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Processor specialization
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Hyperscalers, commanding a growing share of the market, are emerging
as significant customers for many components.

2017 share of hyperscalers in component markets, market estimates, %

Driving specialization

* The cloud is the big game changer:
* New business model
 Economies of scale

* Very large workloads
2017 enterprise Central Dynamc H:gd u‘sx Inp::lr;outlpul
segment P’O:nel‘f:'ﬂg rives connactors

* Every hyper scaler is its own “Killer App” i i
* The scale makes many things feasible | R
* The gains have a very large multiplier

https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-
insights/how-high-tech-suppliers-are-responding-to-the-hyperscaler-opportunity



The Data Center Tax
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Profiling a warehouse-scale computer, ISCA 2015



Conseqguences:

Everything that is demanding enough and
common enough is moving to dedicated
accelerators



Running virtual machines

Intel mainboard

Nitro architecture

. mbd 4xlarge
. mSd 4xlarge
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Microsoft Azure Boost

Security architecture components
Designed to enhance Azure workload security, Azure Boost includes the following security components:

¢ An independent hardware root of trust - Cerberus fulfils NIST 800-193 certification.

* Azure Boost system on chip (SoC) — dedicated, Linux based system conducting management operations for the control plane.

¢ Configurable field-programable gate array (FPGA) — programable network and storage acceleration capabilities for the data plane.

Azure Boost SoCs pair with each host and work in tandem to create a more secure hosting infrastructure.

Host Server Blade
Host OS VM VM

Host system

services
N

Hypervisor

Devices [Gerborus |

[crul[Tem || ... |
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Accelerating video processing (VCU

* 500+ hrs of video are uploaded to
YouTube every minute!

* Need to transcode each video to diff
formats & resolutions for diff devices

* VCU achieves 20-33x better compute-
efficiency vs. optimized CPU baseline

* Use-cases:

* video conferencing, livestreaming
* virtual/augmented reality

* cloud gaming

e video in loT devices

* See paper at ASPLOS'21:

https://research.google/pubs/pub50300/

Warehouse-Scale Video Acceleration:
Co-design and Deployment in the Wild

Parthasarathy Ranganathan Sarah J. Gwin Narayana Penukonda
Daniel Stodolsky Yoshiaki Hase Eric Perkins-Argueta
Jeff Calow Da-ke He Devin Persaud
Jeremy Dorfman C. Richard Ho Alex Ramirez
Marisabel Guevara Roy W. Huffman Jr. Ville-Mikko Rautio
Clinton Wills Smullen IV Elisha Indupalli Yolanda Ripley
Aki Kuusela Indira Jayaram Amir Salek
Raghu Balasubramanian Poonacha Kongetira Sathish Sekar
Sandeep Bhatia Cho Mon Kyaw Sergey N. Sokolov
Prakash Chauhan Aaron Laursen Rob Springer
Anna Cheung Yuan Li Don Stark
In Suk Chong Fong Lou Mercedes Tan
Niranjani Dasharathi Kyle A. Lucke Mark S. Wachsler
Jia Feng JP Maaninen Andrew C. Walton
Brian Fosco Ramon Macias David A. Wickeraad
Samuel Foss Maire Mahony Alvin Wijaya
Ben Gelb David Alexander Munday Hon Kwan Wu
Google Inc. Srikanth Muroor Google Inc.
USA veu@google.com UsA

Google Inc.

ABSTRACT
Video sharing (e.g., YouTube, Vimeo, Facebook, TikTok) accounts

for the majority of internet traffic, and video processing is also foun-
dational to several other key workloads (video conferencing, vir-

tual/augmented reality, cloud gaming, video in Internet-of-Things
devices, etc.). The importance of these workloads motivates larger
video processing infrastructures and - with the slowing of Moore’s
law - specialized hardware accelerators to deliver more computing

at higher efficiencies. This paper describes the design and deploy-

ment, at scale, of a new accelerator targeted at warehouse-scale
video transcoding. We present our hardware design including a new

accelerator building block - the video coding unit (VCU) - and dis-

cuss key design trade-offs for balanced systems at data center scale
and co-designing accelerators with large-scale distributed software
systems. We evaluate these accelerators “in the wild" serving live
data center jobs, demonstrating 20-33% improved efficiency over our
prior well-tuned non-accelerated baseline. Our design also enables
effective adaptation to changing bottlenecks and improved failure

USA

management, and new workload capabilities not otherwise possible
with prior systems. To the best of our knowledge, this is the first
work to discuss video acceleration at scale in large warehouse-scale
environments.

