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Fast and Scalable Feature Selection for Gene
Expression Data Using Hilbert-Schmidt
Independence Criterion

Mehrdad J. Gangeh, Hadi Zarkoob, and Ali Ghodsi

Abstract—Goal: In computational biology, selecting a small subset of informative genes from microarray data continues to be a
challenge due to the presence of thousands of genes. This paper aims at quantifying the dependence between gene expression data
and the response variables and to identifying a subset of the most informative genes using a fast and scalable multivariate algorithm.
Methods: A novel algorithm for feature selection from gene expression data was developed. The algorithm was based on the
Hilbert-Schmidt independence criterion (HSIC), and was partly motivated by singular value decomposition (SVD). Results: The
algorithm is computationally fast and scalable to large datasets. Moreover, it can be applied to problems with any type of response
variables including, biclass, multiclass, and continuous response variables. The performance of the proposed algorithm in terms of
accuracy, stability of the selected genes, speed, and scalability was evaluated using both synthetic and real-world datasets. The
simulation results demonstrated that the proposed algorithm effectively and efficiently extracted stable genes with high predictive
capability, in particular for datasets with multiclass response variables. Conclusion/Significance: The proposed method does not
require the whole microarray dataset to be stored in memory, and thus can easily be scaled to large datasets. This capability is an
important attribute in big data analytics, where data can be large and massively distributed.

Index Terms—Big data, feature selection, gene expression, Hilbert-Schmidt independence criterion, kernel methods, scalability

1 INTRODUCTION

N the era of big data, developing algorithms that can han-

dle large and massively distributed data is of crucial
importance. A successful algorithm is therefore not only
evaluated by its accurate performance to solve the problem
at hand, but also on its scalability to large datasets.

In the context of computational biology and bioinformat-
ics, DNA microarrays are capable of measuring the expres-
sion levels of thousands of genes, and even of a whole
genome in a single experiment. Based on this capability,
they have been widely used to extend biological studies to
the genomic level. One main property of microarray data-
sets is that they usually include the expression levels of a
large number of genes (features) from a limited number of
samples. Most of these features, however, are irrelevant
when a specific biological problem is being studied. There-
fore, the task of feature selection plays an important role in
extracting a small subset of genes, such that the output of
the experiment mainly depends on this subset [1]. This
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process enhances both the efficiency and accuracy of the
subsequent analysis of the data. In addition, the task of
identifying the subset of relevant genes can shed light on
the underlying biological process. Considering the con-
straints in big data analytics, the impetus of research in this
area is to design a feature selection algorithm that can easily
scale to datasets containing thousands of genes.

Several methods have been proposed for feature selec-
tion from DNA microarray data. They can generally be
classified into three groups: filter, wrapper, and embedded
methods [2], [3]. Filter methods use intrinsic properties of
the genes to rank them. They can be divided into univariate
and multivariate filters. Univariate filters visit genes one-
by-one and assign them a degree of relevance. Multivariate
filters, on the other hand, aim to select a subset of genes
that, together, can describe the response variable. Filter
methods based on signal-to-noise ratio, fold change (FC),
and f-statistics are examples of univariate filters [4], [5].
The minimum-redundancy-maximum-relevance (mRMR)
framework developed by Peng et al. [6] offers an example
of multivariate filters. In this framework, the goal is to mini-
mize the number of redundant genes while selecting a sub-
set of the most relevant ones. A more recent multivariate
filter approach specifically designed to handle high-dimen-
sional data is Fisher-Markov selector (FMS) [7], which can
handle datasets with multiclass response variables. The
approach is based on the discriminating notion of linear dis-
criminant analysis (LDA) and Markov random field (MRF)
optimization techniques. Unlike filter methods, wrapper
methods are classifier-dependent because they build and
employ a classifier to evaluate the quality of a subset of
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genes (see, e.g., [8], [9]). The embedded techniques rely on the
properties of an underlying classifier to assign degrees of
relevance to genes. Support vector machine (SVM) recursive
feature elimination (SVM-RFE) [10] is a typical embedded
method that is widely used for gene selection. Other exam-
ples of embedded methods have been reported, which are
based on random forests and logistic regression [11], [12].

A challenge in designing gene selection algorithms is to
quantify the dependence between the expression levels of
genes and the response variables, which may take a com-
plex form. Another issue in designing feature selection algo-
rithms is the trade-off between accuracy and speed.
Multivariate algorithms are in general more accurate, but
slower than univariate methods. Univariate methods, on
the other hand, are fast, but cannot take into account gene-
to-gene interactions when extracting the important genes.

In this paper, we describe a fast and scalable feature selec-
tion method for DNA microarrays, based on the Hilbert-
Schmidt independence criterion (HSIC) [13], [14], [15]. The
HSIC provides a measure of dependence between two ran-
dom variables. Once a set of observations (realizations) for
the two random variables is given, the HSIC can be estimated
based on these observations. Song et al. [16], [17] proposed a
family of gene selection algorithms based on the HSIC called
the backward elimination HSIC (BAHSIC). These algorithms
encapsulate a number of well-known gene selection methods,
such as fold change, signal-to-noise ratio, shrunken centroid,
and ridge regression [17]. Given a set of genes (features), Song
et al. used HSIC to evaluate the dependence between the data
obtained from these features and the response variables. Hav-
ing obtained this measure of dependence, they used back-
ward elimination to extract a subset of the most relevant
genes. To account for the dependency between features
(genes), the BAHSIC requires nonlinear kernels. Otherwise, it
reduces to a univariate method when using linear kernels on
both the data and labels (in this case, the backward elimina-
tion is not needed) [17]. However, using nonlinear kernels,
one major drawback of the BAHSIC is its reliance on back-
ward elimination that makes it extremely slow, as shown in
the scalability experiments (Section 3.2.4) of this paper.

In this work, a completely different approach is used to
accomplish feature selection based on the HSIC. Here, the
HSIC has been used in conjunction with a fast technique for
sparse decomposition of matrices to identify a sparse projec-
tion of the DNA microarray features, representing the
underlying response variable well. Only a small subset of
genes will have non-zero weights in the extracted projection
vector, and are thus identified as the relevant genes for the
given response variable. Unlike the BAHSIC with nonlinear
kernels, as well as most other multivariate methods in the
literature, the proposed algorithm is computationally very
fast and scalable, as it is not required to store the whole
microarray dataset in memory. The algorithm can, there-
fore, easily be applied to real-world large datasets, which is
an important attribute in big data analytics. This capability
exist mainly because, unlike the BAHSIC, the proposed
method is not reliant on the backward elimination.

The main attributes of the proposed feature selection
algorithm are as follows:

1)  The proposed method is a multivariate feature selec-
tion algorithm that takes into account the correlation
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among the genes and selects the subset of the most
relevant ones by maximizing the dependency
between the data and response variables, using the
Hilbert-Schmidt independence criterion.

2)  Unlike the BAHSIC, the method is not reliant on the
backward elimination, which makes it very fast.

3) The computation of the method is based on inner
products on matrices of sizes n (number of data sam-
ples) or ¢ (number of classes), which is limited in
gene expression data. Therefore, the proposed
method is very fast.

4) In the proposed feature selection algorithm, one row
of the data matrix has to be examined at a time, and
therefore, the approach is scalable to large datasets.
The whole dataset does not have to be stored in
memory when the algorithm runs, an attractive attri-
bute in big data analytics.

