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GPU hardware trend 

Demo of Camelot 

GPU database optimizations
– Tile-based execution (SIGMOD 2020)

– Data Compression (SIGMOD 2022)

– Heterogeneous CPU-GPU DBMS (VLDB 2022)

– Accelerating UDF on GPUs (DaMoN@SIGMOD 2023)

– Multi-GPU database (on-going)

Outline
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GPU target applications:
➢There are many, many threads

➢Threads perform very similar operations

➢Threads have simple control flow

➢Threads are mostly independent (minimal synchronization)
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GPU target applications:
➢There are many, many threads

➢Threads perform very similar operations

➢Threads have simple control flow

➢Threads are mostly independent (minimal synchronization)

What about SQL data analytics???

GPU is very suitable for SQL data analytics

Running SQL analytics on GPUs can give 10–25x speedup over CPU [1] 

[1] Anil Shanbhag, Samuel Madden, Xiangyao Yu, A Study of the Fundamental Performance Characteristics of GPUs and CPUs for Database Analytics, SIGMOD 2020
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Main 
Memory

Device
Memory

PCIe

CPU GPU

Advantage 1: Higher computation power 
➢GPU has massive parallelism using SIMT model 

Advantages of GPU for Data Analytics
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Main 
Memory

Device
Memory

PCIe

CPU GPU

100GB/s 5.2TB/s

Advantage 1: Higher computation power 

Advantage 2: Higher memory bandwidth
➢GPU memory bandwidth is an order-of-magnitude higher than CPU.

Advantages of GPU for Data Analytics
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(a) GPU Peak Performance

GPU peak performance increase by 5x from 2020 to 2023.

GPU Trend
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(a) GPU Peak Performance (b) GPU Memory Bandwidth

GPU peak performance increase by 5x from 2020 to 2023.

GPU memory bandwidth increase by 3.5x from 2020 to 2023.

GPU Trend
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Main 
Memory

Device
Memory

PCIe

CPU GPU

100GB—10 TB 8—192GB

100GB/s 5.2TB/s

Challenge 1: Limited memory capacity
➢Some data sets do not fit in GPU memory

Challenges of GPU for Data Analytics
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Main 
Memory

Device
Memory

PCIe

CPU GPU

100GB—10 TB 8—192GB

100GB/s 5.2TB/s

64GB/s

Challenge 1: Limited memory capacity 

Challenge 2: Limited interconnect bandwidth
➢Transferring data from CPU can be expensive

Challenges of GPU for Data Analytics
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(a) GPU Memory Capacity

GPU memory capacity increase by 6x in the last 5 years.
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(a) GPU Memory Capacity (b) PCIe Bandwidth

GPU memory capacity increase by 6x in the last 5 years.

PCIe increase by 2x every two years.
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(a) GPU Memory Capacity (b) PCIe Bandwidth
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(c) NVLink Bandwidth

GPU memory capacity increase by 6x in the last 5 years.

PCIe increase by 2x every two years.

NVLink Bandwidth increase by 3x in 5 years.
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(a) GPU Memory Capacity (b) PCIe Bandwidth (c) NVLink Bandwidth

GPU memory capacity increase by 6x in the last 5 years.

PCIe increase by 2x every two years.

NVLink Bandwidth increase by 3x in 5 years.

NVLink C2C (2022) connect NVIDIA GPU and NVIDIA CPU (450 GB/s).
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GPU hardware trend 

Demo of Camelot 

GPU database optimizations
– Tile-based execution (SIGMOD 2020)

– Data Compression (SIGMOD 2022)

– Heterogeneous CPU-GPU DBMS (VLDB 2022)

– Accelerating UDF on GPUs (DaMoN@SIGMOD 2023)

– Multi-GPU database (on-going)

Outline
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GPU hardware trend 

Demo of Camelot 

GPU database optimizations
– Tile-based execution (SIGMOD 2020)

– Data Compression (SIGMOD 2022)

– Heterogeneous CPU-GPU DBMS (VLDB 2022)

– Accelerating UDF on GPUs (DaMoN@SIGMOD 2023)

