
A Remote Dynamic
Memory Cache

Qizhen Zhang, Phil Bernstein, Daniel Berger,
Badrish Chandramouli, Vincent Liu, Boon Thau Loo

March 28, 2024

Goal

Determine how best to use RDMA-accessible memory for
database services

Hardware latency & bandwidth (your mileage may vary)

• Level 0 – DRAM 0.1 s, 500 Gbps

• Level 1 – RDMA 1.0 s, 100 Gbps

• Level 2 – SSD 100 s, 48 Gbps

2

Why Use Remote Memory as a Cache?

• Database workload benefits from a larger cache
• But VM’s physical server has no available memory

• Workload changes permanently or periodically

• There is lots of unused memory in data centers
• External fragmentation, due to bin packing of VMs on a server

• Internal fragmentation, because VMs overprovision memory

• Faster datacenter networks → disaggregated memory is coming

3

Unallocated Memory in Azure

• Unallocated memory across clusters and time
• Median – 46%

• 10th percentile – 37%

• 1st percentile – 28%

• Daily peak-to-trough is 2x

• Extreme case is stranded memory, on servers with no available cores

4

Stranded Memory

5

Fraction of memory stranded
• Median cluster, 8% stranded

• 10th percentile,  16% stranded

• 1st percentile,  23% stranded

Location

Stranding duration
• 75th percentile – 22 minutes

• Median – 13 minutes

• 25th percentile – 6 minutes

Outline

✓Motivation

• Redy, a remote-cache manager
• Optimizing for throughput vs. latency

• Implementation

• Experiments

• Case study – FASTER key-value store

• CompuCache - Adding stored procedures

6

RDMA-accessible Cache

7

• Front End: an easy-to-use and general device abstraction

• Back End: efficient remote memory accesses via RDMA

App
Redy
Client

Byte-addressable Device
[0, size-1]

Create(size)

Reshape/Delete

Redy
Server

Redy
Server

Fixed-length Regions

RDMA NIC

R
D

M
A

N

IC

R
D

M
A

N

IC

Read/Write

RDMA
Read/Write

RDMA

8

App
RDMA

NIC

Mem

CPU
Send Queue

Recv Queue

Queue Pair

RDMA
NIC

2-sided

1-sided

Client Machine Server Machine

Research Challenge

Tuning RDMA performance
• Many RDMA tuning knobs for best latency or throughput

• Parallelization, asynchrony,

batching, 1-sided/2-sided, …

• Optimal choice depends on

record size, VM size, SLO,

network configuration, …

• Experiment shows YCSB-like

workload for 8-byte payloads

9

1E+0

1E+1

1E+2

1E+3

1E+0

1E+1

1E+2

1E+3

Latency-optimal Balanced Throughput-optimal Th
ro

u
gh

p
u

t
(m

ill
io

n
 o

p
/s

)

La
te

n
cy

 (
μ

s)

Latency Throughput

4.1 μs

14 μs

538 μs

1.2 M/s

77 M/s
205 M/s

Range of RDMA Configurations

Throughput Benefit of Static Optimizations

10

0.0

0.4

0.8

1.2

Baseline Lock-free
communication

One-sided
RDMA verbs

Fully-loaded
QPs

Affinitized
threads

Th
ro

u
gh

p
u

t
(m

ill
io

n
 o

p
/s

)

• One client thread, one server thread, 8-byte read/write, no batching

0.1 MOPS

1.1 MOPS

Latency Benefit of Static Optimizations

11

0

10

20

30

Baseline Lock-free
communication

One-sided
RDMA verbs

Fully-loaded QPs Affinitized
threads

La
te

n
cy

 (
μ

s)

Roundtrip Overall143 μs
99th %-ile

5.5 μs
99th %-ile

• One client thread, one server thread, 8-byte read/write, no batching

Median
overall

Network
roundtrip

Workload-dependent Optimization

• (Offline) For each network distance, message size, and [c, s, b, q]
measure the latency and throughput.

• (At runtime) Find the cheapest [s, c, b, q] that satisfies the SLO.

12

Variable Description Lower
Bound

Upper Bound

c # client threads 1 Client cores

s # server threads 0 c

b # requests per batch 1 4KB / record-size 

q # in-flight operations Static opt NIC spec

• Primary determinants of Redy performance

Offline - Too Many Configurations to Measure

• Test parameter values that are powers of 2
• [1,1,1,1], [1,2,1,1], [1,4,1,1], [1,8,1,1], [1,16,1,1], etc.