CCS CONCEPTS

+ Hardware — Hardware-software codesign; « Computer sys-
tems organization — Special purpose systems.

KEYWORDS
video transcoding, warehouse-scale computing, domain-specific
accelerators, hardware-software codesign

ACM Reference Format:

Parthasarathy Ranganathan, Daniel Stodolsky, Jeff Calow, Jeremy Dorf-
man, Marisabel Guevara, Clinton Wills Smullen IV, Aki Kuusela, Raghu
Balasubramanian, Sandeep Bhatia, Prakash Chauhan, Anna Cheung, In
Suk Chong, Niranjani Dasharathi, Jia Feng, Brian Fosco, Samuel Foss, Ben
Gelb, Sarah T Gwin, Yoshiaki Hase, Da-ke He, C, Richard Ho Rov W Huff-
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https://research.google/pubs/pub50300/

AMAZON S3
DURABLE STORAGE

Amazon “AQUA is designed to deliver up to 10X
S performance on queries that perform large
scans, aggregates, and filtering with LIKE and
- - 1 SIMILAR_TO predicates. Over time we expect to
add support for additional queries.”

High speed networking Filtered & aggregated results
C \
f llel I

AQUA layer \1,

scale-out
architecture

https://aws.amazon.com/blogs/aws/new-aqua-advanced-
query-accelerator-for-amazon-redshift/

Amazon S3

Durable storage

12



Data Compression (Microsoft Zipline/Corsica)

Corsica: A project zipline ASIC

Compression without compromise:

High compression ratio

Low latency

Inline encryption, authentication
High total throughput

Disk write latency with Corsica

:m'::k'“‘ Corsica does $SD
overhead the work read/write

Corsica is 15-25 times faster than the CPU

S d
itk CPU does the work s
overhead Compression | Encryption | Authentication | Data integrity i Matte

Disk write latency today
https://azure.microsoft.com/en-us/blog/improved-cloud-service-performance-through-asic-acceleration/

Gustavo Alonso. Systems Group. D-INFK. ETH Zurich 13



Example

CPU-1 thread ~ CPU-2 threads ] FPGA
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(a) Compression + AES-CBC (b) Compression + AES-CTR (c) Compression + AES-ECB

Figure 12: Full pipeline - with 1 and 2 threads on CPU vs. FPGA design. Note the logarithmic scale of the y axis.

Hardware Acceleration of Compression and Encryption in | T l FPGA External DDR4 Memory
SAP HANA | Read data | | Load Huffman tree | —*I Buffer I—-;—l'l AES-256 |J
Monica Chiosa’ Fabio Maschi* Ingo Miiller I l | '
ETH Zurich ETH Zurich ETH Zurich comprassion _,{ vl [ Buffer |——{ AES-256 | ——
monica.chiosa@inf.ethz.ch fabio.maschi@inf.ethz.ch ingo.mueller@inf.ethz.ch X
-+ Buffer | ——{ AES-256 |———
Gustavo Alonso Norman May !
ETH Zurich SAP SE ——{ Buffer —+— AES-256 }————
alonso@inf.ethz.ch norman.may(@sap.com Load Balancer !
VLDB 2022 Only for CBC mode |
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Trend towards disaggregation

Architecting Cloud Infrastructure for the Future
Flexible Rack Scale Infrastructure

Today Next

Future

Physical Aggregation Fabric Integration Subsystem Aggregation

- Rack Fabric
Optical Interconnects
Shared Power Modular refresh

Shared Cooling
Rack Management

Pooled compute
Pooled storage
Pooled memory
Shared boot

Deliver efficient, adaptable data center infrastructure

Gustavo Alonso. Systems Group. D-INFK. ETH Zurich
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The future of accelerators

TPP: Transparent Page Placement for CXL-Enabled
Tiered Memory

64 GB/s per x16 li

~170-250 ns
38.4 GB/s per channel

38.4 GB/s per channel

Hasan Al Maruf*, Hao Wang', Abhishek Dhanotia’, Johannes Weiner", Niket 100 ns : ~100 ns
Agarwal’, Pallab Bhattacharya®, Chris Petersen’, Mosharaf Chowdhury*, Shobhit | 2% DRAM DRAM
Kanaujia', Prakash Chauhan' (a) Without CXL (b) With CXL

University of Michigan®* Meta Inc.”

