GPU Databases—The New Modality of Data Analytics

Xiangyao Yu
University of Wisconsin-Madison

Outline

GPU hardware trend

Demo of Camelot
GPU database optimizations

- Tile-based execution (SIGMOD 2020)
- Data Compression (SIGMOD 2022)
- Heterogeneous CPU-GPU DBMS (VLDB 2022)
- Accelerating UDF on GPUs (DaMoN@SIGMOD 2023)
- Multi-GPU database (on-going)

GPU for SQL Data Analytics

GPU target applications:

$>$ There are many, many threads
>Threads perform very similar operations
>Threads have simple control flow
$>$ Threads are mostly independent (minimal synchronization)

GPU for SQL Data Analytics

GPU target applications:

$>$ There are many, many threads
>Threads perform very similar operations
>Threads have simple control flow
$>$ Threads are mostly independent (minimal synchronization)

What about SQL data analytics???

GPU for SQL Data Analytics

GPU target applications:

$>$ There are many, many threads
$>$ Threads perform very similar operations
> Threads have simple control flow
$>$ Threads are mostly independent (minimal synchronization)

What about SQL data analytics???
 GPU is very suitable for SQL data analytics

Running SQL analytics on GPUs can give 10-25x speedup over CPU

Advantages of GPU for Data Analytics

Advantage 1: Higher computation power
>GPU has massive parallelism using SIMT model

Advantages of GPU for Data Analytics

Advantage 1: Higher computation power
Advantage 2: Higher memory bandwidth
>GPU memory bandwidth is an order-of-magnitude higher than CPU.

GPU Trend

(a) GPU Peak Performance

GPU peak performance increase by 5x from 2020 to 2023.

GPU Trend

GPU peak performance increase by 5x from 2020 to 2023. GPU memory bandwidth increase by $3.5 x$ from 2020 to 2023.

Challenges of GPU for Data Analytics

Challenge 1: Limited memory capacity
>Some data sets do not fit in GPU memory

Challenges of GPU for Data Analytics

Challenge 1: Limited memory capacity
Challenge 2: Limited interconnect bandwidth
$>$ Transferring data from CPU can be expensive

GPU Trend

(a) GPU Memory Capacity

GPU memory capacity increase by $6 x$ in the last 5 years.

GPU Trend

GPU memory capacity increase by $6 x$ in the last 5 years. PCle increase by $2 x$ every two years.

GPU Trend

(a) GPU Memory Capacity

(b) PCle Bandwidth

(c) NVLink Bandwidth

GPU memory capacity increase by $6 x$ in the last 5 years. PCle increase by $2 x$ every two years. NVLink Bandwidth increase by $3 x$ in 5 years.

GPU Trend

(a) GPU Memory Capacity

(b) PCle Bandwidth

(c) NVLink Bandwidth

GPU memory capacity increase by $6 x$ in the last 5 years. PCle increase by $2 x$ every two years.
NVLink Bandwidth increase by $3 x$ in 5 years. NVLink C2C (2022) connect NVIDIA GPU and NVIDIA CPU (450 GB/s).

Outline

GPU hardware trend

Demo of Camelot

GPU database optimizations

- Tile-based execution (SIGMOD 2020)
- Data Compression (SIGMOD 2022)
- Heterogeneous CPU-GPU DBMS (VLDB 2022)
- Accelerating UDF on GPUs (DaMoN@SIGMOD 2023)
- Multi-GPU database (on-going)

Camelot v0.1 \rightarrow Demo!

Outline

GPU hardware trend
Demo of Camelot

GPU database optimizations

- Tile-based execution (SIGMOD 2020)
- Data Compression (SIGMOD 2022)
- Heterogeneous CPU-GPU DBMS (VLDB 2022)
- Accelerating UDF on GPUs (DaMoN@SIGMOD 2023)
- Multi-GPU database (on-going)

GPU Database Optimizations

Thrust 1: Enabling Large-Scale Data Analytics on GPUs $>$ Crystal: tile-based execution (SIGMOD 2020 ${ }^{[1]}$) $>$ Data Compression (SIGMOD 20222 ${ }^{[2]}$) $>$ Heterogeneous CPU-GPU DBMS (VLDB 2022 ${ }^{[3]}$) $>$ Multi-GPU DBMS (ongoing)

Thrust 2: Enhancing the Practicality of GPU Databases $>$ Accelerating UDF on GPUs (DaMoN@SIGMOD 2023 ${ }^{[4]}$) $>$ Code Generation for GPU DBMS (ongoing)

