Slide modified from Sergey loffe , with permission

Slides based on

Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift

By Sergey loffe and Christian Szegedy

Batch Normalization

Batch Normalization

Batch Normalization

Effect of changing input distribution

e Careful initialization T
e Small learning rates I
e Rectifiers !

ax+b

Internal covariate shift

e Layer input distributions change during training

E — FQ(Fl(ll, ("')1)j @2)

e Change In internal activation distribution requires domain
adaptation

Normalize each activation:

Mini-batch mean:

Mini-batch variance:

Normalize:

Scale and shift:

Replace batch statistics with population statistics

o

~ Ly — UB
:L’.

) T <

S
~I

r —
\Vo% + € \/Var[:c:

+ €

e NMNIST: 3 FC layers + softmax, 100 logistic units per hidden layer

e Distribution of inputs to a typical sigmoid, evolving over 100k steps:

Without BN: With BN:
’ || 75% o%ile :
0 w4 median 0 bt
T Wi 25" %ile I

Training steps b Training steps

0.98

0.96

0.94

0.92

0.9

0.88"

softmax/Eval Accuracy

2 With BN

Without BN

20000

40000 60000

Training steps

80000

e Inception: deep convolutional ReLU model
e Distributed SGD with momentum

e Batch Normalization applied at every convolutional layer

o Extra cost (~30%) per training step

Validation accuracy

08—

Y SPEE I SSpIp SR .

o7l B NP o
wor | e Baseline: 72.2% @ 31M steps

e WithBN: 72.2% @ 13.3M steps
ms—: :'

D = = = noopton

! ~ - BN-Bassline

! ' : 4 Steps to match Inception
04—t Y Tom oM 200 250 oM

Training steps

e Batch Normalization enables higher learning rate
o Increased 30x
e Removing dropout improves validation accuracy

o Batch Normalization as a regularizer?

Validation accuracy

08—

o e mm =TT
- : ;
-
-

e Baseline: 12.2% @ 31M steps
e Ourbest model: 72.2% @ 2.7M steps
74 .8% @ 6M steps

= = = [nception
- = BN-Baseline
— BN-X30

4 Steps to match Inception

Training steps

15M 20M 25M 30M

* Some slides courtesy of Aref Jafari

Step 1) Import Libraries

import numpy as np
import keras

from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten, Input
from keras.utils import np utils

#0ther types of layers
from keras.layers import LSTM
from keras.layers import ConvlD, Conv2D, Conv3D, MaxPoolinglD

from keras.layers.normalization import BatchNormalization

import matplotlib.pyplot as plt
fmatplotlib inline

np.random. seed {(2017)

Step 3) Define model architecture

Form 1)

In [11]: model = Sequential ()
model .add (Dense (312, activation='relu', use bias=True, input shape=(784,)))
model . add (Dense (128, activation='relu', use bia=s=True))
model . add (Dense (10, activation="softmax', use bias=True))

Form 2)

In [81]: from keras.models import Model

¥ inp = Input (shape=(784,))

hl = Dense (512, activation="relu', use bias=True) (X inp)
h2z = Dense (128, activation="relu', use bias=True) (hl)
h3 = Dense (10, activation='softmax', use bias=True) (hZ)

model = Model (inputs=X inp, outputs=h3)

Step 3) Define model architecture
(Alternatives for activation)

model . add (Dense (128, use bias=True))

skl

—Softplus

T 67 ke
(Z) forj=1,..,K

ek

Step 3) Define model architecture
(Other attributes of Dense layer)

keras.layers.core.Dense (units, activation=None, use bia==True,

Example:

from keras.constraints import maxnorm
model.add(Dense(64, kernel constraint=max norm(2.))})

kernel initializer="glorot uniform',)
bias iHitiElliEEIz' zeros’, B instances of
kerngl_regulariznar:Ncme, ' Fundéoas.feguldhizerarmégainidzer
bias regularizer=None, «/’7/: modide [2llowy setting constraints
activity regularizer=None, (eg. non-negativity) on network
kernel constraint=None, —
F:ri as_ constraint=None)

parameters during optimization

Available constraints
max_norm(max_value=2, axis=0): maximum-
norm constraint

non_neg(): non-negativity constraint
unit_norm(): unit-norm constraint, enforces
the matrix to have unit norm along the last
axis

