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ABSTRACT  

Neoadjuvant therapy (NAT) is an option for locally advanced breast cancer patients to downsize tumour allowing for 

less extensive surgical operation, better cosmetic outcomes, and lesser post-operative complications. The quality of NAT 

is assessed by pathologists after examining the tissue sections to reveal the efficacy of treatment, and also associate the 

outcome with the patient's prognosis. There are many factors involved with assessing the best treatment efficacy, 

including the amount of residual cancer within tumour bed. Currently, the process of assessing residual tumour burden is 

qualitative, which may be time-consuming and impaired by inter-observer variability. In this study, an automated 

method was developed to localize, and subsequently classify nuclei figures into three categories of lymphocyte (L), 

benign epithelial (BE), and malignant epithelial (ME) figures from post-NAT tissue slides of breast cancer. A fully 

convolutional network (FCN) was developed to perform both tasks in an efficient way. In order to find the cell nuclei in 

image patches (localization), the FCN was applied over the entire patch, generating four heatmaps corresponding to the 

probability of a pixel being the centre of an L, BE, ME, or non-cell nuclei. Non-maximum suppression algorithm was 

subsequently applied to the generated heatmaps to estimate the nuclei locations. Finally, the highest probability 

corresponding to each predicted cell nucleus in the heatmaps was used for the classification of the nucleus to one of the 

three classes (L, BE, or ME). The final classification accuracy on detected nuclei was 94.6%, surpassing previous 

machine learning methods based on handcrafted features on this dataset.  
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INTRODUCTION  

Neoadjuvant therapy (NAT) is a treatment of choice for selected high-risk and/or locally advanced breast cancer 

(LABC) patients
1
. The goal of NAT is to downsize the tumour, allowing for less extensive surgical operation resulting in 

better cosmetic outcomes and reduced post-operative complications. Also, after NAT, the efficacy of the therapy can be 

assessed in vivo with the aim of associating the treatment response to the new therapeutic agents in drug trials and 

modifying the treatment for patients who show little to no response to the conventional therapies.  

It is desirable to achieve pathologic complete response (pCR) after the course of NAT which indicates the absence of 

residual cancer in the breast tissue and associated axillary lymph nodes. A pCR is associated with better patient 

prognosis
2
. Currently, residual tumour burden assessment is done manually by pathologists on hematoxylin and eosin 

(H&E) stained tissue sections through a qualitative and time-consuming process. Although there are different scoring 

factors reported for assessing tumour response to NAT, the cellularity fraction of cancer within tumour bed provides a 

better prognostic indicator of the efficacy of the treatment compared to other factors
3
. 

The objective of this paper was to present an automated method based on a fully convolutional network (FCN)
4
 to locate 

and distinguish cancer nuclei from other nuclei figures within the tissue micro-environment. Major nuclei figures within 

tissue microenvironment are stromal, lymphocytic (L), benign epithelial (BE), and malignant epithelial (ME) nuclei. 

Stromal nuclei are usually thinly elongated figures that could be identified by their much longer major axis. Therefore, 

the focus of this study was to distinguish ME figures from BE and L figures. 



 

 
 

 

METHODS 

Patient data  

The dataset was obtained from H&E stained whole slide images (WSIs) of breast tissue samples from 46 patients post-

neoadjuvant treatment, and was prepared and scanned at Sunnybrook Health Sciences Centre. There were 92 WSIs in the 

dataset that were scanned at 20× magnification (0.5 µm/pixel). Nuclei figures from three categories of L, BE, and ME 

were marked by an expert pathologist by clicking on the centroid of the individual nuclei within n = 148 rectangular 

regions of arbitrary size drawn by the pathologist. Selected regions were chosen in such a way that contained a mixture 

of nuclei categories. More than 27000 nuclei (m1 = 3034 lymphocyte, m2 = 9964 benign epithelial, and m3 = 14314 

malignant epithelial figures) were marked by the pathologist from all rectangular regions and used to assess the 

performance of the automated method presented in this paper.  

Outline of the methodology 

The pipeline for the proposed scheme was consisting of three main steps, including: 1) training an FCN to recognize 

three classes of cell nuclei including BE, ME, and L nuclei, as well as no cell; 2) localization of cell nuclei by applying 

the trained FCN in previous step to generate four heatmaps of the probability of each nuclei class, including no nuclei 

class, followed by a non-maximum suppression algorithm to estimate nuclei locations ; and 3) classification of the cell 

nuclei at predicted cell nuclei locations. 

Training an FCN model to recognize cell nuclei subtypes  

In order to perform cell nuclei localization, a network needed to be trained first to recognize different cell classes in 

addition to no-cell class. To this end, a training dataset was created consisting of tiles that each included nuclei of one 

class, or no nucleus (see Fig. 1 for examples of tiles on four classes). The tiles were created by taking a box of fixed size 

around each nucleus, centred at the pathologist’s annotations. Since there could be more than one nucleus in each tile, 

the FCN was trained based on the nucleus at the centre of a tile. Tiles of non-cell tissues were created by randomly 

selecting points that were at least 5 μm (10 pixels) from any other cell. Including no-cell class (tiles) in the training set 

would enable the trained FCN to perform localization as well. 