– Multi-GPU database (on-going)

Outline



GPU Database Optimizations
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Thrust 1: Enabling Large-Scale Data Analytics on GPUs
➢Crystal: tile-based execution (SIGMOD 2020[1])

➢Data Compression (SIGMOD 2022[2])

➢Heterogeneous CPU-GPU DBMS (VLDB 2022[3])

➢Multi-GPU DBMS (ongoing)

Thrust 2: Enhancing the Practicality of GPU Databases
➢Accelerating UDF on GPUs (DaMoN@SIGMOD 2023[4])

➢Code Generation for GPU DBMS (ongoing)

[1] Anil Shanbhag, Samuel Madden, Xiangyao Yu. A Study of the Fundamental Performance Characteristics of GPUs and CPUs for Database 

Analytics, SIGMOD 2022

[2] Anil Shanbhag*, Bobbi Yogatama*, Xiangyao Yu, and Samuel Madden. Tile-based Lightweight Integer Compression in GPU, SIGMOD 2022

[3] Bobbi Yogatama, Weiwei Gong, Xiangyao Yu. Orchestrating data placement and query execution in heterogeneous CPU-GPU DBMS, VLDB 2022

[4] Bobbi Yogatama et al. Accelerating User-Defined Aggregate Functions with Block-wide Execution and JIT Compilation on GPUs, 

DaMoN@SIGMOD 2023
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Thrust 1: Enabling Large-Scale Data Analytics on GPUs
➢Crystal: tile-based execution (SIGMOD 2020[1])

➢Data Compression (SIGMOD 2022[2])

➢Heterogeneous CPU-GPU DBMS (VLDB 2022[3])
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CPU memory capacity 

(up to 10TB)

Thrust 1: Enabling Large-Scale Data Analytics on GPUs
➢Crystal: tile-based execution (SIGMOD 2020[1])

➢Data Compression (SIGMOD 2022[2])

➢Heterogeneous CPU-GPU DBMS (VLDB 2022[3])

➢Multi-GPU DBMS (ongoing)

Tile-based execution (SIGMOD’20)
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GPU Global Memory
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(a) Conventional execution model

Kernel 2 
Probe

Problem: Conventional execution model incurs excessive memory 
traffic for reading/writing intermediate results 

Crystal Library: Tile-Based Execution Model 

Execution 

Cores
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GPU Global Memory

Kernel 1 
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Time
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GPU Global Memory
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Time

Kernel
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(a) Conventional execution model (b) Tile-based execution model

Kernel 2 
Probe Scan

Execution 

Cores

Kernel

Key Idea: Partition data into small tiles and store intermediate results in 
the shared memory (~10x faster)

Crystal Library: Tile-Based Execution Model 



With Crystal, GPU is on average 25X faster than CPU running Star-

Schema Benchmark (SSB).

24

Experimental Results

Hardware: NVIDIA V100 GPU. Intel i7-6900 CPU (8 cores)

Benchmark: Star Schema Benchmark (SF = 20).
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Thrust 1: Enabling Large-Scale Data Analytics on GPUs
➢Tile-based execution (SIGMOD 2020[1])

➢Data Compression (SIGMOD 2022[2])

➢Heterogeneous CPU-GPU DBMS (VLDB 2022[3])

➢Multi-GPU DBMS (ongoing)
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Idea 1: Tile-Based Decompression
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Tile-based execution to keep intermediate results in shared memory 
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Idea 2: GPU-Optimized Compression Format

27

Compact data format that can fully saturates GPU memory bandwidth 
during decompression 

– GPU-FOR: Frame of Reference + Bit-Packing

– GPU-DFOR: Delta encoding + Frame of Reference + Bit-Packing

– GPU-RFOR: Run-length encoding + Frame of Reference + Bit-Packing
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GPU Data Compression – Evaluation

28

(a) Compressed data size

Compression rate comparable to the best-previous scheme (i.e. nvCOMP)

Our design

Hardware: NVIDIA V100 GPU.

Benchmark: Star Schema Benchmark (SF = 20).