5) By transposing the input matrix, the proposed algo-
rithm can comfortably be applied to the application
of column subset selection (CSS) [18], [19] from big
data with millions of data samples (more explana-
tion is provided in Section 2.6).

6) Inthe case of categorical response variables, by intro-
ducing a kernel for the labels that combines the
information in the response variable and the data,
we alleviated the requirement for model selection on
the kernels.

7)  Although the proposed method is multivariate, and
therefore, the correlation among the features is taken
into consideration in the process of finding the most
informative features, the speed and scalability of the
proposed method is close to univariate feature selec-
tion methods, without compromising accuracy.

8) The method requires only a kernel of labels, and
hence, can be applied to datasets with any type of
response variables: biclass, multiclass, and continu-
ous variables.

An extensive set of experiments on synthetic and real-
world gene expression data with categorical (both biclass
and multiclass) and continuous response variables using
the proposed method demonstrates that the approach
achieves the same level of accuracy and stability as multi-
variate features selection methods, while its speed and scal-
ability are close to univariate methods.

The organization of the rest of the paper is as follows: we
review the mathematical background and the formulation
for the proposed approach in Section 2. The experimental
setup and results on synthetic and real-world data are pre-
sented in Sections 3, followed by our conclusion in Section 4.

2 METHODS

2.1 Problem Statement

Suppose X € R™" represents genomic microarray data
with m genes and n samples and y € R"*! is a discrete
or continuous response variable. For example, y could
either represent labels of patients with high-risk cancer (dis-
crete) or their survival time (continuous)." The goal is to

1. Here we assume the response variable is univariate. However, the
results can be directly used for the case of multivariate response varia-
bles. In such a case, the observations of the response variable is cap-
tured in matrix Y rather than by the vector y.
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select a small feature set that contains as much predictive
information about the response y as possible. In other
words, we aim to identify a subset of features, so that y
depends mainly on this subset and not on the other features.

Suppose there are n samples and n response values
{(x1,41),---, (Xn,yn)}, where x; denotes the ith column of
matrix X, and y; is the ith entry of y. We are looking for a pro-
jection s = u' X such that y depends mainly on s. Here, u'X
is a linear combination of all the features, where elements of
u determine the importance, or the weight, of each feature. If
u is a sparse vector, then the weight of some features is zero
and the subset of features with nonzero weights is the subset
with the desired maximum predictive information.

Therefore, the formulation of the proposed feature selec-
tion algorithm involves two main steps: finding a projection
s=u'X whose dependency is maximized with the
response variable y, and ensuring that the projected space is
sparse, such that only salient features in that space have
nonzero representation. Here, the former step is achieved
by using the Hilbert-Schmidt independence criterion, and
the latter by using a modified Jordan algorithm for a singu-
lar value decomposition (S§VD) of signals. To provide a for-
mal formulation of our approach, we first provide an
introduction to the HSIC and Jordan algorithm, followed by
the details of the proposed method.

2.2 Background of the Hilbert-Schmidt
Independence Criterion

The Hilbert-Schmidt norm of the cross-covariance operator
has been proposed as an independence criterion in repro-
ducing kernel Hilbert spaces (RKHS) [14], [15]. This mea-
sure is referred to as the Hilbert-Schmidt independence
criterion, which has been used in various applications,
including independent component analysis [20], sorting/
matching [21], supervised dictionary learning [22], and mul-
tiview learning [23].

The HSIC uses the fact that two random variables x and y
are independent if and only if any bounded continuous func-
tion of the two random variables is uncorrelated. Consider
two multivariate random variables x and y with joint proba-
bility distribution p,y. Let X and ) be the support (the set of
possible values) of the random variables x and y, respec-
tively. Let F be a separable RKHS of real-valued functions
from X to R with universal® kernel k(- -). Similarly, define G
to be a separable RKHS of real-valued functions from ) to R
with universal kernel b(-,-). We are interested in the cross-
covariance between elements of 7 and G

cov(f(x), 9(y)) = Exy[f()9(y)] = Ex[f ()|Ey9(y)];

where f € F, g € G, and E is the expectation function.

There exists a unique operator Cyy : G — F mapping ele-
ments of G to elements of F such that: (f,Cyxy(9))r =
cov(f,g) for all f € F and g € G [14]. This operator is called
the cross-covariance operator.

2. By the Moore-Aronszajn theorem in RKHS [24], there is a unique
correspondence between any kernel and the RKHS it reproduces. A
kernel k is called universal if the corresponding RKHS F, includes all
continuous functions on the domain X.

The measure of dependence between two random varia-
bles can be defined as the squared Hilbert-Schmidt norm of
the cross-covariance operator

HSIC(pxyaj:7 g) = HCXYHIQ{S

Note that if ||Cyy||5is is zero, then the value of (f, Cxy(g)), i.e.,
cov(f,g), will always be zero for any f € F and g € G. Thus,
the random variables x and y are independent, since kernels
k and b are assumed to be universal and the corresponding
RKHSs F and G include all bounded continuous functions
on X and Y, respectively.

2.2.1 Empirical HSIC

For computational purposes, the HSIC has to be expressed
in terms of kernel functions. This expression is achieved
using the following identity [14]

HSIC(pxy7 F, g) = IE‘x.xﬂy,y' [k(xv x/)b(Y7 yl)}
+ ]Exﬁx’ [/C(X, Xl)}Ey,y’ [b(yr yl)}
-2 IE:4x,y [Ex’ [k(xv x/)]Ey’ [b(yv y/)]] )

where E, vy is expectation over (x,y) and (X,y’) with
(x,y) and (x',y’) being random variables taken indepen-
dently from pyy. Now let Z := {(x1,y,),..., (X, y,)} € XX
Y be a collection of n independent observations drawn from
Dxy- An estimator of HSIC is then given by [14]

HSIC(Z, F,G) := (n — 1) tr(KHBH), (1)

where tr is the trace operator, H,K,B ¢ R"" K;; =
k(xi, %), Bij = b(y,;,y;), H=Lyxy — n~'1,1) (His a centering
matrix of dimension n x n), k and b are positive semide-
finite kernel functions, I, is the identity matrix of size
n x n, and 1,, is a vector of n ones. Thus, to maximize the
dependence between the two random variables x and vy,
the value of the empirical estimate, i.e., tr(KHBH) has to
be maximized.

2.3 Jordan Algorithm for SVD

The Jordan algorithm for the singular value decomposition
has been classically used for computing singular values/
vectors of matrices [25]. The sparsity part of the proposed
feature selection algorithm is motivated by the Jordan algo-
rithm. Therefore, we present this algorithm in this section,
and use it later to show how it can be modified to accom-
plish a sparse SVD. Algorithm 1 describes how the Jordan
algorithm can be used to compute the rank d SVD of a
matrix A. At each iteration, the first singular value and sin-
gular vectors of A are computed, and then the value of A is
updated by reducing the optimal rank one matrix obtained
in this step. The iteration continues until all d eigenvectors
of A are computed. In Algorithm 1, U.; and V.; denote the
ith column of the outputs U and V, respectively.