GPU Database Optimizations

Thrust 1: Enabling Large-Scale Data Analytics on GPUs
$>$ Crystal: tile-based execution (SIGMOD 2020 ${ }^{[1]}$)
$>$ Data Compression (SIGMOD 2022 ${ }^{[2]}$)
$>$ Heterogeneous CPU-GPU DBMS (VLDB 2022 ${ }^{[3]}$)
$>$ Multi-GPU DBMS (ongoing)
Thrust 2: Enhancing the Practicality of GPU Databases
$>$ Accelerating UDF on GPUs (DaMoN@SIGMOD 2023 ${ }^{[4]}$)
$>$ Code Generation for GPU DBMS (ongoing)

GPU Database Optimizations

Thrust 1: Enabling Large-Scale Data Analytics on GPUs
$>$ Crystal: tile-based execution (SIGMOD 2020 ${ }^{[1]}$)
>Data Compression (SIGMOD 2022 $2^{[2])}$
>Heterogeneous CPU-GPU DBMS (VLDB 2022 ${ }^{[3]}$)
>Multi-GPU DBMS (ongoing)

Crystal Library: Tile-Based Execution Model

Problem: Conventional execution model incurs excessive memory traffic for reading/writing intermediate results

(a) Conventional execution model

Crystal Library: Tile-Based Execution Model

Key Idea: Partition data into small tiles and store intermediate results in the shared memory ($\sim 10 x$ faster)

Experimental Results

With Crystal, GPU is on average 25X faster than CPU running StarSchema Benchmark (SSB).

GPU Database Optimizations

Thrust 1: Enabling Large-Scale Data Analytics on GPUs

$>$ Tile-based execution (SIGMOD 2020 ${ }^{[1]}$)
>Data Compression (SIGMOD 2022 ${ }^{\left[{ }^{[2]}\right)}$
>Heterogeneous CPU-GPU DBMS (VLDB 2022 ${ }^{[3]}$)
>Multi-GPU DBMS (ongoing)

Idea 1: Tile-Based Decompression

Tile-based execution to keep intermediate results in shared memory

(a) Conventional decompression model
(b) Tile-based decompression model

Idea 2: GPU-Optimized Compression Format

Compact data format that can fully saturates GPU memory bandwidth during decompression

- GPU-FOR: Frame of Reference + Bit-Packing
- GPU-DFOR: Delta encoding + Frame of Reference + Bit-Packing
- GPU-RFOR: Run-length encoding + Frame of Reference + Bit-Packing

GPU Data Compression - Evaluation

(a) Compressed data size

Compression rate comparable to the best-previous scheme (i.e. nvCOMP)

GPU Data Compression - Evaluation

(a) Compressed data size

(b) Decompression time

Compression rate comparable to the best-previous scheme (i.e. nvCOMP) Decompression time is 2.2 x faster than the best-previous scheme

GPU Database Optimizations

Thrust 1: Enabling Large-Scale Data Analytics on GPUs

$>$ Tile-based execution (SIGMOD 2020[1])
>Data Compression (SIGMOD 2022 ${ }^{[2]}$)
>Heterogeneous CPU-GPU DBMS (VLDB 2022 ${ }^{[3]}$)
>Multi-GPU DBMS (ongoing)

Challenges in Heterogeneous CPU-GPU Model

We aim to answer the existing challenges in heterogeneous CPU-GPU DBMS:

1. Data Placement
\rightarrow How do we partition data between CPU and GPU?
2. Heterogeneous Query Execution
\rightarrow How to coordinate query execution between CPU and GPU?

Challenges in Heterogeneous CPU-GPU Model

We aim to answer the existing challenges in heterogeneous CPU-GPU DBMS:

1. Data Placement
\rightarrow How do we partition data between CPU and GPU?
2. Heterogeneous Query Execution
\rightarrow How to coordinate query execution between CPU and GPU?

Data Placement

We treat data placement as a caching problem \rightarrow the complete data set resides in CPU memory and a mirrored subset of data is cached in GPU.
Key design decision: cache replacement policy?

Data Placement

We treat data placement as a caching problem \rightarrow the complete data set resides in CPU memory and a mirrored subset of data is cached in GPU.

Key design decision: cache replacement policy?

Relation $\mathbf{R} \quad$ Relation \mathbf{S}

Data Placement

Key design decision: cache replacement policy?
Previous works did a column-granularity frequency-based/timestamp-based policy.
\square Uncached \square Cached

Relation \mathbf{R}

GPU Memory

(a) Coarse-grained caching (LFU/LRU) ${ }^{[2]}$

Data Placement

Key design decision: cache replacement policy?
Previous works did a column-granularity frequency-based/timestamp-based policy.
Limitation: Fragmentation

Relation R

GPU Memory

Data Placement

Key design decision: cache replacement policy?
A sub-column (segment) fine-grained policy can improve caching efficiency.

Relation \mathbf{R}

Relation R Relation \mathbf{S}

GPU Memory

(a) Coarse-grained caching (LFU/LRU) (b) Fine-grained caching (LFU/LRU) ${ }^{[3]}$ [3] Todd Mostak. An Overview of MapD (Massively Parallel Database).

