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A blockchain is a

* Secure
* Replicated database




A replicated database needs determinism

* Same input
* Same output



How do blockchains achieve determinism?

* Same input
e Serial Execution

* Same output
p HYPERLEDGER

>

Vv

ethereum




Consensus is no longer the bottleneck in
private blockchain
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Why not use a deterministic database straight?

e "Chainify" PostgreSQL using Aria

* Win hands down
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ABSTRACT

Deterministic databases are able to efficiently run transac-
tions across different replicas without coordination. How-
ever, existing state-of-the-art deterministic databases require
that transaction read/write sets are known before execution,
making such systems impractical in many OLTP applica-
tions. In this paper, we present Aria, a new distributed and
deterministic OLTP database that does not have this lim-
itation. The key idea behind Aria is that it first executes
a batch of transactions against the same database snapshot
in an ezecution phase, and then deterministically (without

tional latency to distributed transactions and impairs scal-
ability and availability (e.g., due to coordinator failures).

Deterministic concurrency control algorithms [18, 19, 51,
52] provide a new way of building distributed and highly
available database systems. They avoid the use of expen-
sive commit and replication protocols by ensuring different
replicas always independently produce the same results as
long as the same input transactions are given. Therefore,
rather than replicating and synchronizing the updates of
distributed transactions, deterministic databases only have
to replicate the input transactions across different replicas,
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Harmony: Blockchain marries DCC

 Deterministic Concurrency Control (DCC) optimized for Disk Blockchain

Pessimistic vs Optimistic DCC



Harmony 1: Judicious abort
Harmony: judicious abort

1) Cycle detection in 1) Avoid cycle in rw dependency subgraph: 1) Avoid cycle in rw dependency subgraph:
dependency graph Pattern Al: Ti -, Tj —— Tk Dangerous backward structure:
j>iandj>k Tie——Tj «—— Tk €8 T2-reads a
2) Break cycle by abort Abort Tj i<jandi<=k be]‘ore-lmage of
Abort Tj T1’s write
2) Avoid cycle in rw+ww dependency subgraph: 2) Avoid cycle in rw+ww dependency subgraph:
Pattern A2: Ti —— Tj, j > k Abert -> Update Reordering
Abort Tj

3) Complete rw+ww+wr graph: No need to worry wr-dependencies (i.e., dirty reads) because
all reads read snapshot from last committed block //i.e., no dirty read by design

- Expensive Lightweight :) Lightweight :)
unparallelizable cycle

detection on the

whole graph :(

No false abort :) Many false aborts, especially when hotspots (many  Few false aborts :)
ww on the hot items) :( Resilient to hotspots :)



Lemma: rw-dependency subgraph is acyclic if transactions in
dangerous backward structures are aborted

* Simple Idea: Breaks all backward (transitive) rw-dependencies

* l.e., smaller TID<«— higher TID

E.g, Tle— T2 «— T3

* No backward edges? Can't form cycles

rw rw rw

T1 > T2 > T3 > T4 No cycle




Next: ensure rw+ww dependency graph is also acyclic

Aria Harmony

On seeing ww-dependency?

Aria: abort Harmony:
reordering




Harmony 2: Update coalesce (during commit)

Without
coalesce:

With
coalesce:

________________________________________________________________

_______________________________________________________________




Harmony 3: Inter-block Parallelism
I I .

Design Choice No inter-block parallelism Inter-block Parallelism
(block i waits block (i-1) to finish) (block i can be in parallel with block (i-1))
Rationale DRAM DB Layer |/O DB Layer
Lower variance in transaction lifespan in a Higher variance in transaction lifespan in a block
block => block i-1 has idle cycles
Cost and Benefit - Benefit: Better CPU utilization and pipeline

Cost: Inter-block dependency tracking



Inter-block Parallelism

I [

Block i start time All transaction in block (i-1) finish When some CPU cycles idle in Block (i-1)
Block i read Snapshot of block (i-1) Snapshot of block (i-2)
Commit phase Patterns Al and A2 Inter-block dangerous backward structure



Summary of Harmony
_ a@ . Hamoy

Design Choice 1

Rationale

Design Choice 2

Rationale

Design Choice 3

High Abort Rate for Parallel Commit

Main-memory transactions are short-lived
- Hasty abort for easier parallel commit

No inter-block parallelism

Not an issue because main-memory
transaction lifespans are short and assumed
with low variance

No dealing with hotspot

Low Abort Rate with Parallel Commit

BC transactions are longer (consensus + disk |/0)
- An abort is way more expensive
==> Judicious abort

With inter-block parallelism

- BC transaction lifespans are longer and with
higher variance

- One straggler transaction in block i-1 would detain
subsequent blocks >= |

Deal with hotspot



Empirical Results

YCSB (5 read and 5 updates per txn, 0.6 zipf theta)

« 3.0x — 3.5x throughput over existing blockchains
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Empirical Results
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 Harmony is especially better under high contention!




.
Conclusions

e Relational Private Blockchain
e Support full SQL, access control, and recovery using PostgreSQL
* 300%-350% higher throughput than state-of-the-art

* Backing technology:

Deterministic Concurrency Control for Blockchain
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