2.4 Feature Selection via HSIC and Sparse SVD
2.4.1 Projection to the Space of Maximum Dependency
with Response Variable

In order to formulate the proposed feature selection algo-
rithm, as stated in the problem statement (Section 2.1), the



170 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 14, NO.1,

Algorithm 1.  Jordan
JordanAlgorithm(A)
Input: A € R™*".
Outputs: U € R™*?, V ¢ R, 3 ¢ R,
1: fori=1,...,ddo
Select a random nonzero u € R".

Algorithm  [U,%,V] =

11:  until change in u and v is smaller than e.
122 A=A-uov'.

13: U;yi = u.
14: V., =v.
15: 21/ = 0.
16: end for

first step is to maximize the dependency between the projec-
tion s = u'X and the response variable y. To measure the
dependency between the two, we use the empirical estima-
tion of HSIC given in (1). If [xq,...,x,] are projected to
s=[u'xy,...,u’x,] =u'X, a linear kernel on subspace s
can be computed as K = X' uu'X. Considering B as a kernel
of y, the dependency between the projection s and the
response variable y can be measured using the empirical
HSIC as

tr(HKHB) = tr(HX uu' XHB)
= tr(u' XHBHX "u) 2
= u' XHBHX u.

We can make the objective function (2) arbitrarily large
by increasing the magnitude of u. To ensure the problem is
well-posed, we choose u to maximize (2) while constraining
u to a unit length. To accomplish the feature selection task,
u is required to be sparse. Based on these two constraints,
the optimization problem becomes

max u XHBHX u
u (3)
s.t. u'u=1 and u is sparse.

If we relax the sparsity constraint, this problem can be
solved in closed-form. If the symmetric and real matrix
Q = XHBHX' has eigenvalues A\; < --- < A, and eigenvec-
tors vy, ...,v,, then the maximum value of the cost function
is A, and the optimal solution is u = v,, [26].

Note that both B and Q are positive semidefinite matri-
ces, and thus we can define

B=ATA
Q=AA"
A=XHAT.

Clearly the solution for u can be expressed as the first singu-
lar vector of A, because the singular vectors of A are the
eigenvectors of AA" = XHBHX'. Therefore, u can be
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obtained by finding the optimal rank one approximation to
A in the Frobenius norm. As explained in next lines, the
same result is true even when u is constrained to be sparse.
That is, the optimal value of u in (3) can be found by solving
the following optimization problem:

min  [|A—ouv'|Z,
o,u,v (4)
s.t. u'u=1,viv=1, and u is sparse,

where || - || denotes the Frobenius norm of a matrix, o is an
arbitrary nonnegative real number, and v is an arbitrary
orthogonal vector in R”. Note that there is no sparsity con-
straint on v, and that the above result is valid no matter
how the sparsity constraint for u is defined. To explain this,
we note that, given the orthogonal vector u, the optimal
value of ov is A"u, which is the solution to a simple least
square problem. Substituting this value into the objective
function in (4), and simplifying the result leads to the same
optimization problem as the one presented in (3).

The advantage of working with A rather than Q is that A
is much smaller in size than Q. This advantage is because
the number of samples in DNA microarray experiments is
usually much less than the number of features, and thus A
has significantly fewer columns than Q.

2.4.2 Inducing Sparsity into the Projected Space

The second step for the proposed feature selection algo-
rithm is to induce sparsity into the projected space such that
only the most salient features (with nonzero coefficients),
which are the most representative ones, are selected. A
number of techniques have been proposed in the literature
for obtaining sparse rank one approximations for a given
matrix. One common approach has been to use a least
squares error function with an ¢, penalty term [27], [28].
Another approach aimed to reformulate the problem as a
semidefinite program [29]. A simple approach is to set a
threshold and keep only those elements in the first singular
vector that exceed the threshold. This approach is com-
monly employed in text mining and has been used exten-
sively in methods such as latent semantic indexing
(LSD [30]. However, as detailed in the following example,
we believe that this method will not produce an appropriate
solution in the case that we have described.

Consider the following matrix A, which is the sum of a
completely separable matrix F and a noise matrix E

A=F+E
101 101 0 0
101 101 0 0
0 0 1 1
0 0 1 1
—0.02 —0.02 0.02 0.02
0 o 0 0
1 o 0O 0 0
0 0O 0 0

In this example, clearly, there are two separate sets of col-
umns in A, as shown by the two diagonal blocks. A practical
algorithm should be able to identify the two blocks and
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produce an answer close to [1 1 0 0]". The dominant
right singular vector of A is almost proportional to
[1 1 1 1], which is different than expected. An expla-
nation for this behavior is that the matrix F has two nearly
equal singular values, and so its singular vectors are highly
sensitive to small perturbations (such as matrix E). This pit-
fall can be avoided by computing a sparse singular vector
that is then used to factorize a submatrix of the original A,
instead of the whole matrix. We will use this idea based on
the Jordan algorithm, as stated in Section 2.3, to propose a
method for a sparse decomposition of matrix A.

2.4.3 Sparse SVD and the Proposed Feature Selection

Motivated by the Jordan algorithm, we present here the
sparse SVD for inducing sparsity into the projected space
with the maximum dependency with the response variable.
We return to the sparse SVD problem presented in (4). Let
M be the set of indices of nonzero elements in u and let Ay,
be a submatrix of A, consisting of all the rows indexed in
the set M and in all the columns of A. Similarly, Aj;.
denotes the submatrix of A consisting of all the rows which
do not exist in the set M and in all the columns of A. Finally,
uy; denotes a subvector of u consisting of the elements
indexed in M. Using the above notation, the objective func-
tion presented in (4) can be expressed as

A —ouv [} = | Ay |F + A — ourv'[F.

Using the equality ||AM’:||§ = |A||Z = |Axz. |5, the above

expression can be written as

2 2 2
IAllF — A llg + | A: — oupv'[[5.

Because here ||A||% is a constant term, the optimization
problem in (4) can be represented as a maximization prob-
lem with the following objective function:

HAM”% — |An: — UIIMVTH%- (5)

In this formulation, given the submatrix Aj,., the optimal
values of o, uy, and v are simply the singular values and
singular vectors of the submatrix. Therefore, solving the
above optimization problem with a sparsity constraint on u
is equivalent to finding a submatrix of A for which the
above objective function is maximized.

Note that the objective function in (5) consists of two
opposing terms: the first expresses the objective function
that the extracted submatrix should be large and the second
penalizes deviations of the extracted submatrix from being
rank one. This may occur at the expense of reducing the size
of the extracted submatrix. To control the sparsity of the
solution for the above optimization problem, different
weights can be assigned to the two opposing terms. In par-
ticular, if we down-weight the first term (which favours
large matrices) or up-weight the second term, the solutions
should become sparse. This leads to the following modified
objective function

f(M,o,u,v) = |Au. |y — VIAx. —ounv' |5, (6)

where y > 1 is a penalty parameter controlling sparsity of
the solution. Our aim was to find an optimal submatrix A ;.

(or equivalently, an optimal set M) that maximizes the
objective function in (6). This is an NP-hard optimization
problem. Instead, we have developed a heuristic algorithm
to find the optimal solution.

