Sum-Product Networks

STAT946 Deep Learning Guest Lecture by Pascal Poupart University of Waterloo October 15, 2015

Outline

- Introduction
 - What is a Sum-Product Network?
 - Inference
 - Applications
- In more depth
 - Relationship to Bayesian networks
 - Parameter estimation
 - Online and distributed estimation
 - Dynamic SPNs for sequence data

What is a Sum-Product Network?

- Poon and Domingos, UAI 2011
- Acyclic directed graph of sums and products
- Leaves can be indicator variables or univariate distributions

Two Views

Deep architecture with clear semantics

Tractable probabilistic graphical model

Deep Architecture

- Specific type of deep neural network
 - Activation function: product
- Advantage:
 - Clear semantics and well understood theory

Probabilistic Graphical Models

Bayesian Network

Graphical view of direct dependencies

Inference **#P: intractable** Markov Network

Graphical view of correlations

Inference **#P: intractable** Sum-Product Network

Graphical view of computation

Inference P: tractable

Probabilistic Inference

- SPN represents a joint distribution over a set of random variables
- Example: $Pr(X_1 = true, X_2 = false)$

Marginal Inference

• Example: $Pr(X_2 = false)$

Conditional Inference

• Example:

$$Pr(X_{1} = true | X_{2} = false)$$

$$= \frac{Pr(X_{1} = true, X_{2} = false)}{Pr(X_{2} = false)}$$

$$=$$

- Hence any inference query can be answered in two bottom-up passes of the network
 - Linear complexity!

Semantics

- A valid SPN encodes a hierarchical mixture distribution
 - Sum nodes: hidden variables (mixture)
 - Product nodes:
 factorization
 (independence)

Definitions

- The scope of a node is the set of variables that appear in the sub-SPN rooted at the node
- An SPN is decomposable when each product node has children with disjoint scopes
- An SPN is complete when each sum node has children with identical scopes
- A decomposable and complete SPN is a valid SPN

Relationship with Bayes Nets

 Any SPN can be converted into a bipartite Bayesian network (Zhao, Melibari, Poupart, ICML 2015)

Parameter Estimation

- Parameter Learning: estimate the weights
 - Expectation-Maximization, Gradient descent

Structure Estimation

- Alternate between
 - Data Clustering: sum nodes
 - Variable partitioning: product nodes

Applications

- Image completion (Poon, Domingos; 2011)
- Activity recognition (Amer, Todorovic; 2012)
- Language modeling (Cheng et al.; 2014)
- Speech modeling (Perhaz et al.; 2014)

Language Model

- An SPN-based n-gram model
- Fixed structure
- Discriminative weight estimation by gradient descent

Results

• From Cheng et al. 2014

Table 1: Perplexity scores (PPL) of different language models.

Model	Individual PPL	+KN5
TrainingSetFrequency	528.4	
KN5 [3]	141.2	
Log-bilinear model [4]	144.5	115.2
Feedforward neural network [5]	140.2	116.7
Syntactical neural network [8]	131.3	110.0
RNN [6]	124.7	105.7
LDA-augmented RNN [9]	113.7	98.3
SPN-3	104.2	82.0
SPN-4	107.6	82.4
SPN-4'	100.0	80.6

Summary

- Sum-Product Networks
 - Deep architecture with clear semantics
 - Tractable probabilistic graphical model
- Going into more depth
 - SPN → BN [H. Zhao, M. Melibari, P. Poupart 2015]
 - Signomial framework for parameter learning [H. Zhao]
 - Online parameter learning: [A. Rashwan, H. Zhao]
 - SPNs for sequence data: [M. Melibari, P. Doshi]

SPN \rightarrow Bayes Net

- 1. Normalize SPN
- 2. Create structure
- 3. Construct conditional distribution

Normal SPN

An SPN is said to be normal when

- 1. It is complete and decomposable
- All weights are non-negative and the weights of the edges emanating from each sum node sum to 1.
- 3. Every terminal node in the SPN is a univariate distribution and the size of the scope of each sum node is at least 2.