Step 3) Define model architecture
(Dropout Layers)

keras.layers.core.Dropout (rate,
noise shape=None,
seed=None)

Example:

model . add (Dense (126, activation="relu', use bias=True))
model . add (Dropout (0.2))

Example:

mode 1
mode 1
mode 1
mode 1
mode 1

Step 3) Define model architecture
(Batch Normalization Layers)

= Sequential ()

.add (Dense (b4, input dim=14))
.add (BatchMNormalization())
.add (Activation("tanh'))

.add (Dropout (0.3))

100 Blatch Nllarmallzlatmn ,ﬂtccurac?r

095

-
@
€ og0f
[=]
=

085

— Without BN
— With BN

080

o 5000 10000 15000 20000 25000 30000 35000 40000
Training steps

Imput: Values of x over a mmm-batch: B = {x;, ,.}:
Parameters to be learned: ~, /3

Output: {y; — BN, a(x;)}

1 .
— — E T ! -batch

B m],:.' // mini-batch mean
1 . _

2 2 :
— " / -batch v

op ¢ — .E_l[:r; ILR) /{ mim-batch variance

T; + Li 1B /{ normalize
Vog +e

Yi < YI; + 8 = BN, g(x;) // scale and shift

Algorithm 1: Batch Normalizing Transform_ applied to
activation x over a mum-batch.

model .compile |

Custom loss function

Step 4) Compile model

(Loss funct

loss="'mean sguared error’

opCilmizer=" sgd ,

metrics=["'accuracy'])

import theano.tensor as T

def myLoss(y true,

v _pred):

cce = T.mean(T.sgr(y true-y pred))

return cce

model . compile (optimizer='adadelta', loss—myLoss)

ions)

Available loss functions:

mean_squared_error
mean_absolute_error
mean_absolute_percentage_error
mean_squared_logarithmic_error
squared_hinge

hinge

categorical_hinge

logcosh
categorical_crossentropy
sparse_categorical_crossentropy
binary_crossentropy
kullback_leibler_divergence
poisson

cosine_proximity

Step 4) Compile model
(Optimizers)

Available loss functions:

model .compile (loss='mean sguared error',

optimizer="=gd",

metrices=["accuracy'])

Adagrad

adagrad = keras.optimizers.Adagrad(lr=0.01, epsilon=1le-08,

model .compile (optimizer=adagrad, loss=myLoss)

decay=0.0)

SGD
RMSprop
Adagrad
Adadelta
Adam
Adamax
Nadam
TFOptimizer

sqad
momentum |
nag 5
adagrad Y
adadelta |5
n'nsprnp :

5

100 120

Deep Learning

Convolutional Neural Network (CNNSs)

Slides are partially based on Book, Deep Learning

by Bengio, Goodfellow, and Aaron Courville, 2015

Convolutional Networks

Convolutional networks are simply
neural networks that use
convolution in place of general
matrix multiplication in at least one
of their layers.

Next layer

A

Convolutional Layer

Pooling stage

*

Detector stage:
Nonlinearity
e.g., rectified linear

A

Convolution stage:
Affine transform

)

Input to layer

Convolution

This operation is called convolution.

The convolution operation is typically denoted with an asterisk:

s(t) = (z* w)(?)

Discrete convolution

If we now assume that x and w are defined only on integer t, we
can define the discrete convolution:

o0

slt] = (xxw)(t) = Z rlalw(t — a)

a——0o0

In practice

we often use convolutions over more than one axis at a time.

sli,jl = (I x K TTImn i —m,j —n]

The input is usually a multidimensional array of data.

The kernel is usually a multidimensional array of parameters that
should be learned.

we assume that these functions are zero everywhere but the finite
set of points for which we store the values.

we can implement the infinite summation as a summation over a
finite number of array elements.

convolution and cross-correlation

convolution is commutative

sli, j] = (I K)[i, j] = ZZI[Z—mJ—n]K[m n]

™

Cross-correlation,

sli, j] = (I » ZZIHmJJrn]K[]

Many machine learning libraries implement cross-correlation but call
It convolution.

https://www.youtube.com/watch?v=Ma0YONjMZLI

Fig 9.1

Discrete convolution can be viewed as multiplication by a matrix.

https://www.youtube.com/watch?v=Ma0YONjMZLI

Convolutions

4
OI0O|-H|O|O
Ol |H|O
lnlmlnl —
o i o
| OO |
—| ol o’|lo|o

Convolved
Feature

Image

Convolutions

(90!