L IVISTHIVEY WVHIUUHTE VI ] VI X L VE | oD |

8-socket Pond (155ns, 182%)
ENIC

Core/LLC MC &

Pond: CXL-Based Memory Pooling Systems for Cloud Platforms e pm

" 40ns  25ns 5ns 25ns | 15ns  45ns. ]

Huaicheng Li", Daniel S. Berger**, Stanko Novakovic*, Lisa Hsu*, Dan Ernst*, i
Pantea Zardoshti®, Monish Shah®, Samir Rajadnya®. Scott Lee*, Ishwar Agarwal®, 16-socket Pond (180ns, 212%) e
Mark D. Hill*®, Marcus Fontoura®, Ricardo Bianchini” Soreli LG g
¥ Virginia Tech and CMU *Microsoft Azure University of Washington ? University of Wisconsin-Madison /Fabric $
| =

40ns
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Example

Farview: Disaggregated Memory with Operator Off-loading for
Database Engines

Dario Korolija Dimitrios Koutsoukos Kimberly Keeton*
dario.korolija@inf.cthz.ch dkoutsou@inf.cthz.ch kimberlykeeton@acm.org
ETH Zurich ETH Zurich Hewlett Packard Labs
Switzerland Switzerland USA
Konstantin Taranov Dejan Milojicic Gustavo Alonso
konstantin.taranov @inf.cthz.ch dejan.milojicic@hpe.com alonso@inf.cthz.ch
ETH Zurich Hewlett Packard Labs ETH Zurich
Switzerland USA Switzerland
ABSTRACT computing; and the amount of data to be processed keeps growing
Cloud deployments disaggregate storage from compute, providing while DRAM capacity does not.

maore flexihilitv to hoth the storage and comnnte lavers In this naner. Optimized query plans typically push down selection and pro-



Disaggregated Memory (Farview)

Storage

Node

Coﬁi’pute
Node

Compute Cor:npute

Node Node

:E: smart NIC :E: Smart NIC
o)) ) ) | | ) ) ] ]
Disaggregated Disaggregated
Memory (DRAM) Memory (DRAM)

Compute
Node

Storage

Node

:8: Smart NIC

e ] s

Disaggregated

Memory (DRAM)

Gustavo Alonso. Systems Group. D-INFK. ETH Zurich

19



Use case
b | I A A
System Global Area (SGA) T
Shared Pool Large Pool / O Buffer Area
/ UGA

Library Cache

Shared SQL Area | |Frivate O L [ ] i?‘/
| SELECT * FROM | St Area

(Shared B = "o " e—p[puon]
| _ _employees Saerver Only) " u ./

[ ] ]
+—>swon]
Data Server | |Cther | | Reserved Response Request
Dictionary | |Result Pool CQueue Queue
Cache Cache 44— | RECO
< [smon ]
Database
Fixed Java Streams
Buffer Cache SGA Pool Pool >
ReELEE B
GTE A 4—"

& Backgrountd

I Processes
PGA v v

|DBWn| | CKPT | | LGWH‘ | AFICn| |HVWH|

[
SQL Work Areas Server
' Process

Sl e

Session Memory Private %QL Area

Client
Process

https://docs.oracle.com/cd/E11882_01/server.112/e40540/process.htm#CNCPT902
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Smart Disaggregated Memory (Farview)

SELECTT.3,5.b TTa,5.5()

FROMT, S b4

WHERE T.id = 5.id

AND T.c » 50 AND S.d < 2012; ATaTidl OTc=50(T))  Tsps.:ia(Os.a<2012(5))
SELECT R.d, 5.b TR.d5.6()

FROMR, § b4

WHERE R.id = S.id
AND R.a = 3.14 AND 5.a <= 2012; ARARid(ORa=2.14(R)) s 5:a(Os.a==2020(5))

Compute node
CQuery thread:

-

1 g]’fmﬁ_b“

N—

* RDMA

Compute node

pery thread:
$ 7rass0) :
[

Smart disagﬁrggated memor

................... -

:‘D rerator offloading
E 7o Tid 0T =500 T))
« 7505040 5.422012(S))

, 2perator offloading

:‘ TR.dRid(ORa=3.14(R)
7s5.5i0(0 5 ae2020(5))
L ]

