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Goal

Determine how best to use RDMA-accessible memory for 
database services

Hardware latency & bandwidth (your mileage may vary)

• Level 0 – DRAM  0.1 s, 500 Gbps

• Level 1 – RDMA  1.0 s, 100 Gbps

• Level 2 – SSD      100 s,   48 Gbps
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Why Use Remote Memory as a Cache?

• Database workload benefits from a larger cache
• But VM’s physical server has no available memory

• Workload changes permanently or periodically

• There is lots of unused memory in data centers
• External fragmentation, due to bin packing of VMs on a server

• Internal fragmentation, because VMs overprovision memory

• Faster datacenter networks → disaggregated memory is coming 
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Unallocated Memory in Azure

• Unallocated memory across clusters and time
• Median – 46%

• 10th percentile – 37%

• 1st percentile – 28%

• Daily peak-to-trough is 2x

• Extreme case is stranded memory, on servers with no available cores
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Stranded Memory
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Fraction of memory stranded
• Median cluster, 8% stranded

• 10th percentile,  16% stranded

• 1st percentile,  23% stranded

Location

Stranding duration
• 75th percentile – 22 minutes

• Median – 13 minutes

• 25th percentile – 6 minutes



Outline 

✓Motivation

• Redy, a remote-cache manager
• Optimizing for throughput vs. latency

• Implementation

• Experiments

• Case study – FASTER key-value store

• CompuCache - Adding stored procedures
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RDMA-accessible Cache
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• Front End: an easy-to-use and general device abstraction

• Back End: efficient remote memory accesses via RDMA
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RDMA
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Research Challenge

Tuning RDMA performance
• Many RDMA tuning knobs for best latency or throughput

• Parallelization, asynchrony, 

batching, 1-sided/2-sided, …

• Optimal choice depends on 

record size, VM size, SLO, 

network configuration, …

• Experiment shows YCSB-like

workload for 8-byte payloads
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Throughput Benefit of Static Optimizations
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Latency Benefit of Static Optimizations
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Workload-dependent Optimization

• (Offline) For each network distance, message size, and [c, s, b, q] 
measure the latency and throughput. 

• (At runtime) Find the cheapest [s, c, b, q] that satisfies the SLO. 
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Variable Description Lower 
Bound

Upper Bound

c # client threads 1 Client cores

s # server threads 0 c

b # requests per batch 1 4KB / record-size 

q # in-flight operations Static opt NIC spec

• Primary determinants of Redy performance



Offline - Too Many Configurations to Measure

• Test parameter values that are powers of 2
• [1,1,1,1],   [1,2,1,1],   [1,4,1,1],   [1,8,1,1],   [1,16,1,1], etc.

• Throughput(s,c,b,q) increases w.r.t. all parameters …
• Until thread and connection contention cause it to drop 

• At that point, stop increasing that parameter

• Offline: 15 hours for [0:30, 1:30, 1:500, 1:16]

• Online: scan parameters until throughput is achieved
• Then check latency. 
• Average search time is 27 ms. 
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VM Allocation

• Cache manager chooses VM with enough memory and cores

• Sometimes it’s better to allocate multiple VMs that together have 
enough memory, each with enough cores/memory.

• Can use spot instances
• Requires cache migration on short notice

• Periodically check for cheaper VMs
• If successful, allocate and migrate
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Dynamic Memory Management

• Cache failure – allocate a new cache [and populate it from a checkpoint]

• Spot instance reclamation – migrate cache to a newly allocated cache
• Use bandwidth-optimized connection from new to old

• Use one-sided reads to migrate the content

• Optimizations
• Allow application reads of old cache during migration

• Migrate region-by-region and stop writes only to the region being migrated
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Implementation

• 13,700 lines of C++

• CLR wrapper for access by .NET applications

• Uses NDSPI to access RDMA on Windows.
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Outline 

✓Motivation

✓Redy, a remote-cache manager
• Optimizing for throughput vs. latency

• Implementation

• Experiments

• Case study – FASTER key-value store

• CompuCache - Adding stored procedures
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Experiments

• Azure HPC Standard_HB60rs VMs. 

