
Daniel Lemire, Waterloo University, May 10th 2018.

Next Generation Indexes For Big Data Engineering

Daniel Lemire and collaborators
blog: https://lemire.me
twitter: @lemire

Université du Québec (TÉLUQ)
Montreal

Daniel Lemire, Waterloo University, May 10th 2018.

https://lemire.me/
https://twitter.com/lemire

Knuth on performance

Premature optimization is the root of all evil

Daniel Lemire, Waterloo University, May 10th 2018.

Knuth on performance

Premature optimization is the root of all evil (...) After a programmer knows which parts of his
routines are really important, a transformation like doubling up of loops will be worthwhile.

Daniel Lemire, Waterloo University, May 10th 2018.

Constants matter

fasta benchmark:

elapsed time total time (all processors)

single‑threaded 1.36 s 1.36 s

https://benchmarksgame‑team.pages.debian.net/benchmarksgame/performance/fasta.html

Daniel Lemire, Waterloo University, May 10th 2018.

https://benchmarksgame-team.pages.debian.net/benchmarksgame/performance/fasta.html

Constants matter

fasta benchmark:

elapsed time total time (all processors)

single‑threaded 1.36 s 1.36 s

multicore (4 cores) 1.00 s 2.00 s

Daniel Lemire, Waterloo University, May 10th 2018.

Constants matter

fasta benchmark:

elapsed time total time (all processors)

single‑threaded 1.36 s 1.36 s

multicore (4 cores) 1.00 s 2.00 s

vectorized (1 core) 0.31 s 0.31 s

https://lemire.me/blog/2018/01/02/multicore‑versus‑simd‑instructions‑the‑fasta‑case‑study/

Daniel Lemire, Waterloo University, May 10th 2018.

https://lemire.me/blog/2018/01/02/multicore-versus-simd-instructions-the-fasta-case-study/

“One Size Fits All”: An Idea Whose Time Has Come and Gone (Stonebraker, 2005)

Daniel Lemire, Waterloo University, May 10th 2018. 8

Rediscover Unix

In 2018, Big Data Engineering is made of several specialized and re‑usable components:

Calcite : SQL + optimization

Hadoop

etc.

Daniel Lemire, Waterloo University, May 10th 2018. 9

"Make your own database engine from parts"

We are in a Cambrian explosion, with thousands of organizations and companies building their
custom high‑speed systems.

Specialized used cases

Heterogeneous data (not everything is in your Oracle DB)

Daniel Lemire, Waterloo University, May 10th 2018. 10

For high‑speed in data engineering you need...

Front‑end (data frame, SQL, visualisation)

High‑level optimizations

Indexes (e.g., Pilosa, Elasticsearch)
Great compression routines

Specialized data structures

....

Daniel Lemire, Waterloo University, May 10th 2018. 11

Sets

A fundamental concept (sets of documents, identifiers, tuples...)

→ For performance, we often work with sets of integers (identifiers).

Daniel Lemire, Waterloo University, May 10th 2018. 12

tests : x ∈ S?

intersections : S ∩ S , unions : S ∪ S , differences : S ∖ S

Similarity (Jaccard/Tanimoto): ∣S ∩ S ∣/∣S ∪ S ∣

Iteration

for x in S do
 print(x)

2 1 2 1 2 1

1 1 1 2

Daniel Lemire, Waterloo University, May 10th 2018. 13

How to implement sets?

sorted arrays (std::vector<uint32_t>)

hash tables (java.util.HashSet<Integer> , std::unordered_set<uint32_t>)

…
bitmap (java.util.BitSet)

 compressed bitmaps

Daniel Lemire, Waterloo University, May 10th 2018. 14

Arrays are your friends

while (low <= high) {
 int mI =
 (low + high) >>> 1;
 int m = array.get(mI);
 if (m < key) {
 low = mI + 1;
 } else if (m > key) {
 high = mI - 1;
 } else {
 return mI;
 }
}
return -(low + 1);

