
GPU Databases—The New Modality
of Data Analytics

Xiangyao Yu

University of Wisconsin-Madison

GPU hardware trend

Demo of Camelot

GPU database optimizations
– Tile-based execution (SIGMOD 2020)

– Data Compression (SIGMOD 2022)

– Heterogeneous CPU-GPU DBMS (VLDB 2022)

– Accelerating UDF on GPUs (DaMoN@SIGMOD 2023)

– Multi-GPU database (on-going)

Outline

GPU for SQL Data Analytics

3

GPU target applications:
➢There are many, many threads

➢Threads perform very similar operations

➢Threads have simple control flow

➢Threads are mostly independent (minimal synchronization)

GPU for SQL Data Analytics

4

GPU target applications:
➢There are many, many threads

➢Threads perform very similar operations

➢Threads have simple control flow

➢Threads are mostly independent (minimal synchronization)

What about SQL data analytics???

GPU for SQL Data Analytics

5

GPU target applications:
➢There are many, many threads

➢Threads perform very similar operations

➢Threads have simple control flow

➢Threads are mostly independent (minimal synchronization)

What about SQL data analytics???

GPU is very suitable for SQL data analytics

Running SQL analytics on GPUs can give 10–25x speedup over CPU [1]

[1] Anil Shanbhag, Samuel Madden, Xiangyao Yu, A Study of the Fundamental Performance Characteristics of GPUs and CPUs for Database Analytics, SIGMOD 2020

6

Main
Memory

Device
Memory

PCIe

CPU GPU

Advantage 1: Higher computation power
➢GPU has massive parallelism using SIMT model

Advantages of GPU for Data Analytics

7

Main
Memory

Device
Memory

PCIe

CPU GPU

100GB/s 5.2TB/s

Advantage 1: Higher computation power

Advantage 2: Higher memory bandwidth
➢GPU memory bandwidth is an order-of-magnitude higher than CPU.

Advantages of GPU for Data Analytics

8

1,680

5,304
7,450

9,700

25,600

47,870

0

10,000

20,000

30,000

40,000

50,000

60,000

K40 P100 V100 A100 H100 MI300

2013 2016 2018 2020 2022 2023

G
FL

O
P

S

(a) GPU Peak Performance

GPU peak performance increase by 5x from 2020 to 2023.

GPU Trend

9

1,680

5,304
7,450

9,700

25,600

47,870

0

10,000

20,000

30,000

40,000

50,000

60,000

K40 P100 V100 A100 H100 MI300

2013 2016 2018 2020 2022 2023

G
FL

O
P

S

288

732
900

1,555

3,352

5,200

0

1,000

2,000

3,000

4,000

5,000

6,000

K40 P100 V100 A100 H100 MI300

2013 2016 2018 2020 2022 2023

M
em

o
ry

 B
a

n
d

w
id

th
 (G

B
/s

)

(a) GPU Peak Performance (b) GPU Memory Bandwidth

GPU peak performance increase by 5x from 2020 to 2023.

GPU memory bandwidth increase by 3.5x from 2020 to 2023.

GPU Trend

10

Main
Memory

Device
Memory

PCIe

CPU GPU

100GB—10 TB 8—192GB

100GB/s 5.2TB/s

Challenge 1: Limited memory capacity
➢Some data sets do not fit in GPU memory

Challenges of GPU for Data Analytics

11

Main
Memory

Device
Memory

PCIe

CPU GPU

100GB—10 TB 8—192GB

100GB/s 5.2TB/s

64GB/s

Challenge 1: Limited memory capacity

Challenge 2: Limited interconnect bandwidth
➢Transferring data from CPU can be expensive

Challenges of GPU for Data Analytics

GPU Trend

12

(a) GPU Memory Capacity

GPU memory capacity increase by 6x in the last 5 years.

12 16
32

80 80

192

0

50

100

150

200

250

K40 P100 V100 A100 H100 MI300

2013 2016 2018 2020 2022 2023

M
em

o
ry

 C
ap

ac
it

y
(G

B
)

GPU Trend

13

(a) GPU Memory Capacity (b) PCIe Bandwidth

GPU memory capacity increase by 6x in the last 5 years.

PCIe increase by 2x every two years.