The proposed algorithm can find the optimal submatrix
A);. and the corresponding parameters o, u, and v simulta-
neously. To accomplish this, the values of the above param-
eters are updated in a periodic manner. The vector v is first
assumed to be given. The objective function in (6) is separa-
ble in terms of the rows of the matrix A. In particular, the
contribution of the ith row is given by

i = HAtl = )/||Ai,: - IBzVT“Q» (7)

where B, = ou; and w; is the ith element of u. Because of this
separability property, one can consider the contribution of
the rows separately, and choose only those rows that can
make a positive contribution to the objective function. The
value of the first term in (7) is fixed when a row is given. To
obtain the optimal value of the second term, one can solve a
simple least squares problem to show that this term is maxi-
mized (or equivalently, ||A,. — B;v'|* is minimized) when
B; is set to A;.v. Thus, the maximal contribution of the ith
row would be:

TP = HAzA:HQ - )/||A7:.: - Ai,: VVTHZ
=A Al —y(A - A v (AL - AL WT)T ®)
= —(y— DALA] +y(A.v)

The above expression should be evaluated for all rows, and
only those rows which make a positive contribution should
be selected. By dividing both sides of (8) by y — 1, and by
defining y = %, the following criterion for selecting the ith

row is obtained

—A Al +7(ALv) > 0. ©)

Thus, the above procedure provides the set M and the cor-
responding coefficients B;, i € M. Subsequently, ¢ and u
can be obtained by normalizing the vector consisting of the
Bi’s, i € M. In the next step, given vector u, the optimal
value of v is obtained by AL_’:uM / ||AL’:uMH, which is the
solution to a least squares problem. The iteration is contin-
ued until the values of M, o, u, and v stagnate.

The initial values for the parameters M,o,u, and v
should properly be set such that the initial value of the
objective function (6) is positive otherwise, it may happen
that no rows are selected in the subsequent steps. We
selected the row with the greatest norm as the initial value
of v, and started iterations to find M. Since the initial value
in (6) is deterministic, it always leads to the same set of
selected features.

The objective function presented in (6) can be modified
by adding a term of the form —p|M|. This additional term
penalizes rows with very low norms, which might be pro-
duced because of noise, and hence, prevents those rows
from being selected in the submatrix A ;.. The term can also
be used to control the sparsity of the solution, and conse-
quently, the number of features selected. Because this new
term is also separable in terms of the rows of A, it can be
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easily inserted into the criterion given in (9) for selecting a
row, resulting in a modified criterion as follows:
where p=p/(y —1). In practice, we found it useful to
control the sparsity of the solution using both values of
y and p. In particular, it is useful to fix the value of y
and use p to change sparsity of the solution. The afore-
mentioned steps have been summarized in Algorithm 2—

called SparseSVD in this paper—for the sparse decom-
position of matrices.

Algorithm 2. Sparse SVD [M, o, u, v] = SparseSVD(A, y)
Inputs: A € R™*", parameter y.

Outputs: M C {1,...,m},ue R",ve R", 0 € R.

: Select iy € {1,...,m} to maximize ||A;,.].

v=A] Jo.
05+
repeat
Letu = Av.
M={i: —AAl +7(Av) —p > 0}
wy = tyr/|[an-
Letv = AL’:HM.
o= 9.
v=v/o.
12: until change in v is smaller than € and no change in | M.

PN TR

—_ =
=0

The proposed feature selection algorithm, which is named
here as sparse Hilbert-Schmidt independence criterion (SHS)
based feature selection, is presented in Algorithm 3.

Algorithm 3. Feature Selection M = SHS(X,y, 7, p)

Inputs: X € R™*", y € R", parameters y, and p.
Output: M C {1,2,...,m}.

1: Compute B = b{y;,y;} = ATA.

2: Compute A = XHA".

3: [M,0,u,v] = SparseSVD(A, 7).

4: return M.

2.5 Choosing the Kernel of Labels for the
Categorical Response Variables

To perform gene selection, the proposed algorithm requires
a kernel of labels. For the categorical response variables,
however, common kernels (such as RBF, polynomial, and
sigmoid) cannot be used in a straightforward way. Here, we
outline a systematic approach for obtaining the kernel of
labels for datasets with categorical response variables. We
followed the proposal of Blaschko and Gretton [31], [32]
and combined the information in the response variable and
data to obtain a kernel for labels. If ¢ denotes the number of
classes in the categorical response variable under study,
and II,,.. the corresponding partition matrix, then I1;; = 1 if
ith data point belongs to the jth class; otherwise, it is equal
to zero. The kernel of labels was then assumed to take the
form B = [IWII'", where the initially unknown matrix W,
captures the similarity between classes. To determine the
value of W, Blaschko and Gretton [31], [32] suggested that
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HSIC can be used to maximize the dependence between
this kernel of labels and a kernel of data, as follows:

max tr(KHnHWHTHn),
w (11)
s.t. tr(TTWIT H,[IWIT'H,,) = 1.

In the above formulation, K,,.,, is a kernel of data, and
H,=1,.,— n‘llnll is the centering matrix of dimension
n x n. The authors in [32] showed that the solution to the
above optimization problem takes the form H-W*H, up to a
constant factor, where H. =1, — 0*11(,,13 is a centering
matrix of dimension ¢ x ¢, and W, , is given by

1 -
Wi 3 K a2
' NiNJ‘ leC; kel

where N; and N; are the number of elements in clusters ¢
and j, respectively, C; and C; are the sets of indices of sam-

ples in clusters ¢ and j, and K = H,KH,,. Matrix W* in (12)
is a standard kernel as previously defined [33].

Note that, if we decompose the positive semidefinite
matrix W as W = ¥, then matrix A.y, in the proposed
feature selection algorithm can be directly obtained as
A = WII'. To obtain V..., one can use eigenvalue decompo-

sition of W to write W = PAP', and set ¥ to A%PT. This
technique was adopted in this paper.

2.6 Computational Complexity and the
Convergence of the Algorithm

The separability characteristics of the objective function (6)
in terms of rows not only provide an easy way to implement
the algorithm proposed above, but also makes the algorithm
scalable to large datasets. The whole microarray dataset
does not need to be stored in the memory when the algo-
rithm is run because only one row of the data is required at
a time. All the intermediate matrices to be computed,
including A.x,, Wexe, Wexe, 1<, and others are of sizes n
(number of data samples) or ¢ (number of classes), which
are limited in gene expression datasets to typically less than
400 and 20, respectively. Therefore, the inner products have
the complexity of at most O(n), which is comfortably man-
ageable on any single machine. It is worthwhile to highlight
here that for the computation of each row of matrix A, only
one row of matrix X is needed, and therefore different genes
(features or rows) of matrix X can reside on different
machines in a distributed system without any problem.
This feature is particularly important when large real-world
datasets are used, and is a very attractive feature for an
algorithm designed for big data analysis, where the data
might be large and massively distributed.

On the other hand, the proposed method can also be
employed in the application of column subset selection [18],
[19], where a few representative data samples should
be selected from a big data matrix, provided that the
dimensionality of the data is not very high. This application
corresponds with finding representative columns of a big
data matrix X € R™*", where m the dimensionality of the
data is much less than the number of data samples n
(m < n). In this case, the proposed (SHS) algorithm can be
employed with the transposed data matrix X' as input. In
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Fig. 1. Histogram of the selected features in the synthetic example.

this paper, however, the emphasis is given to the applica-
tion of feature selection for gene expression data, rather
than on column subset selection.