GPU Data Compression – Evaluation

29

(a) Compressed data size (b) Decompression time 

Compression rate comparable to the best-previous scheme (i.e. nvCOMP)

Decompression time is 2.2x faster than the best-previous scheme

Hardware: NVIDIA V100 GPU.

Benchmark: Star Schema Benchmark (SF = 20).

Our design
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Thrust 1: Enabling Large-Scale Data Analytics on GPUs
➢Tile-based execution (SIGMOD 2020[1])

➢Data Compression (SIGMOD 2022[2])

➢Heterogeneous CPU-GPU DBMS (VLDB 2022[3])

➢Multi-GPU DBMS (ongoing)
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We aim to answer the existing challenges in heterogeneous CPU-GPU DBMS:

1. Data Placement 

→ How do we partition data between CPU and GPU?

2. Heterogeneous Query Execution 

→ How to coordinate query execution between CPU and GPU?

31

Challenges in Heterogeneous CPU-GPU Model
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→ How to coordinate query execution between CPU and GPU?
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Challenges in Heterogeneous CPU-GPU Model
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Data Placement
We treat data placement as a caching problem → the complete data set resides in CPU 
memory and a mirrored subset of data is cached in GPU.

Key design decision:  cache replacement policy?
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Relation R

A B C D

Relation S

Join Keys

We treat data placement as a caching problem → the complete data set resides in CPU 
memory and a mirrored subset of data is cached in GPU.

Key design decision:  cache replacement policy?

Data Placement



CachedUncached
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GPU MemoryRelation R

A B C D

Relation S

Join Keys

Data Placement
Key design decision:  cache replacement policy?

Previous works did a column-granularity frequency-based/timestamp-based policy. 

(a) Coarse-grained caching (LFU/LRU)[2]

[2] Sebastian Breß, Henning Funke, and Jens Teubner. Robust Query Processing in Co-Processor-Accelerated Databases, SIGMOD 2016.



CachedUncached
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GPU MemoryRelation R

A B C D

Relation S

Join Keys
Fragmentation

Key design decision:  cache replacement policy?

Previous works did a column-granularity frequency-based/timestamp-based policy. 

Limitation: Fragmentation

Data Placement

(a) Coarse-grained caching (LFU/LRU)
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CachedUncached

Join Keys

Relation R

A B C D

Relation S
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(b) Fine-grained caching (LFU/LRU)[3](a) Coarse-grained caching (LFU/LRU)

Join Keys

Data Placement
Key design decision:  cache replacement policy?

A sub-column (segment) fine-grained policy can improve caching efficiency.

GPU Memory

[3] Todd Mostak. An Overview of MapD (Massively Parallel Database).



Relation R

A B C D

Relation S

CachedUncached

Join Keys

Relation R

A B C D

Relation S

38

Join Keys

Data Placement
Key design decision:  cache replacement policy?

A sub-column (segment) fine-grained policy can improve caching efficiency.

Limitation: unaware of query semantic.

GPU Memory

(b) Fine-grained caching (LFU/LRU)(a) Coarse-grained caching (LFU/LRU)



Data Placement
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Relation R

A B C D

Relation S

CachedUncached

Join Keys

Relation R

A B C D

Relation S

Join Keys

Relation R

A B C D

Relation S

Join Keys

GPU Memory

(c) Fine-grained + semantic-aware caching

Key design decision:  cache replacement policy?

A sub-column (segment) fine-grained policy can improve caching efficiency.

Semantic-aware replacement leads to better performance.

(b) Fine-grained caching (LFU/LRU)(a) Coarse-grained caching (LFU/LRU)



Semantic-Aware Fine-Grained Caching
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Extend conventional LFU with weighted frequency counters. 

Weight reflects the potential benefits of caching the segments and is derived using cost model.



Semantic-Aware Fine-Grained Caching
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CachedUncached
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Relation S

Extend conventional LFU with weighted frequency counters. 