12 16
32

80 80

192

0

50

100

150

200

250

K40 P100 V100 A100 H100 MI300

2013 2016 2018 2020 2022 2023

M
em

o
ry

 C
ap

ac
it

y
(G

B
)

8

16

32

64

0

10

20

30

40

50

60

70

PCIe 3.0 PCIe 4.0 PCIe 5.0 PCIe 6.0

2010 2017 2019 2021
B

a
n

d
w

id
th

 (
G

B
/s

)

GPU Trend

14

(a) GPU Memory Capacity (b) PCIe Bandwidth

12 16
32

80 80

192

0

50

100

150

200

250

K40 P100 V100 A100 H100 MI300

2013 2016 2018 2020 2022 2023

M
em

o
ry

 C
ap

ac
it

y
(G

B
)

8

16

32

64

0

10

20

30

40

50

60

70

PCIe 3.0 PCIe 4.0 PCIe 5.0 PCIe 6.0

2010 2017 2019 2021
B

a
n

d
w

id
th

 (
G

B
/s

)

80

150

300

450

0

100

200

300

400

500

600

NVLink 1.0 NVLink 2.0 NVLink 3.0 NVLink 4.0

2016 2017 2020 2022

B
a

n
d

w
id

th
 (G

B
/s

)

(c) NVLink Bandwidth

GPU memory capacity increase by 6x in the last 5 years.

PCIe increase by 2x every two years.

NVLink Bandwidth increase by 3x in 5 years.

GPU Trend

15

(a) GPU Memory Capacity (b) PCIe Bandwidth (c) NVLink Bandwidth

GPU memory capacity increase by 6x in the last 5 years.

PCIe increase by 2x every two years.

NVLink Bandwidth increase by 3x in 5 years.

NVLink C2C (2022) connect NVIDIA GPU and NVIDIA CPU (450 GB/s).

12 16
32

80 80

192

0

50

100

150

200

250

K40 P100 V100 A100 H100 MI300

2013 2016 2018 2020 2022 2023

M
em

o
ry

 C
ap

ac
it

y
(G

B
)

8

16

32

64

0

10

20

30

40

50

60

70

PCIe 3.0 PCIe 4.0 PCIe 5.0 PCIe 6.0

2010 2017 2019 2021
B

a
n

d
w

id
th

 (
G

B
/s

)

80

150

300

450

0

100

200

300

400

500

600

NVLink 1.0 NVLink 2.0 NVLink 3.0 NVLink 4.0

2016 2017 2020 2022

B
a

n
d

w
id

th
 (G

B
/s

)

GPU hardware trend

Demo of Camelot

GPU database optimizations
– Tile-based execution (SIGMOD 2020)

– Data Compression (SIGMOD 2022)

– Heterogeneous CPU-GPU DBMS (VLDB 2022)

– Accelerating UDF on GPUs (DaMoN@SIGMOD 2023)

– Multi-GPU database (on-going)

Outline

LLVM
Code

Generator

Camelot Hybrid
CPU+GPU Layer

17

Camelot v0.1 → Demo!

Query
Parser

C

a

m

e

l

o

t

GPU Execution Engine

HBM

GPUD
R

A
M

CPU

HBM

GPU

HBM

GPU

Query
Optimizer

CPU Execution Engine

Camelot

C
C

GPU hardware trend

Demo of Camelot

GPU database optimizations
– Tile-based execution (SIGMOD 2020)

– Data Compression (SIGMOD 2022)

– Heterogeneous CPU-GPU DBMS (VLDB 2022)

– Accelerating UDF on GPUs (DaMoN@SIGMOD 2023)

– Multi-GPU database (on-going)

Outline

GPU Database Optimizations

19

Thrust 1: Enabling Large-Scale Data Analytics on GPUs
➢Crystal: tile-based execution (SIGMOD 2020[1])

➢Data Compression (SIGMOD 2022[2])

➢Heterogeneous CPU-GPU DBMS (VLDB 2022[3])

➢Multi-GPU DBMS (ongoing)

Thrust 2: Enhancing the Practicality of GPU Databases
➢Accelerating UDF on GPUs (DaMoN@SIGMOD 2023[4])

➢Code Generation for GPU DBMS (ongoing)

[1] Anil Shanbhag, Samuel Madden, Xiangyao Yu. A Study of the Fundamental Performance Characteristics of GPUs and CPUs for Database

Analytics, SIGMOD 2022

[2] Anil Shanbhag*, Bobbi Yogatama*, Xiangyao Yu, and Samuel Madden. Tile-based Lightweight Integer Compression in GPU, SIGMOD 2022