4
OI0O|-H|O|O
| | | = | O
o i o
el i A H
| | O O | =
- | O|O0O|O|O

Convolved
Feature

Image

Convolutions

<

™

4
i (] L)
OO |0 |O
o — o
Ol || | O
lulmlnl —
|- [O|O|
- | OO0 |O

Convolved
Feature

Image

Convolutions

4

(a9

< |~
olo|«|lolo
olal=lalo
— 1%.1%1.&1

o i o
11x0x0x1
- | o o o ©

Convolved
Feature

Image

Convolutions

4

M | <
<t | N
OI0O|-H|O|O
o | | | | O
o i o
e e e A s B
- | | OF| OF] =t
- | O|O0O|O|O

Convolved
Feature

Image

Convolutions

4

oM | <t

<t | N

i (@] i
O | OO O

o I o
O|lA A | O
— 1m.1m1n1
| = |[O|O |
- | O|O|O|O

Convolved
Feature

Image

Convolutions

4

n | <
< ||~

olo|«|lolo
old|w|w|o
111&1%1.&

Q- -l &)
110x0x1x
- | o | o o &

Convolved
Feature

Image

Convolutions

4

st i
< ([N | N
OI0O|-H|O|O
o |- |||
Q- - Q)
el e e s A e B
- | = | o OF]
- | O|O0O|O|O

Convolved
Feature

Image

Convolutions

4

4

M|t ™M
< | N~
o|o|| oo
QI ¥ - 8
011X1X0X
nl_al__nl_.nnl_mwal_.v.N
|| O O |
—-|o|o|o|o

Convolved
Feature

Image

Sparse Interactions

In feed forward neural network every output unit interacts with every
Input unit.

Convolutional networks, typically have sparse connectivity (sparse
weights)

This is accomplished by making the kernel smaller than the input

Sparse Interactions

When we have m inputs and n outputs, then matrix multiplication
requires m x n parameters. and the algorithms used in practice have

O(m x n) runtime (per example).

limit the number of connections each output may have to k, then

requires only k x n parameters and O(k x n) runtime.

Parameter sharing

In a traditional neural net, each element of the weight matrix is
multiplied by one element of the input. i.e. It is used once when
computing the output of a layer.

In CNNs each member of the kernel is used at every position of the
Input

Instead of learning a separate set of parameters for every location,
we learn only one set.

Equivariance

A function f (x) is equivariant to a function g if f (g(x)) = g(f (x)).

X J > X
f f
Y Y
Y >Y

Equivariance

A convolutional layer have equivariance to translation.
For example

g9(z)[i] = x[i — 1]

If we apply this transformation to x, then apply convolution, the result
will be the same as if we applied convolution to x, then applied the
transformation to the output.

Equivariance

For images, convolution creates a 2-D map of where certain features
appear in the input.

Note that convolution is not equivariant to some other
transformations, such as changes in the scale or rotation of an
Image.

Convolutional Networks

The first stage (Convolution):

The layer performs several convolutions
In parallel to produce a set of
preactivations.

The second stage (Detector):

Each preactivation IS run
through a nonlinear activation

function (e.qg. rectified linear).

The third stage (Pooling)

Next layer

A

Convolutional Layer

Pooling stage

+

Detector stage:
Nonlinearity
e.g., rectified linear

A

Convolution stage:
Affine transform

3

Input to layer

Popular Pooling functions

The maximum of a rectangular neighborhood (Max pooling
operation)

POOLING STAGE

DETECTOR STAGE

The average of a rectangular neighborhood.
The L2 norm of a rectangular neighborhood.

A weighted average based on the distance from the central pixel.

Pooling with downsampling

Max-pooling with a pool width of 3 and a stride between pools of 2.
This reduces the representation size by a factor of 2,which reduces
the computational and statistical burden on the next layer.