Construct Bipartite Bayes Net

- 1. Create observable node for each observable variable
- 2. Create hidden node for each sum node
- For each variable in the scope of a sum node, add a directed edge from the hidden node associated with the sum node to the observable node associated with the variable

Construct Conditional Distributions

- 1. Hidden node *H*: $Pr(H = h_i) = w_i$
- Observable node X: construct conditional distribution in the form of an algebraic decision diagram
 - a. Extract sub-SPN of all nodes that contain X in their scope
 - b. Remove the product nodes
 - c. Replace each sum node by its corresponding hidden variable

Some Observations

- Deep SPNs can be converted into shallow BNs.
- The depth of an SPN is proportional to the height of the highest algebraic decision diagram in the corresponding BN.

Conversion Facts

Thm 1: Any complete and decomposable SPN *S* over variables $X_1, ..., X_n$ can be converted into a BN *B* with ADD representation in time O(N|S|). Furthermore *S* and *B* represent the same distribution and |B| = O(N|S|).

Thm 2: Given any BN *B* with ADD representation generated from a complete and decomposable SPN *S* over variables $X_1, ..., X_n$, the original SPN *S* can be recovered by applying the variable elimination algorithm *B* in O(N|S|).

Relationships

Probabilistic distributions

- Compact: space is polynomial in # of variables
- Tractable: inference time is polynomial in # of variables

Parameter Estimation

- Maximum Likelihood Estimation
- Online Bayesian Moment Matching

Maximum Log-Likelihood

• Objective: $w^* = argmax_{w \in R_+} \log \Pr(data|w)$ = $argmax_{w \in R_+} \sum_x \log \Pr(x|w)$

Where
$$Pr(x|w) = \frac{f(e(x)|w)}{f(1|w)}$$

and $f(e(x)|w) = \sum_{tree \in e(x)} \prod_{ij \in tree} w_{ij}$

Non-Convex Optimization

- Approximations:
 - Projected gradient descent (PGD)
 - Exponential gradient (EG)
 - Sequential monomial approximation (SMA)
 - Convex concave procedure (CCCP = EM)

Summary

Algo	Var	Update	Approximation
	W	additive	linear
PGD	$w_{ij}^{k+1} \leftarrow projection\left(w_{ij}^k + \right.$	$\gamma \left[\frac{\partial \log f(e(x) w)}{\partial w_{ij}} - \right.$	$\left(\frac{\partial \log f(1 w)}{\partial w_{ij}}\right)$
	W	multiplicative	linear
EG	$w_{ij}^{k+1} \leftarrow w_{ij}^k \exp\left(\gamma \left[\frac{\partial}{\partial x_{ij}}\right]\right)$	$\frac{\log f(e(x) w)}{\partial w_{ij}} - \frac{\partial \log f(1 w)}{\partial w_{ij}} \bigg] \bigg)$	
	log w	multiplicative	monomial
SMA	$w_{ij}^{k+1} \leftarrow w_{ij}^k \exp\left(\gamma \left[\frac{\partial f}{\partial x_{ij}}\right]\right)$	$\frac{\log f(e(x) w)}{\partial \log w_{ij}} - \frac{\partial \log w_{ij}}{\partial x_{ij}}$	$\left[\frac{gf(1 w)}{\log w_{ij}} \right] $
CCCP	log w	multiplicative	Concave lower bound
(EM)	$w_{ij}^{k+1} \propto w_{ij}^{k}$	$\frac{f_{v_j}(x w^k)}{f(x w^k)} \frac{\partial f(x w^k)}{\partial f_{v_i}(x w^k)}$)

Results

Scalability

- Online: process data sequentially once only
- Distributed: process subsets of data on different computers
- Mini-batches: online PGD, online EG, online SMA, online EM
- Problems: loss of information due to minibatches, local optima, overfitting
- Can we do better?