[3] Bobbi Yogatama, Weiwei Gong, Xiangyao Yu. Orchestrating data placement and query execution in heterogeneous CPU-GPU DBMS, VLDB 2022

[4] Bobbi Yogatama et al. Accelerating User-Defined Aggregate Functions with Block-wide Execution and JIT Compilation on GPUs,

DaMoN@SIGMOD 2023

GPU Database Optimizations

20

Thrust 1: Enabling Large-Scale Data Analytics on GPUs
➢Crystal: tile-based execution (SIGMOD 2020[1])

➢Data Compression (SIGMOD 2022[2])

➢Heterogeneous CPU-GPU DBMS (VLDB 2022[3])

➢Multi-GPU DBMS (ongoing)

Thrust 2: Enhancing the Practicality of GPU Databases
➢Accelerating UDF on GPUs (DaMoN@SIGMOD 2023[4])

➢Code Generation for GPU DBMS (ongoing)

GPU Database Optimizations

21

Data size

T
h

ro
u

g
h

p
u

t(
G

B
/s

)

CPU DB

GPU DB

GPU memory capacity

(8-192 GB)

CPU memory capacity

(up to 10TB)

Thrust 1: Enabling Large-Scale Data Analytics on GPUs
➢Crystal: tile-based execution (SIGMOD 2020[1])

➢Data Compression (SIGMOD 2022[2])

➢Heterogeneous CPU-GPU DBMS (VLDB 2022[3])

➢Multi-GPU DBMS (ongoing)

Tile-based execution (SIGMOD’20)

22

GPU Global Memory

Kernel 1
Scan

Time
Kernel 3

Sum

Shared

Memory

on chip

off chip

Kernel

Read

Write

(a) Conventional execution model

Kernel 2
Probe

Problem: Conventional execution model incurs excessive memory
traffic for reading/writing intermediate results

Crystal Library: Tile-Based Execution Model

Execution

Cores

23

GPU Global Memory

Kernel 1
Scan

Time
Kernel 3

Sum

GPU Global Memory

SumProbe

Shared

Memory

on chip

off chip

Time

Kernel

Read

Write

(a) Conventional execution model (b) Tile-based execution model

Kernel 2
Probe Scan

Execution

Cores

Kernel

Key Idea: Partition data into small tiles and store intermediate results in
the shared memory (~10x faster)

Crystal Library: Tile-Based Execution Model

With Crystal, GPU is on average 25X faster than CPU running Star-

Schema Benchmark (SSB).

24

Experimental Results

Hardware: NVIDIA V100 GPU. Intel i7-6900 CPU (8 cores)

Benchmark: Star Schema Benchmark (SF = 20).

GPU Database Optimizations

25

Thrust 1: Enabling Large-Scale Data Analytics on GPUs
➢Tile-based execution (SIGMOD 2020[1])

➢Data Compression (SIGMOD 2022[2])

➢Heterogeneous CPU-GPU DBMS (VLDB 2022[3])

➢Multi-GPU DBMS (ongoing)

Data size

T
h

ro
u

g
h

p
u

t(
G

B
/s

)

GPU memory capacity

(8-192 GB)

CPU memory capacity

(up to 10TB)

CPU DB

Compression (SIGMOD’22)

Idea 1: Tile-Based Decompression

26

Tile-based execution to keep intermediate results in shared memory

GPU Global Memory

Kernel 1
Decode

Bit-packing

Time

Query
Kernel

GPU Global Memory

Query
Kernel

Decode
Delta

Shared

Memory

on chip

off chip

Time

Kernel

Read

Device

Function

Write

(a) Conventional decompression model (b) Tile-based decompression model

Kernel 2
Decode

Delta

Decode
Bit-packing

Execution

Cores

Idea 2: GPU-Optimized Compression Format

27

Compact data format that can fully saturates GPU memory bandwidth
during decompression

– GPU-FOR: Frame of Reference + Bit-Packing

– GPU-DFOR: Delta encoding + Frame of Reference + Bit-Packing

– GPU-RFOR: Run-length encoding + Frame of Reference + Bit-Packing

Block1
Total

count
Miniblock

Count

Block

Size

Header

Value:

Block Starts (Value):

Block2 Block3
Tile

Count

Tile 1

Block1
Total

count
Miniblock

Count

Block

Size

Header

Run Length:

Block Starts (Run Length):

Block2 Block3
Tile

Count

Tile 1

GPU Data Compression – Evaluation

28

(a) Compressed data size

Compression rate comparable to the best-previous scheme (i.e. nvCOMP)

Our design

Hardware: NVIDIA V100 GPU.