In Algorithm 2, the value of the objective function never
decreases. This is because, given vector v, all rows that can
make a positive contribution to the objective function are
selected. This implies that the values of M, o, and u are
globally optimized, given the value of v. Also, given vector
u, the value of v is globally optimized by solving a least
squares problem. The fact that the value of the objective
function never decreases implies that the algorithm is
guaranteed to converge. In practice, we found that the algo-
rithm converged within a few iterations (typically in less
than 5 iterations) which allowed the resulting feature selec-
tion method to be fast.

3 RESULTS AND DISCUSSION

3.1 Synthetic Data

To evaluate the performance of the SHS algorithm, we first
considered an experiment using synthetic data. We
assumed a dataset of 50 data points {x;},", each with 60 fea-
tures, stacked in a 60 x 50 matrix X. A univariate response
variable y which depends only on a specific subset of the
features was constructed as follows:

y = sgn [sin (X{,’:) =+ sin (XIO,:) =+ Xlgﬁ: @ X157; —1.2 + 6},

where € ~ N(0,0.01) is normally-distributed additive i.i.d.
noise, X;. denotes the ith feature (the ith row of X), sgn[]
denotes the sign function, and ® stands for the elementwise
product (also called Hadamard product) between two vec-
tors. The relationship between the response variable y and
the features of X is relatively complicated. Elements of the
data points X were produced according to the unit uniform
distribution. To use the SHS algorithm, we set the kernel of
labels to the kernel introduced in Section 2.5. In the pro-
posed method, we used p = 0.1, as this value resulted in a
reasonable number of selected features. The value of the
parameter y was set to a default value of 12 (corresponding
to y = 1.1), and was kept constant throughout. The process
was repeated 1,000 times to explore different possibilities

TABLE 1
Description of the DNA Microarray Datasets Used in the Study

Dataset No. of Samples No. of Genes No. of Classes
Lymphoma 96 4,026 2
Leukemia 72 7,129 2
Brain Tumour 90 5,920 5
11-Tumours 174 12,533 11
SRBCT 83 2,308 4
Lung 203 12,600 5

for the variables X and y. We found that the size of the
returned feature set varied between 1 to 16 over the 1,000
trials, with an average of 6.6 features per trial. A histogram
of the indices of the selected features is presented in Fig. 1.
As illustrated in Fig. 1, the true features, 5, 10, and 15 were
selected in 89.1, 87.0, and 96.0 percent of the trials, respec-
tively, while each of the other features occurred in, at most,
8.3 percent of the trials. These results demonstrated that the
proposed method could successfully identify the most
informative genes.

3.2 Gene Expression Data-Categorical Response
Variables

To demonstrate the performance of the proposed feature
selection algorithm, we present the experimental results
obtained using a number of real-world datasets. The data-
sets used in this study were divided into two groups
depending on the type of their response variables. In this
section, we have provided the results for the datasets with
categorical response variables, where the response variables
indicate different types of human cancers. In the next sec-
tion, the results will be presented for a dataset with continu-
ous response variables, where the response variables
represent the survival times of patients.

3.2.1 Data

Six publicly available DNA microarray datasets with cate-
gorical response variables were used. The datasets included
those with both biclass and multiclass response variables.
The biclass datasets were lymphoma [34] and leukemia [4]
and the multiclass datasets were brain tumour [35],
lung [36], small round blue cell tumours (SRBCT) [37], and
a dataset containing 11 different tumour types, which we
refer to as the 11-tumours dataset [38].

Table 1 provides a summary of the datasets with categor-
ical response variables used in this study, and the details of
each dataset are provided in this paragraph. The lymphoma
dataset [34] contains 96 samples, 62 neoplastic, and 34 nor-
mal samples. For each sample, the gene expression levels of
4,026 genes are given. The leukemia dataset [4] contains
expression levels of 7,129 genes given for 72 samples, 47
acute lymphoblastic leukemia (ALL) and 25 acute myeloid leuke-
mia (AML) samples. The brain tumour dataset [35] contains
90 samples in five classes: medulloblastoma, malignant glioma,
atypical teratoid/rhabdoid tumour (AT/RT), normal cerebellum,
and primitive neuroectodermal tumours (PNET), where there
are 60, 10, 10, 4, and 6 samples in the classes, respectively,
and each sample has 5,920 genes. The lung dataset [36] is
based on 12,600 variables describing 203 samples. The
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samples are divided into five subclasses: adenocarcinomas,
squamous cell lung carcinomas, pulmonary carcinoids, small-cell
lung carcinomas, and normal lung, with 139, 21, 20, 6, and 17
samples in each subclass, respectively. The SRBCT data-
set [37] contains a total of 83 samples in four subclasses: the
Ewing family of tumours (EWS), Burkitt lymphoma (BL), neuro-
blastoma (NB), and rhabdomyosarcoma (RMS), which have 29,
11, 18, and 25 samples, respectively. Finally, the 11-tumours
dataset [38] includes the gene expression levels of 12,533
genes for 174 samples. These samples belong to 11 different
tumour types: ovary (27 samples), bladder/ureter (8 sam-
ples), breast (26 samples), colorectal (23 samples), gastroeso-
phagus (12 samples), kidney (11 samples), liver (7 samples),
prostate (26 samples), pancreas (6 samples), lung adeno (14
samples), and lung squamous (14 samples).

3.2.2 Implementation Details

To evaluate the quality of the selected subset of genes, we
divided each dataset into training and test sets. We normal-
ized the training data such that each row in the data (corre-
sponding to a gene) has zero mean and unit variance. We
then normalized the test data using the same shift and scal-
ing parameters obtained from the training data. We trained
a classifier based on the top ranked genes in the training set
and reported the classification accuracy of this classifier on
the test set. We used leave-one-out (LOO) to obtain train-
ing/test splits, and defined the classification accuracy as the
percentage of the samples for which the label is correctly
predicted. For the classification task, we used two classi-
fiers: a linear support vector machine classifier and a k-near-
est-neighbour (k-NN) in all the experiments. For the biclass
problems, the built-in SVM classifier in Matlab with linear
kernel was used. For the multiclass problems, we used the
one-versus-one linear SVM classifier implemented in
LIBSVM [39]. The trade-off parameter C' of the SVM was set
to 1 and the k value of the k-NN was set to 3. In the proposed
SHS method, the kernel B was set to the kernel introduced
in Section 2.5. Also, in the proposed method, the number of
selected genes is not explicitly given as an input. Instead,
the number of genes is controlled by the parameters y, and
p, which control the sparsity of the proposed algorithm as
mentioned in Section 2.4.3. In this work, the parameter y
was kept constant at 12 in all the experiments. We manually
adjusted the value of p so that the average number of
selected genes over different partitions of training/test data
was equal to the desired number of selected genes men-
tioned in the experiments.