Thomas Bayes

Bayesian Learning

• Bayes' theorem (1764)

 $\Pr(\theta|X_{1:n}) \propto \Pr(\theta) \Pr(X_1|\theta) \Pr(X_2|\theta) \dots \Pr(X_n|\theta)$

- Broderick et al. (2013): facilitates
 - Online learning (streaming data)
 - $\Pr(\theta|X_{1:n}) \propto \Pr(\theta)\Pr(X_1|\theta)\Pr(X_2|\theta) \dots \Pr(X_n|\theta)$
 - Distributed computation

 $\underbrace{\Pr(\theta) \Pr(X_1|\theta) \Pr(X_2|\theta) \Pr(X_3|\theta) \Pr(X_4|\theta) \Pr(X_5|\theta)}_{\text{core } \#1 \text{ core } \#2 \text{ core } \#3}$

Exact Bayesian Learning

- Assume a normal SPN where the weights w_i . of each sum node *i* form a discrete distribution.
- Prior: $Pr(w) = \prod_{i} Dir(w_{i} | \alpha_{i})$ where $Dir(w_{i} | \alpha_{i}) \propto \prod_{j} (w_{ij})^{\alpha_{ij}}$
- Likelihood: $Pr(x|w) = f(e(x)|w) = \sum_{tree \in e(x)} \prod_{ij \in tree} w_{ij}$
- Posterior:

Karl Pearson

Method of Moments (1894)

- Estimate model parameters by matching a subset of moments (i.e., mean and variance)
- Performance guarantees
 - Break through: First provably consistent estimation algorithm for several mixture models
 - HMMs: Hsu, Kakade, Zhang (2008)
 - MoGs: Moitra, Valiant (2010), Belkin, Sinha (2010)
 - LDA: Anandkumar, Foster, Hsu, Kakade, Liu (2012)

Bayesian Moment Matching for Sum Product Networks

Bayesian Learning + Method of Moments

Online, distributed and tractable algorithm for SPNs

Approximate mixture of products of Dirichlets by a single product of Dirichlets that matches first and second order moments

Moments

- Moment definition: $M_P(w_{ij}^k) = \int_w w_{ij}^k P(w) dw$
- Dirichlet: $Dir(w_{i} | \alpha_{i}) \propto \prod_{ij} (w_{ij})^{\alpha_{ij}}$
 - Moments: $M_{Dir}(w_{ij}) = \frac{\alpha_{ij}}{\sum_j \alpha_{ij}}$

$$M_{Dir}(w_{ij}^2) = \left(\frac{\alpha_{ij}}{\sum_j \alpha_{ij}}\right) \left(\frac{\alpha_{ij+1}}{\sum_j \alpha_{ij+1}}\right)$$

– Hyperparameters:

$$\alpha_{ij} = M_{Dir}(w_{ij}) \frac{M_{Dir}(w_{ij_1}) - M_{Dir}(w_{ij}^2)}{M_{Dir}(w_{ij_1}^2) - (M_{Dir}(w_{ij}))^2}$$

Moment Matching

Recursive moment computation

• Compute $M_P(w_{ij}^k)$ of posterior P(w|x) after observing x

 $M_{P}(w_{ij}^{k}) \leftarrow computeMoment(node)$ If isLeaf(node) then Return leaf value Else if isProduct(node) then Return $\prod_{child} computeMoment(child)$ Else if isSum(node) and node == i then Return $\sum_{child} M_{Dir}(w_{ij}^{k}w_{i,child})$ computeMoment(child) Else

Return $\sum_{child} w_{node,child}$ computeMoment(child)

Results (benchmarks)