Benchmark: Star Schema Benchmark (SF = 20).

GPU Data Compression – Evaluation

29

(a) Compressed data size (b) Decompression time

Compression rate comparable to the best-previous scheme (i.e. nvCOMP)

Decompression time is 2.2x faster than the best-previous scheme

Hardware: NVIDIA V100 GPU.

Benchmark: Star Schema Benchmark (SF = 20).

Our design

GPU Database Optimizations

30

Thrust 1: Enabling Large-Scale Data Analytics on GPUs
➢Tile-based execution (SIGMOD 2020[1])

➢Data Compression (SIGMOD 2022[2])

➢Heterogeneous CPU-GPU DBMS (VLDB 2022[3])

➢Multi-GPU DBMS (ongoing)

Data size

T
h

ro
u

g
h

p
u

t(
G

B
/s

)

GPU memory capacity

(8-192 GB)

CPU memory capacity

(up to 10TB)

CPU DB

CPU + GPU DB (VLDB’22)

We aim to answer the existing challenges in heterogeneous CPU-GPU DBMS:

1. Data Placement

→ How do we partition data between CPU and GPU?

2. Heterogeneous Query Execution

→ How to coordinate query execution between CPU and GPU?

31

Challenges in Heterogeneous CPU-GPU Model

We aim to answer the existing challenges in heterogeneous CPU-GPU DBMS:

1. Data Placement

→ How do we partition data between CPU and GPU?

2. Heterogeneous Query Execution

→ How to coordinate query execution between CPU and GPU?

32

Challenges in Heterogeneous CPU-GPU Model

33

Data Placement
We treat data placement as a caching problem → the complete data set resides in CPU
memory and a mirrored subset of data is cached in GPU.

Key design decision: cache replacement policy?

34

Relation R

A B C D

Relation S

Join Keys

We treat data placement as a caching problem → the complete data set resides in CPU
memory and a mirrored subset of data is cached in GPU.

Key design decision: cache replacement policy?

Data Placement

CachedUncached

35

GPU MemoryRelation R

A B C D

Relation S

Join Keys

Data Placement
Key design decision: cache replacement policy?

Previous works did a column-granularity frequency-based/timestamp-based policy.

(a) Coarse-grained caching (LFU/LRU)[2]

[2] Sebastian Breß, Henning Funke, and Jens Teubner. Robust Query Processing in Co-Processor-Accelerated Databases, SIGMOD 2016.

CachedUncached

36

GPU MemoryRelation R

A B C D

Relation S

Join Keys
Fragmentation

Key design decision: cache replacement policy?

Previous works did a column-granularity frequency-based/timestamp-based policy.

Limitation: Fragmentation

Data Placement

(a) Coarse-grained caching (LFU/LRU)

Relation R

A B C D

Relation S

CachedUncached

Join Keys

Relation R

A B C D

Relation S

37
(b) Fine-grained caching (LFU/LRU)[3](a) Coarse-grained caching (LFU/LRU)

Join Keys

Data Placement
Key design decision: cache replacement policy?

A sub-column (segment) fine-grained policy can improve caching efficiency.

GPU Memory

[3] Todd Mostak. An Overview of MapD (Massively Parallel Database).

Relation R

A B C D

Relation S

CachedUncached

Join Keys

Relation R

A B C D

Relation S

38

Join Keys

Data Placement
Key design decision: cache replacement policy?

A sub-column (segment) fine-grained policy can improve caching efficiency.

Limitation: unaware of query semantic.

GPU Memory

(b) Fine-grained caching (LFU/LRU)(a) Coarse-grained caching (LFU/LRU)

Data Placement

39

Relation R

A B C D

Relation S

CachedUncached

Join Keys

Relation R

A B C D

Relation S

Join Keys

Relation R

A B C D

Relation S

Join Keys

GPU Memory

(c) Fine-grained + semantic-aware caching

Key design decision: cache replacement policy?

A sub-column (segment) fine-grained policy can improve caching efficiency.

Semantic-aware replacement leads to better performance.

(b) Fine-grained caching (LFU/LRU)(a) Coarse-grained caching (LFU/LRU)

Semantic-Aware Fine-Grained Caching

40

Extend conventional LFU with weighted frequency counters.

Weight reflects the potential benefits of caching the segments and is derived using cost model.