Daniel Lemire, Waterloo University, May 10th 2018. 15

Hash tables

value x at index h(x)

random access to a value in expected constant‑time
much faster than arrays

Daniel Lemire, Waterloo University, May 10th 2018. 16

in‑order access is kind of terrible

[15, 3, 0, 6, 11, 4, 5, 9, 12, 13, 8, 2, 1, 14, 10, 7]
[15, 3, 0, 6, 11, 4, 5, 9, 12, 13, 8, 2, 1, 14, 10, 7]
[15, 3, 0, 6, 11, 4, 5, 9, 12, 13, 8, 2, 1, 14, 10, 7]
[15, 3, 0, 6, 11, 4, 5, 9, 12, 13, 8, 2, 1, 14, 10, 7]
[15, 3, 0, 6, 11, 4, 5, 9, 12, 13, 8, 2, 1, 14, 10, 7]
[15, 3, 0, 6, 11, 4, 5, 9, 12, 13, 8, 2, 1, 14, 10, 7]

(Robin Hood, linear probing, MurmurHash3 hash function)

Daniel Lemire, Waterloo University, May 10th 2018. 17

Set operations on hash tables

 h1 <- hash set
 h2 <- hash set
 ...
 for(x in h1) {
 insert x in h2 // cache miss?
 }

Daniel Lemire, Waterloo University, May 10th 2018. 18

"Crash" Swift

var S1 = Set<Int>(1...size)
var S2 = Set<Int>()
for i in d {
 S2.insert(i)
}

Daniel Lemire, Waterloo University, May 10th 2018. 19

Some numbers: half an hour for 64M keys

size time (s)

1M 0.8

8M 22

64M 1400

Maps and sets can have quadratic‑time performance
https://lemire.me/blog/2017/01/30/maps‑and‑sets‑can‑have‑quadratic‑time‑performance/

Rust hash iteration+reinsertion
https://accidentallyquadratic.tumblr.com/post/153545455987/rust‑hash‑iteration‑reinsertion

Daniel Lemire, Waterloo University, May 10th 2018. 20

https://lemire.me/blog/2017/01/30/maps-and-sets-can-have-quadratic-time-performance/
https://accidentallyquadratic.tumblr.com/post/153545455987/rust-hash-iteration-reinsertion

Daniel Lemire, Waterloo University, May 10th 2018. 21

Bitmaps

Efficient way to represent sets of integers.

For example, 0, 1, 3, 4 becomes 0b11011 or "27".

{0} → 0b00001

{0, 3} → 0b01001

{0, 3, 4} → 0b11001

{0, 1, 3, 4} → 0b11011

Daniel Lemire, Waterloo University, May 10th 2018. 22

Manipulate a bitmap

64‑bit processor.

Given x , word index is x/64 and bit index x % 64 .

add(x) {
 array[x / 64] |= (1 << (x % 64))
}

Daniel Lemire, Waterloo University, May 10th 2018. 23

How fast is it?

index = x / 64 -> a shift
mask = 1 << (x % 64) -> a shift
array[index] |- mask -> a OR with memory

One bit every ≈ 1.65 cycles because of superscalarity

Daniel Lemire, Waterloo University, May 10th 2018. 24

Bit parallelism

Intersection between {0, 1, 3} and {1, 3}
a single AND operation
between 0b1011 and 0b1010 .

Result is 0b1010 or {1, 3}.

No branching!

Daniel Lemire, Waterloo University, May 10th 2018. 25

Bitmaps love wide registers

SIMD: Single Intruction Multiple Data
SSE (Pentium 4), ARM NEON 128 bits

AVX/AVX2 (256 bits)

AVX‑512 (512 bits)

AVX‑512 is now available (e.g., from Dell!) with Skylake‑X processors.

Daniel Lemire, Waterloo University, May 10th 2018. 26

Bitsets can take too much memory

{1, 32000, 64000} : 1000 bytes for three values

We use compression!

Daniel Lemire, Waterloo University, May 10th 2018. 27

Git (GitHub) utilise EWAH

Run‑length encoding

Example: 000000001111111100 est
00000000 − 11111111 − 00

Code long runs of 0s or 1s efficiently.

https://github.com/git/git/blob/master/ewah/bitmap.c

Daniel Lemire, Waterloo University, May 10th 2018. 28

https://github.com/git/git/blob/master/ewah/bitmap.c

Complexity

Intersection : O(∣S ∣ + ∣S ∣) or O(min(∣S ∣, ∣S ∣))

In‑place union (S ← S ∪ S): O(∣S ∣ + ∣S ∣) or O(∣S ∣)
1 2 1 2

2 1 2 1 2 2

Daniel Lemire, Waterloo University, May 10th 2018. 29

Roaring Bitmaps

http://roaringbitmap.org/

Apache Lucene, Solr et Elasticsearch, Metamarkets’ Druid, Apache Spark, Apache Hive,
Apache Tez, Netflix Atlas, LinkedIn Pinot, InfluxDB, Pilosa, Microsoft Visual Studio Team
Services (VSTS), Couchbase's Bleve, Intel’s Optimized Analytics Package (OAP), Apache
Hivemall, eBay’s Apache Kylin.