Dataset	Var#	LearnSPN	oBMM	SGD	oEM	oEG
NLTCS	16	-6.11	-6.07	↓-8.76	↓-6.31	↓-6.85
MSNBC	17	-6.11	-6.03	↓-6.81	↓-6.64	↓-6.74
KDD	64	-2.18	-2.14	↓-44.53	↓-2.20	↓-2.34
PLANTS	69	-12.98	-15.14	\downarrow -21.50	↓-17.68	↓-33.47
AUDIO	100	-40.50	-40.7	\downarrow -49.35	\downarrow -42.55	\downarrow -46.31
JESTER	100	-53.48	-53.86	\downarrow -63.89	\downarrow -54.26	\downarrow -59.48
NETFLIX	100	-57.33	-57.99	\downarrow -64.27	\downarrow -59.35	↓-64.48
ACCIDENTS	111	-30.04	-42.66	\downarrow -53.69	-43.54	\downarrow -45.59
RETAIL	135	-11.04	-11.42	↓-97.11	↓-11.42	↓-14.94
PUMSB-STAR	163	-24.78	-45.27	↓-128.48	\downarrow -46.54	↓-51.84
DNA	180	-82.52	-99.61	↓-100.70	↓-100.10	\downarrow -105.25
KOSAREK	190	-10.99	-11.22	↓-34.64	↓-11.87	↓-17.71
MSWEB	294	-10.25	-11.33	\downarrow -59.63	\downarrow -11.36	↓-20.69
BOOK	500	-35.89	-35.55	↓-249.28	\downarrow -36.13	\downarrow -42.95
MOVIE	500	-52.49	-59.50	\downarrow -227.05	\downarrow -64.76	↓-84.82
WEBKB	839	-158.20	-165.57	↓-338.01	↓-169.64	\downarrow -179.34
REUTERS	889	-85.07	-108.01	\downarrow -407.96	-108.10	\downarrow -108.42
NEWSGROUP	910	-155.93	-158.01	↓-312.12	↓-160.41	\downarrow -167.89
BBC	1058	-250.69	-275.43	\downarrow -462.96	-274.82	\downarrow -276.97
AD	1556	-19.73	-63.81	\downarrow -638.43	↓-63.83	↓-64.11

Results (Large Datasets)

Log likelihood

Dataset	Var#	LearnSPN	oBMM	oDMM	SGD	oEM	oEG
KOS	6906	-444.55	-422.19	-437.30	-3581.72	-452.02	-452.02
NIPS	12419	-	-1691.87	-1709.04	-6254.22	-1495.63	-3142.09
ENRON	28102	-	-518.842	-522.45	-	-	-
NYTIMES	102660	-	-1503.65	-1559.39	-	-	-

• Time (minutes)

Dataset	Var#	LearnSPN	oBMM	oDMM	SGD	oEM	oEG
KOS	6906	1439.11	89.40	8.66	162.98	59.49	155.34
NIPS	12419	-	139.50	9.43	180.25	64.62	178.35
ENRON	28102	-	2018.05	580.63	-	-	-
NYTIMES	102660	-	12091.7	1643.60	-	-	-

Sequence Data

- How can we train an SPN with data sequences of varying length?
- Examples
 - Sentence modeling: sequence of words
 - Activity recognition: sequence of measurements
 - Weather prediction: time-series data
- Challenge: need structure that adapts to the length of the sequence while keeping # of parameters fixed

Dynamic SPN

Idea: stack template networks with identical structure and parameters

Definitions

- Dynamic Sum-Product Network: bottom network, a stack of template networks and a top network
- **Bottom network:** directed acyclic graph with 2*n* indicator leaves and *k* roots that interface with the network above.
- **Top network:** rooted directed acyclic graph with *k* leaves that interface with the network below
- **Template network:** directed acyclic graph of *k* roots that interface with the network above, 2*n* indicator leaves and *k* additional leaves that interface with the network below.

Invariance

Let f be a bijective mapping that associates inputs to corresponding outputs in a template network

Invariance: a template network over $X_1, ..., X_n$ is invariant when the scope of each interface node excludes $X_1, ..., X_n$ and for all pairs of interface nodes *i* and *j*, the following properties hold:

- scope(i) = scope(j) or $scope(i) \cap scope(j) = \emptyset$
- $scope(i) = scope(j) \Leftrightarrow scope(f(i)) = scope(f(j))$
- $scope(i) \cap scope(j) = \emptyset \Leftrightarrow scope(f(i)) \cap scope(f(j)) = \emptyset$
- All interior and output sum nodes are complete
- All interior and output product nodes are decomposable