Semantic-Aware Fine-Grained Caching

41

CachedUncached

Relation R

A B C

S

D

Relation S

Extend conventional LFU with weighted frequency counters.

Weight reflects the potential benefits of caching the segments and is derived using cost model.

Semantic-Aware Fine-Grained Caching

42[1] Anil Shanbhag, Samuel Madden, Xiangyao Yu, A Study of the Fundamental Performance Characteristics of GPUs and CPUs for Database Analytics, SIGMOD 2020

CachedUncached

𝑅𝑇𝑢𝑛𝑐𝑎𝑐ℎ𝑒𝑑 = 𝑒𝑠𝑡𝑅𝑢𝑛𝑡𝑖𝑚𝑒(Τ𝑐𝑎𝑐ℎ𝑒𝑑 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 𝑆)

Relation R

A B C

S

Extend conventional LFU with weighted frequency counters.

Weight reflects the potential benefits of caching the segments and is derived using cost model[1].

D

Relation S

Semantic-Aware Fine-Grained Caching

43[1] Anil Shanbhag, Samuel Madden, Xiangyao Yu, A Study of the Fundamental Performance Characteristics of GPUs and CPUs for Database Analytics, SIGMOD 2020

CachedUncached

Relation R

A B C

S

𝑅𝑇𝑢𝑛𝑐𝑎𝑐ℎ𝑒𝑑 = 𝑒𝑠𝑡𝑅𝑢𝑛𝑡𝑖𝑚𝑒(Τ𝑐𝑎𝑐ℎ𝑒𝑑 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 𝑆)

Relation R

A B C

S

𝑅𝑇𝑐𝑎𝑐ℎ𝑒𝑑 = 𝑒𝑠𝑡𝑅𝑢𝑛𝑡𝑖𝑚𝑒(𝑐𝑎𝑐ℎ𝑒𝑑 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 ∪ 𝑆)

D

Relation S

D

Relation S

Extend conventional LFU with weighted frequency counters.

Weight reflects the potential benefits of caching the segments and is derived using cost model[1].

Semantic-Aware Fine-Grained Caching

44[1] Anil Shanbhag, Samuel Madden, Xiangyao Yu, A Study of the Fundamental Performance Characteristics of GPUs and CPUs for Database Analytics, SIGMOD 2020

CachedUncached

Relation R

A B C

S

𝑅𝑇𝑢𝑛𝑐𝑎𝑐ℎ𝑒𝑑 = 𝑒𝑠𝑡𝑅𝑢𝑛𝑡𝑖𝑚𝑒(Τ𝑐𝑎𝑐ℎ𝑒𝑑 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 𝑆)

Relation R

A B C

S

𝑤𝑒𝑖𝑔ℎ𝑡 += 𝑅𝑇𝑢𝑛𝑐𝑎𝑐ℎ𝑒𝑑 − 𝑅𝑇𝑐𝑎𝑐ℎ𝑒𝑑

𝑅𝑇𝑐𝑎𝑐ℎ𝑒𝑑 = 𝑒𝑠𝑡𝑅𝑢𝑛𝑡𝑖𝑚𝑒(𝑐𝑎𝑐ℎ𝑒𝑑 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 ∪ 𝑆)

D

Relation S

D

Relation S

Extend conventional LFU with weighted frequency counters.

Weight reflects the potential benefits of caching the segments and is derived using cost model[1].

45

Challenges in Heterogeneous CPU-GPU Model

We aim to answer the existing challenges in heterogeneous CPU-GPU DBMS:

1. Data Placement

→ How do we partition data between CPU and GPU?

2. Heterogeneous Query Execution

→ How to coordinate query execution between CPU and GPU?

Challenges:

1. Exploit intra-device and inter-device parallelism in both CPU and GPU.

2. Minimize inter-device data transfer.

Heterogeneous Query Execution

46

Challenges:

1. Exploit intra-device and inter-device parallelism in both CPU and GPU.

2. Minimize inter-device data transfer.

Solution: Introduce segment-level query execution

Heterogeneous Query Execution

47

𝜎

AGG

R S

R.A > 10

R.B = S.D

SUM(R.C)

A B C

RELATION R

D E

RELATION S

Cached

Uncached

48

Segment-level Query Execution

𝜎

AGG

R S

R.A > 10

R.B = S.D

SUM(R.C)

A B C

RELATION R

D E

RELATION S
Cached

Uncached

49

Segment-level Query Execution

𝜎

AGG

R S

R.A > 10

R.B = S.D

SUM(R.C)

A B C

GROUP 1

GROUP 3

GROUP 2

RELATION R

D E

RELATION S
Cached

Uncached

Group segments with the same execution plan into segment groups.