Data Placement

Key design decision: cache replacement policy?
A sub-column (segment) fine-grained policy can improve caching efficiency. Limitation: unaware of query semantic.
\square Uncached \square Cached

Relation \mathbf{R}

Relation R Relation S

GPU Memory

(a) Coarse-grained caching (LFU/LRU) (b) Fine-grained caching (LFU/LRU)

Data Placement

Key design decision: cache replacement policy?

A sub-column (segment) fine-grained policy can improve caching efficiency. Semantic-aware replacement leads to better performance.
\square Uncached \square Cached

Relation R

(c) Fine-grained + semantic-aware caching

Semantic-Aware Fine-Grained Caching

Extend conventional LFU with weighted frequency counters.
Weight reflects the potential benefits of caching the segments and is derived using cost model.

Semantic-Aware Fine-Grained Caching

Extend conventional LFU with weighted frequency counters.
Weight reflects the potential benefits of caching the segments and is derived using cost model.
\square Uncached \square
Relation R

A	B	C
		$\mathbb{P}!$
		\mathbb{P}
		\mathbb{M}
		s

Relation S

Semantic-Aware Fine-Grained Caching

Extend conventional LFU with weighted frequency counters.
Weight reflects the potential benefits of caching the segments and is derived using cost model ${ }^{[1]}$.
\square Uncached \square

$R T_{\text {uncached }}=$ estRuntime $($ cached segments $/ S)$

Semantic-Aware Fine-Grained Caching

Extend conventional LFU with weighted frequency counters.
Weight reflects the potential benefits of caching the segments and is derived using cost model ${ }^{[1]}$.
\square Uncached \square Cached

Relation \mathbf{R}		
A	B	C
		s

Relation R

Relation S

D
\square
$R T_{\text {uncached }}=$ estRuntime $($ cached segments $/ S)$

$$
R T_{\text {cached }}=\text { estRuntime }(\text { cached segments } \cup S)
$$

Semantic-Aware Fine-Grained Caching

Extend conventional LFU with weighted frequency counters.
Weight reflects the potential benefits of caching the segments and is derived using cost model ${ }^{[1]}$.
\square Uncached \square Cached

Relation R			Relation S
A	B	C	D
		s	

[^0]$$
R T_{\text {cached }}=\text { estRuntime }(\text { cached segments } \cup S)
$$

Challenges in Heterogeneous CPU-GPU Model

We aim to answer the existing challenges in heterogeneous CPU-GPU DBMS:

1. Data Placement
\rightarrow How do we partition data between CPU and GPU?
2. Heterogeneous Query Execution
\rightarrow How to coordinate query execution between CPU and GPU?

Heterogeneous Query Execution

Challenges:

1. Exploit intra-device and inter-device parallelism in both CPU and GPU.
2. Minimize inter-device data transfer.

Heterogeneous Query Execution

Challenges:

1. Exploit intra-device and inter-device parallelism in both CPU and GPU.
2. Minimize inter-device data transfer.

Solution: Introduce segment-level query execution

Segment-level Query Execution

Segment-level Query Execution

Group segments with the same execution plan into segment groups.

Segment-level Query Execution

Group segments with the same execution plan into segment groups.
Execute segment groups in parallel following data-driven operator placement ${ }^{[2]} \rightarrow$ execute operators in GPU only if all input segments reside in GPU.

Segment-level Query Execution

Group segments with the same execution plan into segment groups.
Execute segment groups in parallel following data-driven operator placement ${ }^{[2]} \rightarrow$ execute operators in GPU only i all input segments reside in GPU.

CPU

RELATION S RELATION R

Relation R
Relation S CPU Memory

GPU

Segment-level Query Execution

Group segments with the same execution plan into segment groups.
Execute segment groups in parallel following data-driven operator placement.

RELATION S RELATION R

Relation R
CPU Memory

GPU SEGMENT GROUP 1

GPU Memory

Segment-level Query Execution

Group segments with the same execution plan into segment groups.
Execute segment groups in parallel following data-driven operator placement.

RELATION S RELATION R

Relation R
CPU Memory

SEGMENT GROUP 1

Relation S
Relation R
Relation S

GPU Memory

Segment-level Query Execution

Group segments with the same execution plan into segment groups.
Execute segment groups in parallel following data-driven operator placement.

RELATION S RELATION R

Relation R
CPU Memory

GPU Memory

Segment-level Query Execution

Group segments with the same execution plan into segment groups.
Execute segment groups in parallel following data-driven operator placement.

RELATION S RELATION R

Segment-level Query Execution

Group segments with the same execution plan into segment groups.
Execute segment groups in parallel following data-driven operator placement.
Merge the results at the end.