• Throughput(s,c,b,q) increases w.r.t. all parameters …
• Until thread and connection contention cause it to drop

• At that point, stop increasing that parameter

• Offline: 15 hours for [0:30, 1:30, 1:500, 1:16]

• Online: scan parameters until throughput is achieved
• Then check latency.
• Average search time is 27 ms.

13

VM Allocation

• Cache manager chooses VM with enough memory and cores

• Sometimes it’s better to allocate multiple VMs that together have
enough memory, each with enough cores/memory.

• Can use spot instances
• Requires cache migration on short notice

• Periodically check for cheaper VMs
• If successful, allocate and migrate

14

Dynamic Memory Management

• Cache failure – allocate a new cache [and populate it from a checkpoint]

• Spot instance reclamation – migrate cache to a newly allocated cache
• Use bandwidth-optimized connection from new to old

• Use one-sided reads to migrate the content

• Optimizations
• Allow application reads of old cache during migration

• Migrate region-by-region and stop writes only to the region being migrated

15

Implementation

• 13,700 lines of C++

• CLR wrapper for access by .NET applications

• Uses NDSPI to access RDMA on Windows.

16

Outline

✓Motivation

✓Redy, a remote-cache manager
• Optimizing for throughput vs. latency

• Implementation

• Experiments

• Case study – FASTER key-value store

• CompuCache - Adding stored procedures

17

Experiments

• Azure HPC Standard_HB60rs VMs.

• Each VM has 60 vCPUs, with 2.0 GHz AMD EPYC 7551
• 228 GB of memory

• 700 GB Azure premium SSD

• Mellanox ConnectX-5 NIC, supporting 100 Gb/s EDR Infiniband

• Windows 2019 Datacenter

18

Latency-Optimized Configuration (Reads)

• Reads are close
to raw network
speed of 3-4𝜇s

• Small writes are
a bit faster by
in-lining them
in the request
(not shown)

19

0

4

8

12

16

20

4 16 64 256 1024 4096 16384

La
te

n
cy

 (
μ

s)

Record size (bytes) - log scale

Redy (median) Redy (average) Raw (average)

Throughput-Optimized Configuration (Reads)

• For 16-byte records,
throughput is 10x raw.

• Batching benefit stops at
256-bytes, the RDMA
minimum packet size.

• Throughput of writes is
similar.

20

0.1

1

10

100

1000

4 16 64 256 1024 4096 16384Th
ro

u
gh

o
p

u
t

(M
O

P
S)

 -
 lo

g
sc

al
e

Record size (bytes) - log scale

Redy Redy (stranded-memory) Raw

Accuracy of Throughput SLOs
• Use interpolation to map SLO to a configuration

• We randomly choose 100 SLO’s, allocate a cache with the recommended configuration,
and measure its performance

21

• Measured latency is always much
better than the SLO and close to
predicted (not shown)

• Real throughput is always
better than SLO

Optimizing Region Migration

22

0

40

80

120

160

200

0 30 60 90 120 150 180 210 240

Th
ro

u
gh

p
u

t
(M

O
P

S)

Time (second)

w/ unpaused reads

w/o unpaused reads

migrating 1 region 2 regions 4 regions

0

40

80

120

160

200

0 30 60 90 120 150 180 210 240

Th
ro

u
gh

p
u

t
(M

O
P

S)

Time (second)

w/ pause-on-migration writes

w/o pause-on-migration writes

migrating 1
region

2 regions 4 regions

• Successively migrate 1GB regions

Outline

✓Motivation

✓Redy, a remote-cache manager
• Optimizing for throughput vs. latency

• Implementation

✓Experiments

• Case study – FASTER key-value store

• CompuCache - Adding stored procedures

23

FASTER’s Multi-tier Storage
• The top tier stores the entire database and is the slowest

• Lower tier replicates a tail of next higher tier and is faster

• FASTER services cache misses from the lowest tier that has the data
• Uses address calculation to pick the correct tier

24

Mutable
Read-Only

Cached

Level 2
Complete log

Application
Threads

Hash Index

Main Memory

Storage

Tail

Level 1
Partial logI

D
e
v
i
c
e

• Our target
• Level 0 is client cache (where FASTER executes)