50

Segment-level Query Execution

[2] Sebastian Breß, Henning Funke, and Jens Teubner. Robust Query Processing in Co-Processor-Accelerated Databases, SIGMOD 2016.

𝜎

AGG

R S

R.A > 10

R.B = S.D

SUM(R.C)

A B C

GROUP 1

GROUP 3

GROUP 2

RELATION R

D E

RELATION S
Cached

Uncached

Group segments with the same execution plan into segment groups.

Execute segment groups in parallel following data-driven operator placement[2] → execute operators in GPU

only if all input segments reside in GPU.

51

Segment-level Query Execution

Relation S

A1

A2

A3

B1

B2

B3

C1

C2

C3

Relation R

D1 E1

Relation S

CPU Memory GPU Memory

A1 B1 C1

A2 B2 D1 E1

Relation R Relation S

CPU GPU

A B C

GROUP 1

GROUP 3

GROUP 2

RELATION R

D E

RELATION S

Cached

Uncached

𝜎

AGG

R S

R.A > 10

R.B = S.D

SUM(R.C)

[2] Sebastian Breß, Henning Funke, and Jens Teubner. Robust Query Processing in Co-Processor-Accelerated Databases, SIGMOD 2016.

Group segments with the same execution plan into segment groups.

Execute segment groups in parallel following data-driven operator placement[2] → execute operators in GPU only if

all input segments reside in GPU.

52

Segment-level Query Execution

A B C

GROUP 1

GROUP 3

GROUP 2

RELATION R

D E

RELATION S

Cached

Uncached

𝜎

AGG

R S

R.A > 10

R.B = S.D

SUM(R.C)

Relation S

A1

A2

A3

B1

B2

B3

C1

C2

C3

Relation R

D1 E1

Relation S

CPU Memory GPU Memory

A1 B1 C1

A2 B2 D1 E1

Relation R Relation S

𝜎

CPU GPU

AGG

SEGMENT

GROUP 1

Group segments with the same execution plan into segment groups.

Execute segment groups in parallel following data-driven operator placement.

53

Segment-level Query Execution

A B C

GROUP 1

GROUP 3

GROUP 2

RELATION R

D E

RELATION S

Cached

Uncached

𝜎

AGG

R S

R.A > 10

R.B = S.D

SUM(R.C)

Relation S

A1

A2

A3

B1

B2

B3

C1

C2

C3

Relation R

D1 E1

Relation S

CPU Memory GPU Memory

A1 B1 C1

A2 B2 D1 E1

Relation R Relation S

𝜎
𝜎

CPU GPU

AGG

SEGMENT

GROUP 1

Group segments with the same execution plan into segment groups.

Execute segment groups in parallel following data-driven operator placement.

54

Segment-level Query Execution

A B C

GROUP 1

GROUP 3

GROUP 2

RELATION R

D E

RELATION S

Cached

Uncached

𝜎

AGG

R S

R.A > 10

R.B = S.D

SUM(R.C)

Relation S

A1

A2

A3

B1

B2

B3

C1

C2

C3

Relation R

D1 E1

Relation S

CPU Memory GPU Memory

A1 B1 C1

A2 B2 D1 E1

Relation R Relation S

𝜎
𝜎

C2

CPU GPU

MATERIALIZE

AGG AGG

SEGMENT

GROUP 2

SEGMENT

GROUP 1

Group segments with the same execution plan into segment groups.

Execute segment groups in parallel following data-driven operator placement.

55

Segment-level Query Execution

A B C

GROUP 1

GROUP 3

GROUP 2

RELATION R

D E

RELATION S

Cached

Uncached

𝜎

AGG

R S

R.A > 10

R.B = S.D

SUM(R.C)

Relation S

A1

A2

A3

B1

B2

B3

C1

C2

C3

Relation R

D1 E1

Relation S

CPU Memory GPU Memory

A1 B1 C1

A2 B2 D1 E1

Relation R Relation S

𝜎
𝜎

𝜎
A3 B3

C3

D1 C2

CPU GPU

AGG

MATERIALIZE

AGG AGG

SEGMENT

GROUP 3

SEGMENT

GROUP 2

SEGMENT

GROUP 1

Group segments with the same execution plan into segment groups.