3.2.3 Rival Methods

We compared the proposed SHS feature selection algo-
rithm (provided in Algorithms 2 and 3) with six standard
methods available in the literature. The six standard meth-
ods that we used were: mRMR [6]; SVM-RFE [10] and
LO [40]: two SVM-based embedding methods; BAHSIC [17];
FMS [7]; and BWSS (between group to within group sum
of squares): a univariate filter that ranks genes based on
the ratio of between-class to within-class sum of
squares [41]. For the two biclass datasets, i.e., Lymphoma
and Leukemia, we also compared our method with the
Pearson’s correlation (PC), and a filter that simply ranks
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Fig. 2. The convergence of the proposed feature selection algorithm on

the 11-tumours dataset. The convergence has been shown for 10 differ-

ent leave-one-out subsamples of the dataset. A 100 genes were
selected in the experiments.

genes based on their fold change [42], [43], denoted as FC
in Table 2 (two upper sections). In this study, we used the
codes for the SVM-RFE and LO methods that have been
implemented in the SPIDER toolbox [44]. However, the LO
code did not converge for the lung dataset. One-versus-
one approach was used to handle multiclass cases in the
SVM-RFE and LO methods. For the mRMR method, the
Matlab implementation available in [45] was employed.
We used the mutual information difference (MID) variant
of this method, and discretized the gene expression infor-
mation into three levels as the preprocessing step [6]. For
the FMS approach, the MATLAB code provided by the
authors was used. BAHSIC was implemented using a lin-
ear kernel for the data that typically provides the best
results for feature selection from microarray data [17].
With this kernel, algorithms in the BAHSIC family can be
implemented as univariate filters [17].

3.2.4 Results

Below, the results are provided for the various performance
evaluations of the proposed algorithm.

Convergence. Section 2.6 explained in theoretical terms
that the proposed algorithm is convergent. In order to dem-
onstrate this quality experimentally, the convergence of the
SHS algorithm was shown on the 11-tumours dataset as an
example. The results of convergence are shown in Fig. 2 on
10 arbitrary leave-one-out subsamples taken from the data-
set when the requested number of features was 100. As can
be seen from the figure, the convergence was very fast,
occurring in only four iterations. Similar results were
obtained on other subsamples and other datasets.

Classification Accuracies. In Table 2, the classification accu-
racies are presented for the number of selected genes equals
to 50, 100, 200, 1,000 and the whole set of genes for the SVM
and k-NN classifiers. The rightmost column in Table 2 lists
the best classification accuracy obtained for each method
and each classifier. The best classification accuracies in this
column are highlighted for each classifier. In the cases
where the best accuracy was achieved by several methods,
the method that achieves the best accuracy with the least
number of genes is highlighted. As shown in the two upper
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TABLE 2
SVM and k-NN Classification Accuracies of the Different Methods for Real-World Datasets Using the Leave-One-Out Method

No. of Genes

Dataset Method
50 100 200 1,000 All Best Accuracy/No. of Genes
SVM kNN SVM kNN SVM kNN SVM kNN SVM kNN SVM k-NN
PC” 9271 8750 9479 9375 9479 9479 9583 90.63 95.83 8750 95.83/1,000  94.79/200
FC* 9271 9366 9479 93.01 9583 9347 96.88 9492 9583 8750 96.88/1,000 94.92/1,000
BWSS 90.63 93.66 9479 9301 9583 9347 96.88 9492 9583 8750 96.88/1,000 94.92/1,000
BAHSIC  90.63 93.66 9479 9301 9583 9347 9688 9492 9583 8750 96.88/1,000 94.92/1,000
Lymphoma SHS 90.63 97.84 9583 97.63 9583 9739 96.88 9687 95.83 8750  96.88/1,000 97.84/50
FMS 90.63 93.66 9479 93.01 9583 9347 96.88 9492 9583 8750 96.88/1,000 94.92/1,000
LO 9271 8835 9271 8630 9583 88.00 96.88 9285 9583 8750 96.88/1,000 92.85/1,000
SVM-RFE 8438 8804 8750 9243 8854 9095 9583 9515 95.83 8750 95.83/1,000 95.15/1,000
mRMR 9479 8706 9479 89.06 9583 88.01 9375 9176 9583 8750  95.83/200  91.76/1,000
PC* 9583 93.06 98.61 93.06 9722 93.06 9583 93.06 9583 8750  98.61/100 93.06/50
FC* 9583  92.65 98.61 9463 9722 9215 98.61 9358 98.61 8750  98.61/100 94.63/100
BWSS 9583 9265 98.61 9463 9722 9215 9861 9358 98.61 8750  98.61/100 94.63/100
BAHSIC 95.83 9265 98.61 9463 9722 9215 9861 9358 9861 8750  98.61/100 94.63/100
Leukemia SHS 9722 9698 9722 97.68 9722 9629 9861 9624 98.61 8750 98.61/1,000  97.68/1,000
FMS 9583  92.65 98.61 9463 9722 9215 98.61 9358 98.61 8750  98.61/100 94.63/100
LO 9444 9119 9722 8936 9722 8779 9861 91.13 98.61 8750 98.61/1,000  91.19/50
SVM-RFE 90.28 86.39 9028 88.17 90.28 88.16 9722 90.41 98.61 8750  98.61/All  90.41/1,000
mRMR 9583 8641 9722 8671 9722 86.09 9861 8815 9861 8750 98.61/1,000 88.15/1,000
BWSS 8222 9414 8222 9281 8333 9356 86.67 9480 90.00 8222  90.00/All  94.80/1,000
BAHSIC 76.67 91.70 80.00 92.00 8222 9515 90.00 9512 90.00 8222 90.00/1,000 95.15/200
SHS 80.00 9422 86.67 9481 88.89 9618 91.11 9619 90.00 8222 91.11/1,000  96.16/1,000
Brain Tumour FMS 8222 9414 8222 9281 8333 9356 86.67 9480 90.00 8222 86.67/1,000 94.80/1,000
L0 7222 7990 8556 80.03 86.67 8458 90.00 89.59 90.00 8222 90.00/1,000 89.59/1,000
SVM-RFE 78.89 2395 7889 2696 8222 31.79 8889 6839 90.00 8222  90.00/All 82.22/All
mRMR 8556 8578 86.67 86.69 8889 8778 90.00 90.15 90.00 8222 90.00/1,000 90.15/1,000
BWSS 7759 97.80 85.06 9735 8678 9755 93.10 9772 9023 75.86 93.10/1,000  97.80/50
BAHSIC 6322 9843 7299 9701 85.63 9625 9195 9711 9023 7586 91.95/1,000  98.43/50
SHS 7414 9919 8621 99.19 89.08 9940 93.68 9750 9023 75.86  93.68/1,000  99.40/200
11-Tumours FMS 7759 97.80 85.06 9735 8678 9755 9310 9772 9023 75.86 93.10/1,000  97.80/50
LO 7414 7755 8448 7502 8621 73.61 9195 7134 9023 7586 91.95/1,000  77.55/50
SVM-RFE 7874 4947 89.08 5057 8793 4872 9138 5440 90.23 7586 91.38/1,000  75.86/All
mRMR  89.66 90.84 90.80 9331 89.66 92.76 9138 93.73 9023 7576 91.38/1,000 93.73/1,000
BWSS  100.00 9721 100.00 9726 98.80 96.98 100.00 95.16 100.00 80.72  100.00/50 97.26/100
BAHSIC 100.00 94.01 100.00 94.85 100.00 94.58 100.00 93.87 100.00 80.72  100.00/50 94.85/100
SHS 90.36 97.48 9639 97.88 100.00 9530 100.00 93.81 100.00 80.72  100.00/200  97.88/100
SRBCT FMS 100.00 97.21 100.00 97.26 100.00 96.98 100.00 95.16 100.00 80.72  100.00/50 97.26/100
LO 90.36 8147 9518 83.64 100.00 83.66 100.00 83.06 100.00 80.72  100.00/200  83.66/200
SVM-RFE 8795 4227 9157 3940 9518 4575 100.00 76.41 100.00 80.72 100.00/1,000 80.72/All
mRMR  100.00 9044 100.00 93.10 100.00 91.75 100.00 90.81 100.00 80.72  100.00/50 93.10/100
BWSS 90.64 9886 91.13 9819 9507 9853 9507 98.60 9458 91.13  95.07/200 98.86/50
BAHSIC  90.15 9656 90.15 97.61 93.10 9748 9557 9758 9458 91.13 9557/1,000 97.61/100
SHS 90.15 9874 93.60 98.03 9458 98.65 96,55 9853 9458 91.13  96.55/1,000  98.74/50
Lung FMS 90.64 9886 91.13 9819 9507 9853 9507 98.60 9458 91.13  95.07/200 98.86/50
LO NC NC* NC* NC* NC° NC* NC* NC* 9458 9113 NC? NC?
SVM-RFE 93.60 63.06 94.09 7439 92.61 8144 9507 9394 9458 91.13 95.07/1,000 93.94/1,000
mRMR 9261 91.63 95.07 93.68 94.09 9436 9507 9622 9458 91.13  95.07/100  96.22/1,000