• Each VM has 60 vCPUs, with 2.0 GHz AMD EPYC 7551
• 228 GB of memory

• 700 GB Azure premium SSD

• Mellanox ConnectX-5 NIC, supporting 100 Gb/s EDR Infiniband

• Windows 2019 Datacenter
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Latency-Optimized Configuration (Reads)

• Reads are close 
to raw network 
speed of 3-4𝜇s

• Small writes are 
a bit faster by 
in-lining them 
in the request 
(not shown)
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Throughput-Optimized Configuration (Reads)

• For 16-byte records, 
throughput is 10x raw.

• Batching benefit stops at 
256-bytes, the RDMA 
minimum packet size.

• Throughput of writes is 
similar.
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Accuracy of Throughput SLOs
• Use interpolation to map SLO to a configuration

• We randomly choose 100 SLO’s, allocate a cache with the recommended configuration, 
and measure its performance
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• Measured latency is always much 
better than the SLO and close to 
predicted (not shown)

• Real throughput is always 
better than SLO



Optimizing Region Migration
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Outline 

✓Motivation

✓Redy, a remote-cache manager
• Optimizing for throughput vs. latency

• Implementation

✓Experiments

• Case study – FASTER key-value store

• CompuCache - Adding stored procedures
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FASTER’s Multi-tier Storage
• The top tier stores the entire database and is the slowest

• Lower tier replicates a tail of next higher tier and is faster

• FASTER services cache misses from the lowest tier that has the data
• Uses address calculation to pick the correct tier
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• Our target
• Level 0 is client cache (where FASTER executes)

• Level 1 is a Redy cache

• Level 2 is client-attached SSD
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FASTER vs. SSD and SMB Direct

• FASTER local memory 
is 1GB 

• 24-byte records

• Random reads from 
~6GB database

• All devices can hold 
the complete log

• Redy uses batching
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Outline 

✓Motivation

✓Redy, a remote-cache manager
• Optimizing for throughput vs. latency

• Implementation

✓Experiments

✓Case study – FASTER key-value store

• CompuCache - Adding stored procedures
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CompuCache

• Extend Redy with stored procedures and server-side pointer chasing

• Server-side pointer chasing
• Apps know cache addresses, but chasing pointers requires physical addresses

• Solution: LocalTranslator
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CompuCache  Out-of-Bounds Exceptions

• A sproc may span VM boundaries
• Data Shipping - Flow the input data with Dflow:

• Function Shipping - Flow the sproc function with Fflow:

• Stop and return
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CompuCache Execution

• Transport is eRPC over DPDK or RDMA
• Batches all operation requests

• Dynamically chooses batch size of responses

• Server uses one thread per core
• Polls for requests and executes them on the same thread

• Server-wide scheduler load-balances by moving requests between threads
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CompuCache Execution (cont’d)

• On DFlow, the request becomes inactive and resumes after data transfer

• FFlow dispatches request to another thread
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Server Migration

• Client maintains mapping for LocalTranslator

• When a server VM is reclaimed, client allocates new VM(s)

• For each region
• Client pauses reads and writes for the region

• Migrates the region

• Updates LocalTranslator mapping

• Broadcasts mapping to servers

• Resumes reads and writes for the region

• Server forwards future stale DFlow and FFlow requests to the new region

• After server is migrated, it sends remaining request to new VMs

32



Conclusion

• A remote cache is a must for data management
• It uses memory that currently goes to waste

• With RDMA, it offers big performance gains

• Use stored procedures for pointer-chasing 

• Remaining work
• Integrate with Azure’s VM allocator

Redy https://arxiv.org/ftp/arxiv/papers/2112/2112.12946.pdf 

CompuCache https://www.cidrdb.org/cidr2022/papers/p31-zhang.pdf
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