Execute segment groups in parallel following data-driven operator placement.

Segment-level Query Execution

56

Group segments with the same execution plan into segment groups.

Execute segment groups in parallel following data-driven operator placement.

Merge the results at the end.

Relation S

A1

A2

A3

B1

B2

B3

C1

C2

C3

Relation R

D1 E1

Relation S

CPU Memory GPU Memory

A1 B1 C1

A2 B2 D1 E1

Relation R Relation S

𝜎
𝜎

𝜎
A3 B3

C3

D1 C2

MERGE

CPU GPU

AGG

MATERIALIZE

AGG AGG

SEGMENT

GROUP 3

SEGMENT

GROUP 2

SEGMENT

GROUP 1

A B C

GROUP 1

GROUP 3

GROUP 2

RELATION R

D E

RELATION S

Cached

Uncached

𝜎

AGG

R S

R.A > 10

R.B = S.D

SUM(R.C)

Query

Execution

Engine

Query

Optimizer

Cache

Manager

Cache Replacement

Data Processing

CPU MemoryGPU Memory

C
ac

h
e

In
fo

rm
at

io
n

Data

Processing

update

metadata

Database

Data Caching

query plan

Three components:

➢Cache Manager

• Semantic-Aware Caching Policy

➢Query Optimizer

• Data-driven Operator Placement

➢Query Execution Engine

• Segment-level Query Execution

• Tile-based Execution Model

• Late Materialization

• Segment Skipping

57

Mordred: A Hybrid CPU-GPU DBMS

Hybrid CPU-GPU DBMS – Evaluation

58

Semantic-aware caching outperforms the best prior policy by up to 3x.

Mordred is 11x faster than the best existing GPU DBMS.

(a) Comparison of Different Data Placement Policies (b) End-to-end Performance

Hardware: NVIDIA V100 GPU. Intel Xeon Platinum CPU (24 Cores).

Benchmark: Star Schema Benchmark: (1) SF = 40 → Figure a, (2) SF = 160 → Figure b.

GPU Database Optimizations

59

Thrust 1: Enabling Large-Scale Data Analytics on GPUs
➢Tile-based execution (SIGMOD 2020[1])

➢Data Compression (SIGMOD 2022[2])

➢Heterogeneous CPU-GPU DBMS (VLDB 2022[3])

➢Multi-GPU DBMS (ongoing)

CPU + Multi-GPU DB (Ongoing)

Data size

T
h

ro
u

g
h

p
u

t(
G

B
/s

)

GPU memory capacity

(8-192 GB)

CPU memory capacity

(up to 10TB)

CPU DB

Unified

Multi-GPU
CPU

60

Idea 1: Unified Multi-GPU Abstraction
➢Views multi-GPU as a single large monolithic GPU.

Idea 2: Capacity-aware Replication Policy
➢Intelligent replication policy to reduce data transfer between GPUs.

CPU

GPU GPU

GPU GPU

Heterogeneous CPU + Multi-GPU DBMS

(a) Data Caching (b) Data Partitioning/Replication

61

Lancelot: A Hybrid CPU + Multi-GPU DBMS

Three components:

➢Cache Manager

• Semantic-Aware Caching Policy

• Capacity-Aware Replication Policy

➢Query Optimizer

• Data-driven Operator Placement

➢Query Execution Engine

• Segment-level Query Execution

• Late Materialization

• Adaptive Query Execution

• Join Reordering

• Tile-based Execution Model

• Segment Skipping

Multi-GPU DBMS – Evaluation

62

(a) Scaling to Multiple GPUs (b) End-to-end Performance

Lancelot can scale Mordred to Multiple GPUs.

Lancelot is 7x faster than the best existing multi-GPU DBMS.

Hardware: NVIDIA V100 GPU. Intel Xeon Platinum CPU (104 Cores).