Java, C, Go (interoperable)

Roaring bitmaps 30

http://roaringbitmap.org/

Hybrid model

Set of containers

sorted arrays ({1,20,144})

bitset (0b10000101011)

runs ([0,10],[15,20])

Related to: O'Neil's RIDBit + BitMagic

Roaring bitmaps 31

Roaring bitmaps 32

Roaring

All containers are small (8 kB), fit in CPU cache

We predict the output container type during computations

E.g., when array gets too large, we switch to a bitset

Union of two large arrays is materialized as a bitset...

Dozens of heuristics... sorting networks and so on

Roaring bitmaps 33

Use Roaring for bitmap compression whenever possible. Do not use other bitmap compression
methods (Wang et al., SIGMOD 2017)

Roaring bitmaps 34

Unions of 200 bitmaps

bits per stored value

bitset array hash table Roaring

census1881 524 32 195 15.1

weather 15.3 32 195 5.38

cycles per input value:

bitset array hash table Roaring

census1881 9.85 542 1010 2.6

weather 0.35 94 237 0.16

Roaring bitmaps 35

Sometimes you do want arrays!!!

But you'd like to compress them up.

Not always: compression can be counterproductive.

Still, if you must compress, you want to do it fast

Integer compression 36

Integer compression

"Standard" technique: VByte, VarInt, VInt

Use 1, 2, 3, 4, ... byte per integer

Use one bit per byte to indicate the length of the integers in bytes

Lucene, Protocol Buffers, etc.

Integer compression 37

varint‑GB from Google

VByte: one branch per integer

varint‑GB: one branch per 4 integers

each 4‑integer block is preceded byte a control byte

Integer compression 38

Vectorisation

Stepanov (STL in C++) working for Amazon proposed varint‑G8IU

Use vectorization (SIMD)

Patented

Fastest byte‑oriented compression technique (until recently)

SIMD‑Based Decoding of Posting Lists, CIKM 2011
https://stepanovpapers.com/SIMD_Decoding_TR.pdf

Integer compression 39

https://stepanovpapers.com/SIMD_Decoding_TR.pdf

Observations from Stepanov et al.

We can vectorize Google's varint‑GB, but it is not as fast as varint‑G8IU

Integer compression 40

Stream VByte

Reuse varint‑GB from Google

But instead of mixing control bytes and data bytes, ...

We store control bytes separately and consecutively...

Daniel Lemire, Nathan Kurz, Christoph Rupp
Stream VByte: Faster Byte‑Oriented Integer Compression
Information Processing Letters 130, 2018

Integer compression 41

Integer compression 42

Stream VByte is used by...

Redis (within RediSearch) https://redislabs.com

upscaledb https://upscaledb.com

Trinity https://github.com/phaistos‑networks/Trinity

Integer compression 43

https://redislabs.com/
https://upscaledb.com/
https://github.com/phaistos-networks/Trinity

Dictionary coding

Use, e.g., by Apache Arrow

Given a list of values:

"Montreal", "Toronto", "Boston", "Montreal", "Boston"...

Map to integers

0, 1, 2, 0, 2

Compress integers:

Given 2 distinct values...

Can use n‑bit per values (binary packing, patched coding, frame‑of‑reference)

n

Integer compression 44

Dictionary coding + SIMD

dict. size bits per value scalar AVX2 (256‑bit) AVX‑512 (512‑bit)

32 5 8 3 1.5

1024 10 8 3.5 2

65536 16 12 5.5 4.5

(cycles per value decoded)

https://github.com/lemire/dictionary

Integer compression 45

https://github.com/lemire/dictionary

To learn more...

Blog (twice a week) : https://lemire.me/blog/

GitHub: https://github.com/lemire

Home page : https://lemire.me/en/

CRSNG : Faster Compressed Indexes On Next‑Generation Hardware (2017‑2022)

Twitter @lemire

@lemire 46

https://lemire.me/blog/
https://github.com/lemire
https://lemire.me/en/