Cell nuclei localization  

The trained FCN in previous step was applied to the input images to generate the probability of a nucleus being centred 

at that location, in addition to the class probabilities of that nucleus. By applying the trained FCN across an entire image, 

four heatmaps were generated for each image corresponding to each of the cell probabilities, including the probability of 

no cell. An example for the heatmaps generated for an image is shown in Fig. 2. By looking at            * , the 

probability of there being a cell in any location could be explicitly obtained. This produced heatmaps that indicated the 

probability of a given pixel being the center of a nucleus. In order to convert the four heatmaps generated in the previous 

step into a set of cell nuclei locations, a non-maximum suppression algorithm was employed. This relied on the fact that 

the points on the cell probability heatmaps corresponding to the highest probability were most likely to be the centre of 

the cells. In this procedure, the pixels with the highest cell probability were iteratively found, and then all points within a 

radius r of these pixels were set to 0. 

                                                 
*
 This was the main reason that the non-cell data was added as a class for the training the FCN. 
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Fig. 1- (a) Subsection of H&E stained slide, taken at 20× magnification, showing the malignant nuclei labeled in red (b) examples of 

extracted nuclei (tiles) from the image patch. Each tile is 32×32 pixels (16 μm×16 μm). 

 

Classification of cell nuclei at predicted locations 

After estimation of cell nuclei locations in previous step, the class labels (L, BE, or ME) for the predicted locations was 

assigned based on the corresponding highest probability from the heatmaps for those points. 

Remarks on the implementations  

The data was divided to three sets: 60% for training, 15% for validation (tuning the hyper-parameters and model 

selection), and 25% for testing the network. The implementation of the network was accomplished using the TensorFlow 

library
5
. A fully convolutional network with two inception modules

6
 was used. That is, for the final layer, instead of fully 

connected layers, a convolutional kernel that spanned the full width of the feature map was employed with no zero 

padding. The output from the network consisted of four convolutional feature maps, corresponding to the class 

probabilities. The main reason for using a fully convolutional network was to enable varying sized inputs, resulting in 

faster predictions at test time. When the network was tested on a larger image than what was used during training, it 

would output multiple probabilities corresponding to the spatial locations of the image. Other design criteria included the 

augmentation of the data for training the network, the size of input tiles for training and testing, normalization of the 

inputs, regularization of the network using dropout, the number of layers for the convolutional network, and the size of 

radius r in the non-maximum suppression algorithm, which were all selected by tuning the network on a validation set. 

The test set remained unseen during these hyper-parameter tuning and model selection. 

RESULTS 

Fig. 2 depicts the heatmaps generated for a sample input image to the network. Table 1 presents the classification 

accuracy, sensitivity, and specificity achieved by the proposed method on the test set. The results were compared with a 

machine learning method based on handcrafted features. The rival method consisted of segmentation of nuclei figures 

using decorrelation stretching technique
7
, feature extraction based on extracted textural, morphological, and spatial 

features to describe the nuclei figures properties, and a support vector machine (SVM) with radial basis function (RBF) 

kernel as the classifier. The rival method was labeled as SVM in Table 1. As can be observed from these results, the 

proposed method based on a fully convolutional network boosted the performance on the classification of the cell nuclei 

at predicted locations compared to the handcrafted features.  



 

 
 

 

 

Figure 2- Representative heatmaps produced by the network for a typical input image, and the predictions on the raw image. L, BE, 

and ME nuclei are shown as blue, green and red dots, respectively (the images should be digitally enlarged for the best view). 

 

Table 1-The performance of the proposed network in comparison with handcrafted features on the test set  

Class 
Accuracy (%) Sensitivity (%) Specificity (%) 

FCN
 

SVM
 

FCN SVM FCN SVM 

L 99 92 93 80 100 94 

BE 95 75 99 50 94 92 

ME 95 77 93 91 99 63 
Abbreviations:   L: Lymphocyte 

           BE: Benign Epithelial 

          ME: Malignant Epithelial 

          FCN: Fully Connected Network (proposed approach) 

          SVM: The rival method based on handcrafted features and SVM classifier  

CONCLUSIONS 

A fully convolutional network equipped with inception modules was designed to localize and classify cell nuclei in post-

neoadjuvant therapy tissue slides of breast cancer. The proposed network accurately localized the cell nuclei using a pre-

trained network, and based on the generation of heatmaps of probability of each nuclei class followed by a non-

maximum suppression algorithm. The predicted cell nuclei locations were subsequently classified as lymphocyte, benign 

epithelial or malignant epithelial with high accuracy, sensitivity, and specificity. The results validated the viability of the 

proposed approach in this application for the first time, particularly in comparison with handcrafted features. 
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