Completeness and Decomposability

Theorem 1: If

- a. the bottom network is complete and decomposable,
- b. the scopes of all pairs of output interface nodes of the bottom network are either identical or disjoint,
- c. the scopes of the output interface nodes of the bottom network can be used to assign scopes to the input interface nodes of the template and top networks in such a way that the template network is invariant and the top network is complete and decomposable,

then the **DSPN is complete and decomposable**

Structure Learning

Anytime search-and-score framework

Input: data, variables $X_1, ..., X_n$ Output: *templateNet*

 $templateNet \leftarrow initialStructure(data, X_1, ..., X_n)$ Repeat $templateNet \leftarrow neighbour(templateNet, data)$ Until stopping criterion is met

Initial Structure

• Factorized model of univariate distributions

Neighbour generation

 Replace sub-SPN rooted at a product node by a product of Naïve Bayes modes

(b)

Results

Table 1: Statistics of the datasets used in our experiments.

Dataset	# Instances	Sequence length	# of Obs. variables
HMM-Samples	100	100	1
Water	100	100	4
BAT	100	100	10
Pen-Based Digits	10992	16	7
EEG Eye State	14980	15	1
Spoken Arabic Digit	8800	40	13
Hill-Valley	606	100	1
Japanese Vowels	640	16	12

Table 2: Mean log-likelihood and standard error for the synthetic datasets.

Dataset	True Model LL	LearnSPN LL	DSPN LL
HMM-Samples	-62.2015 ± 0.8449	-65.3996 ± 0.7081	-62.5982 ± 0.7362
Water	-249.5736 ± 1.0241	-270.3871 ± 0.9422	-252.3607 ± 0.8958
BAT	-628.1721 ± 1.9802	-684.3833 ± 1.3088	-641.5974 ± 1.1176

Results

<u>~</u>		
HMM Training	Reveal Training	DSPN Training
-74.3763 ± 0.1493	-74.1533 ± 0.2643	-63.2376 ± 0.6727
-8.1381 ± 0.1265	-7.8332 ± 0.0134	-7.5216 ± 0.1774
-323.4032 ± 0.4752	-256.6012 ± 0.2028	-252.2177 ± 0.3404
-69.7490 ± 0.2071	-67.7216 ± 0.0135	-63.2722 ± 0.1614
$\textbf{-94.8432} \pm 0.3931$	-69.7882 ± 0.1023	$\textbf{-66.3305} \pm 0.2942$
	$\begin{array}{r} & \underbrace{\text{HMM Training}} \\ -74.3763 \pm 0.1493 \\ -8.1381 \pm 0.1265 \\ -323.4032 \pm 0.4752 \\ -69.7490 \pm 0.2071 \\ -94.8432 \pm 0.3931 \end{array}$	HMM TrainingReveal Training-74.3763 \pm 0.1493-74.1533 \pm 0.2643-8.1381 \pm 0.1265-7.8332 \pm 0.0134-323.4032 \pm 0.4752-256.6012 \pm 0.2028-69.7490 \pm 0.2071-67.7216 \pm 0.0135-94.8432 \pm 0.3931-69.7882 \pm 0.1023

Dataset	HMM Testing	Reveal Testing	DSPN Testing
Pen-Based Digits	-74.1607 ± 0.1208	-74.3826 ± 0.2425	-63.4597 ± 0.2794
EEG Eye State	-8.4959 ± 0.2579	-7.8433 ± 0.0252	-7.2508 ± 0.1031
Spoken Arabic Digit	-327.4504 ± 0.4342	-260.2027 ± 0.9617	-257.8612 ± 0.5031
Hill-Valley	-69.7613 ± 0.1755	-67.7253 ± 0.0741	-63.3698 ± 0.3068
Japanese Vowels	-94.2505 ± 0.2981	-71.3435 ± 1.2324	-68.7529 ± 0.2688

Conclusion

- Sum-Product Networks
 - Deep architecture with clear semantics
 - Tractable probabilistic graphical model
- Future work

– Decision SPNs: M. Melibari and P. Doshi

• Open problem:

Thorough comparison of SPNs to other deep networks