Transition: `1 = 300- `2 = 10- `3 = 300- `4 = 16- `5 = 40- `6 = 40- `7 = 32

Number of control actions: or the planning horizon T = 100

B.4 Three-Link Robot Arm

Input: Two 128× 128 images (32768 dimensions). 3-dimensional actions. 30000 training samples of the form
(xt,ut,xt+1)

Latent space: 8-dimensional

Robust Locally-Linear Controllable Embedding

Encoder: 6 Layers: convolutional layer: 64× 5× 5; stride (1,1) - convolutional layer: 32× 5× 5; stride (2,2) -
convolutional layer: 32× 5× 5; stride (2,2) -convolutional layer: 10× 5× 5; stride (2,2) - 500 units- 16 units (8
for mean and 8 for the variance of the Gaussian distribution)

Decoder: 6 Layers: 500 units- 2560 units- convolutional layer: 32 × 5 × 5; stride (1,1)- Upsampling (2,2)-
convolutional layer: 32 × 5 × 5; stride (1,1)- Upsampling (2,2)- convolutional layer: 32 × 5 × 5; stride (1,1)-
Upsampling (2,2)- convolutional layer: 2× 5× 5; stride (1,1)

Transition: `1 = 400- `2 = 10- `3 = 400- `4 = 6- `5 = 40- `6 = 40- `7 = 48

Number of control actions: or the planning horizon T = 100

	Introduction
	Preliminaries
	Problem Formulation
	Stochastic Locally Optimal Control
	The Embed to Control (E2C) Model

	Model Description
	Graphical Model
	Deep Variational Learning
	Network Structure
	Planning

	Experiments
	Planar System
	Inverted Pendulum (Acrobat)
	Cart-pole Balancing
	Three-link Robot Arm

	Conclusions
	Objective Function
	Implementation
	Planar system
	Inverted Pendulum
	Cart-pole Balancing
	Three-Link Robot Arm