The results are provided for the top 50, 100, 200, and 1,000 genes, as well as for the whole set of genes in each dataset.

* The comparison could only be performed on biclass datasets.
Y NC: Not Converged.

sections of Table 2, mainly simple univariate filter methods
(BAHSIC, BWSS, and FC) achieved the optimal classifica-
tion accuracies in datasets with biclass response variables
using the SVM classifier. However, when using the k-NN
classifier, the proposed method outperformed the other fea-
ture selection methods in biclass response variable datasets.
In the datasets with multiclass response variables, the pro-
posed SHS method compared favourably with the other

methods in terms of its classification accuracy for both SVM
and k-NN classifiers.

Stability. In addition to the importance of accuracy in
evaluating the merit of a feature selection algorithm, the set
of features selected should not vary significantly when dif-
ferent subsamples of the same dataset are submitted to the
algorithm. This is measured by an index called stability,
and the study of its applicability on high dimensional data
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Fig. 3. The results of the stability tests using (a) Lausser et al. [46], and (b) Kuncheva [47] methods for biclass datasets. Leave one out was used for

sampling the datasets.

has received a good amount of attention in gene selection
literature [46], [47], [48], [49]. As part of our analysis, we
studied how the SHS method compared to other feature
selection algorithms in terms of stability of the selected fea-
tures. We used two measures of stability proposed by
Lausser et al. [46] and Kuncheva [47]. Lausser’s method [46]
for measuring the stability of a feature selection algorithm
creates a histogram of selected features from different sub-
samples. A stability measure is then defined that favours
sparse histograms over histograms, in which many features
are touched. The stability measure proposed by Kun-
cheva [47] is based on the average distance between the set
of features selected from different subsamples. The notion
of set distance in Kuncheva’s method is based on the differ-
ence between the actual overlap between two sets compared
to the overlap that is expected due to a random chance. The
results are presented in Figs. 3 and 4 for biclass and multi-
class datasets, respectively. As demonstrated in these fig-
ures, SHS demonstrates a good level of stability based on
the measures proposed by Lausser et al., and is in most
cases among the top three methods. Also, based on the sta-
bility measure proposed by Kuncheva, SHS usually outper-
forms other methods.

Furthermore, to investigate the effect of sampling
method on the stability of selected features, we have also
provided the results for the stability tests using the two
aforementioned methods (Lausser's and Kuncheva’s
methods) for a different sampling method from LOO, i.e.,
using 10-fold cross validation. The results are provided in
the supplementary Figs. S1 and S2, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TCBB.2016.2631164.

Similar trends of stability as those in the LOO sampling
method can be observed from these figures for different fea-
ture selection approaches discussed in this paper.

Speed and Scalability. Two other desirable aspects of the
proposed method are its speed and scalability. The run times
of the studied algorithms in terms of the selected number of
genes are presented in Table 3. We used the 11-tumours data-
set to evaluate the run times, but also observed similar trends
in other datasets. The run times in Table 3 represent the accu-
mulative time required for each algorithm to perform the fea-
ture selection step in all folds of the LOO procedure described
above. The run times do not include the time required for the
subsequent classification tasks. As mentioned earlier, in the
proposed method, the number of genes represents the aver-
age number of genes over different training/test partitions.
As shown in Table 3, the speed of the proposed algorithm is
more than other multi-gene algorithms, and in fact, is compa-
rable to the univariate methods.

The scalability of the studied algorithms was compared
on two datasets: the 11-tumours and a synthetic dataset
with one million features. The results are shown in Figs. 5
and 6, respectively. As in the previous case, the 11-tumours
dataset was used as a representative example among the
gene expression datasets investigated in this study. Here, a
comparison has been provided on the increase of the algo-
rithms’ run times with growing the number of genes in the
input dataset. The size of the input dataset was varied by
selecting only a subset of genes, specifically, the first 1,000,
2,000, 4,000, 8,000, and 10,000 genes, as well as including all
(12,533) genes, and the effect of this variation was evaluated
on the run times of the gene selection algorithms. In all
cases, the number of selected genes was kept constant at
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Fig. 4. The results of the stability test using (a) Lausser et al. [46], and (b) Kuncheva [47] methods for multiclass datasets. Leave one out was used
for sampling the datasets.

TABLE 3
Comparison of the Speed of the Studied Feature Selection Algorithms

No. of Sel e Univariate Methods Multivariate Methods

o- of Selected Genes BWSS BAHSIC-Lin SHS FMS L0 SVM-RFE mRMR
50 33.7 3.8 35.2 179.4 416.9 890.4 737.7
100 24.3 3.5 38.8 177.5 415.8 820.7 1,365.5
200 33.4 3.5 38.1 176.6 416.8 756.8 2,579.4
1,000 33.2 3.7 44 .4 168.7 424.1 662.7 7,523.6

Run times of the studied feature selection algorithms are presented in terms of the number of selected genes. The results are obtained using the 11-
tumours dataset. Run times are given in seconds.
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Fig. 5. Comparison of the scalability of the studied feature selection algo-
rithms. Run times are presented in terms of the total number of input
genes. The results are obtained using the 11-tumours dataset. In all
experiments, the number of selected genes was kept constant at 100.
The run time reported is the average time required for feature selection
in each round of leave one out. The run time results are not shown for
mRMR method, as they are significantly higher than other approaches
(their inclusion would scale down other run times and make their com-
parison very difficult).