Weight reflects the potential benefits of caching the segments and is derived using cost model.
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CachedUncached

𝑅𝑇𝑢𝑛𝑐𝑎𝑐ℎ𝑒𝑑 = 𝑒𝑠𝑡𝑅𝑢𝑛𝑡𝑖𝑚𝑒( Τ𝑐𝑎𝑐ℎ𝑒𝑑 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 𝑆)

Relation R

A B C

S

Extend conventional LFU with weighted frequency counters. 

Weight reflects the potential benefits of caching the segments and is derived using cost model[1].

D

Relation S
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Extend conventional LFU with weighted frequency counters. 

Weight reflects the potential benefits of caching the segments and is derived using cost model[1].
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Extend conventional LFU with weighted frequency counters. 

Weight reflects the potential benefits of caching the segments and is derived using cost model[1].
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Challenges in Heterogeneous CPU-GPU Model

We aim to answer the existing challenges in heterogeneous CPU-GPU DBMS:

1. Data Placement 

→ How do we partition data between CPU and GPU?

2. Heterogeneous Query Execution 

→ How to coordinate query execution between CPU and GPU?



Challenges: 

1. Exploit intra-device and inter-device parallelism in both CPU and GPU.

2. Minimize inter-device data transfer.

Heterogeneous Query Execution

46



Challenges: 

1. Exploit intra-device and inter-device parallelism in both CPU and GPU.

2. Minimize inter-device data transfer.

Solution: Introduce segment-level query execution 

Heterogeneous Query Execution

47
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Segment-level Query Execution
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Segment-level Query Execution
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Group segments with the same execution plan into segment groups.
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Segment-level Query Execution

[2] Sebastian Breß, Henning Funke, and Jens Teubner. Robust Query Processing in Co-Processor-Accelerated Databases, SIGMOD 2016.
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Group segments with the same execution plan into segment groups.

Execute segment groups in parallel following data-driven operator placement[2] → execute operators in GPU 

only if all input segments reside in GPU.
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Segment-level Query Execution
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[2] Sebastian Breß, Henning Funke, and Jens Teubner. Robust Query Processing in Co-Processor-Accelerated Databases, SIGMOD 2016.

Group segments with the same execution plan into segment groups.

Execute segment groups in parallel following data-driven operator placement[2] → execute operators in GPU only if 

all input segments reside in GPU.
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Segment-level Query Execution
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Group segments with the same execution plan into segment groups.

Execute segment groups in parallel following data-driven operator placement. 
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Segment-level Query Execution
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Group segments with the same execution plan into segment groups.

Execute segment groups in parallel following data-driven operator placement. 



54

Segment-level Query Execution

A B C

GROUP 1

GROUP 3

GROUP 2

RELATION R

D E

RELATION S

Cached

Uncached

𝜎

AGG

R S

R.A > 10

R.B = S.D

SUM(R.C)

Relation S

A1

A2

A3

B1

B2

B3

C1

C2

C3

Relation R

D1 E1

Relation S

CPU Memory GPU Memory

A1 B1 C1

A2 B2 D1 E1

Relation R Relation S

𝜎
𝜎

C2

CPU GPU

MATERIALIZE

AGG AGG

SEGMENT 

GROUP 2

SEGMENT 

GROUP 1

Group segments with the same execution plan into segment groups.

Execute segment groups in parallel following data-driven operator placement. 
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Segment-level Query Execution
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Group segments with the same execution plan into segment groups.

Execute segment groups in parallel following data-driven operator placement. 
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Group segments with the same execution plan into segment groups.

Execute segment groups in parallel following data-driven operator placement. 

Merge the results at the end.
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Three components:

➢Cache Manager

• Semantic-Aware Caching Policy

➢Query Optimizer

• Data-driven Operator Placement

➢Query Execution Engine

• Segment-level Query Execution

• Tile-based Execution Model

• Late Materialization

• Segment Skipping
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Mordred: A Hybrid CPU-GPU DBMS



Hybrid CPU-GPU DBMS – Evaluation
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Semantic-aware caching outperforms the best prior policy by up to 3x.

Mordred is 11x faster than the best existing GPU DBMS.

(a) Comparison of Different Data Placement Policies (b) End-to-end Performance

Hardware: NVIDIA V100 GPU. Intel Xeon Platinum CPU (24 Cores).