• Level 1 is a Redy cache

• Level 2 is client-attached SSD

25

Mutable
Read-Only

Cached

Level 2
Complete log

Main MemoryTail

Level 1
Partial logI

D
e
v
i
c
e SSD

Redy
Cache

Storage

FASTER’s Multi-tier Storage (cont’d)

FASTER vs. SSD and SMB Direct

• FASTER local memory
is 1GB

• 24-byte records

• Random reads from
~6GB database

• All devices can hold
the complete log

• Redy uses batching

26

0.0

0.4

0.8

1.2

1.6

2.0

2.4

1 2 4

Th
ro

u
gh

p
u

t
(M

O
P

S)

#Application threads

FASTER (Redy) FASTER (SMB Direct) FASTER (SSD)

Outline

✓Motivation

✓Redy, a remote-cache manager
• Optimizing for throughput vs. latency

• Implementation

✓Experiments

✓Case study – FASTER key-value store

• CompuCache - Adding stored procedures

27

CompuCache

• Extend Redy with stored procedures and server-side pointer chasing

• Server-side pointer chasing
• Apps know cache addresses, but chasing pointers requires physical addresses

• Solution: LocalTranslator

28

ቐ

cache address

ቐ

physical address

CompuCache Out-of-Bounds Exceptions

• A sproc may span VM boundaries
• Data Shipping - Flow the input data with Dflow:

• Function Shipping - Flow the sproc function with Fflow:

• Stop and return

29

CompuCache Execution

• Transport is eRPC over DPDK or RDMA
• Batches all operation requests

• Dynamically chooses batch size of responses

• Server uses one thread per core
• Polls for requests and executes them on the same thread

• Server-wide scheduler load-balances by moving requests between threads

30

coreworkqueue

f f f f

coreworkqueue

ቐ

server-wide scheduler

f f

CompuCache Execution (cont’d)

• On DFlow, the request becomes inactive and resumes after data transfer

• FFlow dispatches request to another thread

31

Server Migration

• Client maintains mapping for LocalTranslator

• When a server VM is reclaimed, client allocates new VM(s)

• For each region
• Client pauses reads and writes for the region

• Migrates the region

• Updates LocalTranslator mapping

• Broadcasts mapping to servers

• Resumes reads and writes for the region

• Server forwards future stale DFlow and FFlow requests to the new region

• After server is migrated, it sends remaining request to new VMs

32

Conclusion

• A remote cache is a must for data management
• It uses memory that currently goes to waste

• With RDMA, it offers big performance gains

• Use stored procedures for pointer-chasing

• Remaining work
• Integrate with Azure’s VM allocator

Redy https://arxiv.org/ftp/arxiv/papers/2112/2112.12946.pdf

CompuCache https://www.cidrdb.org/cidr2022/papers/p31-zhang.pdf

33

https://arxiv.org/ftp/arxiv/papers/2112/2112.12946.pdf
https://www.cidrdb.org/cidr2022/papers/p31-zhang.pdf

	Slide 1: A Remote Dynamic Memory Cache
	Slide 2: Goal
	Slide 3: Why Use Remote Memory as a Cache?
	Slide 4: Unallocated Memory in Azure
	Slide 5: Stranded Memory
	Slide 6: Outline
	Slide 7: RDMA-accessible Cache
	Slide 8: RDMA
	Slide 9: Research Challenge Tuning RDMA performance
	Slide 10: Throughput Benefit of Static Optimizations
	Slide 11: Latency Benefit of Static Optimizations
	Slide 12: Workload-dependent Optimization
	Slide 13: Offline - Too Many Configurations to Measure
	Slide 14: VM Allocation
	Slide 15: Dynamic Memory Management
	Slide 16: Implementation
	Slide 17: Outline
	Slide 18: Experiments
	Slide 19: Latency-Optimized Configuration (Reads)
	Slide 20: Throughput-Optimized Configuration (Reads)
	Slide 21: Accuracy of Throughput SLOs
	Slide 22: Optimizing Region Migration
	Slide 23: Outline
	Slide 24: FASTER’s Multi-tier Storage
	Slide 25
	Slide 26: FASTER vs. SSD and SMB Direct
	Slide 27: Outline
	Slide 28: CompuCache
	Slide 29: CompuCache Out-of-Bounds Exceptions
	Slide 30: CompuCache Execution
	Slide 31: CompuCache Execution (cont’d)
	Slide 32: Server Migration
	Slide 33: Conclusion