100. The run time reported (vertical axis) corresponds to the
average time spent on feature selection in each round of
leave one out. In Fig. 5, the results for the mRMR method
was excluded because of its significantly higher run time
compared to other methods. As illustrated in this figure, the
run time of the proposed SHS method changed at a rate
comparable to univariate filter methods. As mentioned pre-
viously, using the BAHSIC method with linear kernels
(BAHSIC-Lin) reduces it to a univariate feature selection
method. However, in order to account for the interaction
and correlation among the genes in the BAHSIC, nonlinear
kernels should be used. Using a nonlinear kernel, such as
RBF kernel on the data in the BAHSIC, makes the process
extremely slow due to its backward elimination nature,
even if 10 percent of remaining features are removed in
each elimination step as suggested in [17]. The rightmost
panel in Fig. 5 depicts the scalability of the BAHSIC with an
RBF kernel (BAHSIC-RBF) on the 11-tumours dataset. A dif-
ferent panel is used for BAHSIC-RBF in Fig. 5 to enable its
comparison with other methods, as the vertical axis needs a
different scaling in BAHSIC-RBF due to its significantly
lower scalability.

In addition to the 11-tumours dataset, the scalability
results are shown in Fig. 6 on a synthetic dataset of one mil-
lion features and 200 data samples randomly generated
with a uniform distribution. In all algorithms, the number
of selected genes was kept unchanged at 1,000 and the num-
ber of input genes was changed across 125,000, 250,000,
500,000, and 1,000,000. Similar to the results on 11-tumours
dataset, the run times reported (vertical axis) corresponded
to the average time required for feature selection on each
fold of the LOO approach. The results for SVM-RFE, mRMR
and BAHSIC-RBF are not shown, as they took significantly
more time compared to other approaches. As can be seen
form this figure, the SHS outperforms other rival multivari-
ate approaches.

The development took place on a 64-bit machine with the
specifications: Intel (R) Xeon(R) CPU E5-2609 @ 2.40 GHz
with 32 GB of memory.

NO. 1, JANUARY/FEBRUARY 2017
100,
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Fig. 6. Comparison of the scalability of the studied feature selection algo-
rithms on a synthetic data with one million features and 200 data sam-
ples. Run times are presented in terms of the total number of input
genes. In all experiments, the number of selected features was kept con-
stant at 1,000. The run time reported is the average time required for fea-
ture selection in each round of leave one out. The run time results are
not shown for SVM-RFE and mRMR methods, as they are significantly
higher than other approaches (their inclusion would scale down other
run times and make their comparison very difficult).

3.3 Gene Expression Data-Continuous Response
Variables

As mentioned earlier, the proposed method can be used
with any type of response variable. Here, we demonstrate
the performance of the SHS method on a dataset with con-
tinuous response variables. The dataset is from a study by
Rosenwald et al. [50] and consists of 240 samples from
patients with diffuse large B-cell lymphoma (DLBCL). For
each sample, the gene expression levels of 7,399 genes are
available. The response variable here is the survival time of
patients, either observed or right censored. We used 160
samples in the training set and 80 samples in the test set.
For the censored survival times, we used an estimate of the
real survival time. Specifically, to estimate the true survival
time for the survival time T censored at ¢;, we evaluated
E[T|T > ty) based on the Kaplan-Meier [51] estimator.

In order to evaluate the quality of the selected genes, a
linear regressor was fitted to the identified genes in the
training set. Subsequently, the mean-square error (MSE) of
the predicted survival times on the test set using the fitted
model was used to quantify the quality of the selected sub-
set of genes. For feature selection, the SHS was employed
with two different types of kernels on the response varia-
bles: a linear kernel and an RBF kernel. We compared the
SHS with two other feature selection methods that can be
applied to continuous response variables, including the
BAHSIC with an RBF kernel on the response variables and
the Pearson correlation. Fig. 7 depicts the MSE of the pre-
dicted survival times on the test set when the number of
selected genes was set from 1 to 10. As shown, the SHS with
linear kernel outperformed the BAHSIC when the numbers
of selected genes was between 7 and 10, and otherwise, per-
formed equivalently. The Pearson correlation’s performance
fluctuated more over the range of selected genes, as its
performance deteriorated significantly for the number of
selected genes equal to 4, and from 8 to 10.

In order to investigate the effect of the kernel type on the
SHS method, the performance of the SHS using linear and
RBF kernels was compared on two synthetic data each with a
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Fig. 7. Comparison of the feature selection algorithms on a dataset with
continuous response variable. Feature selection algorithms were used
to identify genes predictive of patients’ survival times in the DLBCL data-
set. A linear regressor was fitted to the data consisting of the test sam-
ples and genes identified in the training set. The mean-square error of
the predicted survival times for the test set are presented. The number
of selected genes were varied from 1 to 10.

univariate continuous response variable. Similar to the
experiment on the synthetic data for the categorical response
variables in Section 3.1, a dataset X of 50 data samples and 60
features was generated with a uniform distribution. Two
univariate response variables y were generated, which were
dependent on only one specific feature, as follows:

y = sin®(7Xag,.) + 0.5¢, (13)

and

y= 05(X20) © €, (14)
where e~ N(0,1) is a normally-distributed ii.d. noise.
Whereas both response variables are only dependent on fea-
ture 20, the noise in (13) is additive, while in (14), it is multi-
plicative. Just as in the experiment on the synthetic data for
the categorical response variable, the parameter y was kept
constant at the value of 12, and p was set to select two fea-
tures on average over 1,000 runs of the random generations
of X and y. The kernel width of the RBF kernel was set to
the median of all the pairwise distances among the elements
in y. Fig. 8 displays the histograms of the indices of the
selected features by the SHS with linear (left graphs) and
RBF (right graphs) kernels. Whereas the SHS with the linear
and RBF kernels could successfully identify the correct fea-
ture (feature 20) for the response variable given in (13), the
success rate for identifying the correct feature by the SHS
with the linear kernel is far below (only 10.7 percent of the
trials) compared to the one with the RBF kernel (100 percent
of the trials) for the response variable given in (14).

4 CONCLUSION

This paper has described a novel method for selecting a
small subset of informative genes in a microarray experi-
ment.> The method was based on the Hilbert-Schmidt

3. The code for the proposed SHS algorithm is now available and
can be downloaded from: https:/ /uwaterloo.ca/data-science/sites/ca.
data-science/files /uploads/files/shs.zip
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Fig. 8. The histograms of the selected features using the SHS with a lin-
ear or RBF kernel on two synthetic continuous response variable data-
sets: (a) response variable with additive noise given in (13) and
(b) response variable with multiplicative noise given in (14). As can be
observed, in case of (b), the SHS with the linear kernel has a significantly
lower success rate (10.7 percent) to identify the correct feature
compared with the SHS with the RBF kernel (100 percent).

independence criterion, a recently proposed kernel-based
criterion for measuring the dependence between two
random variables. The method requires only a kernel of
labels and hence, it can be applied to datasets with any
type of response variables, biclass, multiclass, and con-
tinuous variables. Moreover, since only one row of the
data has to be examined at a time in the proposed fea-
ture selection algorithm (see Line 7 in Algorithm 2), the
method can be applied to large and distributed datasets
and is highly scalable, a very attractive attribute in
large-scale data analytics over a distributed environment
of commodity machines. Simulation results on real-world
data have demonstrated that the method is effective and
efficient in extracting stable genes with high predictive
capability, in particular on datasets with multiclass
response variables.

Although the proposed feature selection algorithm was
described with the application to gene selection, it can be
adapted in other applications where feature selection is
needed. Moreover, the approach can easily be employed as
a column subset selection algorithm in big data analytics—
provided that the dimensionality of data features is not too
high—Dby just transposing the input data before its submis-
sion to the proposed algorithm.
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