RELATION S RELATION R

Mordred: A Hybrid CPU-GPU DBMS

Three components:
>Cache Manager

- Semantic-Aware Caching Policy $>$ Query Optimizer
- Data-driven Operator Placement >Query Execution Engine
- Segment-level Query Execution
- Tile-based Execution Model
- Late Materialization
- Segment Skipping

Hybrid CPU-GPU DBMS - Evaluation

(a) Comparison of Different Data Placement Policies

(b) End-to-end Performance

Semantic-aware caching outperforms the best prior policy by up to 3 x . Mordred is 11x faster than the best existing GPU DBMS.

GPU Database Optimizations

Thrust 1: Enabling Large-Scale Data Analytics on GPUs

$>$ Tile-based execution (SIGMOD 2020[1])
$>$ Data Compression (SIGMOD $2022^{[2]}$)
$>$ Heterogeneous CPU-GPU DBMS (VLDB 2022 ${ }^{[3]}$)
$>$ Multi-GPU DBMS (ongoing)

Heterogeneous CPU + Multi-GPU DBMS

Idea 1: Unified Multi-GPU Abstraction

$>$ Views multi-GPU as a single large monolithic GPU.

Idea 2: Capacity-aware Replication Policy

$>$ Intelligent replication policy to reduce data transfer between GPUs.

(a) Data Caching

(b) Data Partitioning/Replication

Lancelot: A Hybrid CPU + Multi-GPU DBMS

Three components:

- Cache Manager
- Semantic-Aware Caching Policy
- Capacity-Aware Replication Policy >Query Optimizer
- Data-driven Operator Placement

>Query Execution Engine

- Segment-level Query Execution
- Late Materialization
- Adaptive Query Execution
- Join Reordering
- Tile-based Execution Model
- Segment Skipping

Multi-GPU DBMS - Evaluation

(a) Scaling to Multiple GPUs

(b) End-to-end Performance

Lancelot can scale Mordred to Multiple GPUs.

Lancelot is $7 x$ faster than the best existing multi-GPU DBMS.

GPU Database Optimizations
 Thrust 1: Enabling Large-Scale Data Analytics on GPUs
 $>$ Crystal: tile-based execution (SIGMOD 2020 ${ }^{[1]}$)
 $>$ Data Compression (SIGMOD 2022 ${ }^{[2]}$)
 $>$ Heterogeneous CPU-GPU DBMS (VLDB 2022 ${ }^{[3]}$)
 >Multi-GPU DBMS (ongoing)

Thrust 2: Enhancing the Practicality of GPU Databases
$>$ Accelerating UDF on GPUs (DaMoN@SIGMOD 2023 ${ }^{[4]}$)
$>$ Code Generation for GPU DBMS (ongoing)

```
GPU Database Optimizations
Thrust 1: Enabling Large-Scale Data Analytics on GPUs
\(>\) Crystal: tile-based execution (SIGMOD 2020 \({ }^{[1]}\) )
\(>\) Data Compression (SIGMOD 2022 \({ }^{[2]}\) )
\(>\) Heterogeneous CPU-GPU DBMS (VLDB 2022 \({ }^{[3]}\) )
>Multi-GPU DBMS (ongoing)
```

Thrust 2: Enhancing the Practicality of GPU Databases
> Accelerating UDF on GPUs (DaMoN@SIGMOD 2023 ${ }^{[4]}$)
$>$ Code Generation for GPU DBMS (ongoing)

Accelerating UDAF on GPUs

Challenge: UDAF Execution is slow on GPUs (sometimes even slower than CPU).

Accelerating UDAF on GPUs

Challenge: UDAF Execution is slow on GPUs (sometimes even slower than CPU).
We introduce a novel UDAF execution framework with Tile-based Execution and JIT Compilation.

We are up to $8000 \times$ faster against existing approach (on NVIDIA V100 GPU). Fully integrated and released in NVIDIA RAPIDS cuDF v23.02 ${ }^{[2]}$.

Confronting Challenges in GPU DBMS

Goal: Solve these challenges with two research thrusts

Thrust 1: Enabling Large-Scale Data Analytics on GPUs > Data Compression (SIGMOD 2022 $2^{[1]}$) >Heterogeneous CPU-GPU DBMS (VLDB 2022 $2^{[2]}$) >Multi-GPU DBMS (ongoing)

Thrust 2: Enhancing the Practicality of GPU Databases
> Accelerating UDF on GPUs (DaMoN@SIGMOD 2023 ${ }^{[3]}$)
>Code Generation for GPU DBMS (ongoing)

Camelot v0.1

Conclusion

GPU is becoming the new modality of SQL analytics

[^0]: $R T_{\text {uncached }}=$ estRuntime $($ cached segments $/ S)$