Benchmark: Star Schema Benchmark: (1) SF = 40 → Figure a, (2) SF = 160 → Figure b. 
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Thrust 1: Enabling Large-Scale Data Analytics on GPUs
➢Tile-based execution (SIGMOD 2020[1])

➢Data Compression (SIGMOD 2022[2])

➢Heterogeneous CPU-GPU DBMS (VLDB 2022[3])

➢Multi-GPU DBMS (ongoing)

CPU + Multi-GPU DB (Ongoing)
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(up to 10TB)
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Multi-GPU
CPU
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Idea 1: Unified Multi-GPU Abstraction
➢Views multi-GPU as a single large monolithic GPU.

Idea 2: Capacity-aware Replication Policy
➢Intelligent replication policy to reduce data transfer between GPUs.

CPU

GPU GPU

GPU GPU

Heterogeneous CPU + Multi-GPU DBMS

(a) Data Caching (b) Data Partitioning/Replication
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Lancelot: A Hybrid CPU + Multi-GPU DBMS

Three components:

➢Cache Manager

• Semantic-Aware Caching Policy

• Capacity-Aware Replication Policy

➢Query Optimizer

• Data-driven Operator Placement

➢Query Execution Engine

• Segment-level Query Execution

• Late Materialization

• Adaptive Query Execution

• Join Reordering

• Tile-based Execution Model

• Segment Skipping



Multi-GPU DBMS – Evaluation
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(a) Scaling to Multiple GPUs (b) End-to-end Performance

Lancelot can scale Mordred to Multiple GPUs.

Lancelot is 7x faster than the best existing multi-GPU DBMS.

Hardware: NVIDIA V100 GPU. Intel Xeon Platinum CPU (104 Cores).

Benchmark: Star Schema Benchmark: SF = 160 (Figure b)
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Thrust 1: Enabling Large-Scale Data Analytics on GPUs
➢Crystal: tile-based execution (SIGMOD 2020[1])

➢Data Compression (SIGMOD 2022[2])

➢Heterogeneous CPU-GPU DBMS (VLDB 2022[3])

➢Multi-GPU DBMS (ongoing)

Thrust 2: Enhancing the Practicality of GPU Databases
➢Accelerating UDF on GPUs (DaMoN@SIGMOD 2023[4])

➢Code Generation for GPU DBMS (ongoing)
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Thrust 1: Enabling Large-Scale Data Analytics on GPUs
➢Crystal: tile-based execution (SIGMOD 2020[1])

➢Data Compression (SIGMOD 2022[2])

➢Heterogeneous CPU-GPU DBMS (VLDB 2022[3])

➢Multi-GPU DBMS (ongoing)

Thrust 2: Enhancing the Practicality of GPU Databases
➢Accelerating UDF on GPUs (DaMoN@SIGMOD 2023[4])

➢Code Generation for GPU DBMS (ongoing)



Accelerating UDAF on GPUs
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Challenge: UDAF Execution is slow on GPUs (sometimes even slower than CPU). 



Accelerating UDAF on GPUs
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Challenge: UDAF Execution is slow on GPUs (sometimes even slower than CPU). 

We introduce a novel UDAF execution framework with Tile-based Execution and JIT Compilation.

We are up to 8000× faster against existing approach (on NVIDIA V100 GPU).

Fully integrated and released in NVIDIA RAPIDS cuDF v23.02[2]. 

Existing approach Our approach



Confronting Challenges in GPU DBMS
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Goal: Solve these challenges with two research thrusts

Thrust 1: Enabling Large-Scale Data Analytics on GPUs
➢Data Compression (SIGMOD 2022[1])

➢Heterogeneous CPU-GPU DBMS (VLDB 2022[2])

➢Multi-GPU DBMS (ongoing)

Thrust 2: Enhancing the Practicality of GPU Databases
➢Accelerating UDF on GPUs (DaMoN@SIGMOD 2023[3])

➢Code Generation for GPU DBMS (ongoing)
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Conclusion

GPU is becoming the new modality of SQL analytics
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