Benchmark: Star Schema Benchmark: SF = 160 (Figure b)

GPU Database Optimizations

63

Thrust 1: Enabling Large-Scale Data Analytics on GPUs
➢Crystal: tile-based execution (SIGMOD 2020[1])

➢Data Compression (SIGMOD 2022[2])

➢Heterogeneous CPU-GPU DBMS (VLDB 2022[3])

➢Multi-GPU DBMS (ongoing)

Thrust 2: Enhancing the Practicality of GPU Databases
➢Accelerating UDF on GPUs (DaMoN@SIGMOD 2023[4])

➢Code Generation for GPU DBMS (ongoing)

GPU Database Optimizations

64

Thrust 1: Enabling Large-Scale Data Analytics on GPUs
➢Crystal: tile-based execution (SIGMOD 2020[1])

➢Data Compression (SIGMOD 2022[2])

➢Heterogeneous CPU-GPU DBMS (VLDB 2022[3])

➢Multi-GPU DBMS (ongoing)

Thrust 2: Enhancing the Practicality of GPU Databases
➢Accelerating UDF on GPUs (DaMoN@SIGMOD 2023[4])

➢Code Generation for GPU DBMS (ongoing)

Accelerating UDAF on GPUs

65

Challenge: UDAF Execution is slow on GPUs (sometimes even slower than CPU).

Accelerating UDAF on GPUs

66

Challenge: UDAF Execution is slow on GPUs (sometimes even slower than CPU).

We introduce a novel UDAF execution framework with Tile-based Execution and JIT Compilation.

We are up to 8000× faster against existing approach (on NVIDIA V100 GPU).

Fully integrated and released in NVIDIA RAPIDS cuDF v23.02[2].

Existing approach Our approach

Confronting Challenges in GPU DBMS

67

Goal: Solve these challenges with two research thrusts

Thrust 1: Enabling Large-Scale Data Analytics on GPUs
➢Data Compression (SIGMOD 2022[1])

➢Heterogeneous CPU-GPU DBMS (VLDB 2022[2])

➢Multi-GPU DBMS (ongoing)

Thrust 2: Enhancing the Practicality of GPU Databases
➢Accelerating UDF on GPUs (DaMoN@SIGMOD 2023[3])

➢Code Generation for GPU DBMS (ongoing)

LLVM
Code

Generator

Camelot Hybrid
CPU+GPU Layer

68

Camelot v0.1

Query
Parser

C

a

m

e

l

o

t

GPU Execution Engine

HBM

GPUD
R

A
M

CPU

HBM

GPU

HBM

GPU

Query
Optimizer

CPU Execution Engine

Camelot

C
C

69

Conclusion

GPU is becoming the new modality of SQL analytics

Data size

T
h

ro
u

g
h

p
u

t(
G

B
/s

)

CPU DB

CPU + GPU DB (VLDB’22)

CPU + Multi-GPU DB (Ongoing)

Compression (SIGMOD’22)2

3

4

GPU memory capacity

(8-192 GB)

CPU memory capacity

(up to 10TB)

Tile-based execution

(SIGMOD’20)

1

	Slide 1
	Slide 2
	Slide 3: GPU for SQL Data Analytics
	Slide 4: GPU for SQL Data Analytics
	Slide 5: GPU for SQL Data Analytics
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12: GPU Trend
	Slide 13: GPU Trend
	Slide 14: GPU Trend
	Slide 15: GPU Trend
	Slide 16
	Slide 17
	Slide 18
	Slide 19: GPU Database Optimizations
	Slide 20: GPU Database Optimizations
	Slide 21: GPU Database Optimizations
	Slide 22
	Slide 23
	Slide 24
	Slide 25: GPU Database Optimizations
	Slide 26: Idea 1: Tile-Based Decompression
	Slide 27: Idea 2: GPU-Optimized Compression Format
	Slide 28: GPU Data Compression – Evaluation
	Slide 29: GPU Data Compression – Evaluation
	Slide 30: GPU Database Optimizations
	Slide 31: Challenges in Heterogeneous CPU-GPU Model
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39: Data Placement
	Slide 40: Semantic-Aware Fine-Grained Caching
	Slide 41: Semantic-Aware Fine-Grained Caching
	Slide 42: Semantic-Aware Fine-Grained Caching
	Slide 43: Semantic-Aware Fine-Grained Caching
	Slide 44: Semantic-Aware Fine-Grained Caching
	Slide 45: Challenges in Heterogeneous CPU-GPU Model
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58: Hybrid CPU-GPU DBMS – Evaluation
	Slide 59: GPU Database Optimizations
	Slide 60
	Slide 61
	Slide 62: Multi-GPU DBMS – Evaluation
	Slide 63: GPU Database Optimizations
	Slide 64: GPU Database Optimizations
	Slide 65
	Slide 66
	Slide 67: Confronting Challenges in GPU DBMS
	Slide 68
	Slide 69: Conclusion