The goal is to reduce the amount of memory that needs to be allocated
in computing nodes by using a common buffer cache in DRAM available
through the network via RDMA

Gustavo Alonso. Systems Group. D-INFK. ETH Zurich
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Farview: overhead

Throughput [GBps]

et}
0 RDMA READ
19 -&A- Farview READ + AES Decryption
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128 256 512 1k 2k 4k 8k

Gustavo Alonso. Systems Group. D-INFK. ETH Zurich
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Evaluation

e Farview compared to two baselines

e Buffer cache implemented in local
memory with processing on the
local CPU

 Remote buffer cache, without
FPGA, implemented in a remote
machine accessed through
commercial Mellanox NIC via
RDMA

Response times for selection queries with 50% selectivity:

Response time [us]
400

Iarv-v loFv BeLCPU BBRRCPU

300 -

200

100

64k 128k 256k 512k IM
Table size

Response time comparisons for a group by query with aggregation:

Response time |us|

800
con - [TUEV OorLcru BERCPU
400
200
64k 128k 256k 512k M
I'able size

Response time comparisons for a distinct query with 6 concurrent clients:

Response time |us]

s00 -{lnrv OoLcru BRRCPU

600
400 -
200
64k 128k 256k 512k IM 2M
Table size

Gustavo Alonso. Systems Group. D-INFK. ETH Zurich 23



Generalizing the idea

* The same can be done on:
 Remote storage (cloud storage layer)
* Local disks
* Local memory
* Remote memory through a smart NIC
e Caching layer similar to AQUA

* One can even think of a common interface for all these systems to
make the operator offloading completely transparent
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Streaming

Gustavo Alonso. Systems Group. D-INFK. ETH Zurich 25



Near Data Processing

* Given the high cost of data movement, storage must be:
» Distributed — for capacity reasons
* Smart —to minimize data movement
 Efficient — avoid unnecessary overheads

* |deally, storage of any kind (DRAM, local disk, network attached,
object repositories, storage layers, data lakes, etc.) should enable
processing of the data at or near the storage itself

* This has to be done in a streaming fashion to avoid adding latency



Processing on memory streams

SQL In Silicon: Behind The Scenes

Equivalent of 32 Extra Cores Plus 64 Extra Decompress Cores

DAX L3 Cache

—— sl e

ozIP
decompress

SRAM

: \ Unpack Input
l3$& & ‘ Buffer

& Lookup

Run (ength
Tables

Expand

ON-CHIP NETWORK | | — , I Predicate l Filter Rows
1 l | Dictionary PIORIEEN AT Evaluation by Bit Vector

Pack
Output

DAX L3 Cache

ORACLE

Gustavo Alonso. Systems Group. D-INFK. ETH Zurich
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Active pipelines on the data path

ON-CHIP
) NETWORK
CORE L1 L2
NEAR
- w SHARED MEMORY
CORE L1 L2 L3 Cache ACCELERATOR
~— Predicate
- N Evaluation
CORE | | 11 12 1
— ¢
( )
CORE L1 L2
—

COMPUTE NODE

ON-CHIP
NETWORK

DRAM

NIC
Hashing

RDMA
or CXL

RMMU
or NIC

DISAGGREGATED
MEMORY

RDMA
or CXL

NIC Projection
Filtering

N~

STORAGE NODE

Joint work with Alberto Lerner (Data Flow Architectures for Data Processing on Modern Hardware, ICDE 2024)

Gustavo Alonso. Systems Group. D-INFK. ETH Zurich
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Maximus

Modularis: Modular Relational Analytics over Heterogeneous Distributed Platforms.
VLDB 2021

Gustavo Alonso. Systems Group. D-INFK. ETH Zurich 29



Program once, run everyvvhere

e Database engines and data processing systems tend to be very
monolithic
* Difficult to evolve
* Expensive to maintain and change
* Lots of legacy

* |s there a way to build systems that makes them as independent as
possible of the underlying computing platform?
* Make the choice of hardware part of the optimization process
* Organize the system around its functionality, not its implementation



The initial idea

S [soL |[isoNiq || LA |[dataflow] | Graph || ML
£ ¥ ¥
2 lib lib
Y Y Y Y
inpUt program (IR) L\J—U'I'U'Vl'u—u-l-u—v-l-u—u-l
rewriting passes '
output program (IR) L""’L"""E,,,,ﬁﬁ';"‘:‘;_;‘_ -
lowering |
executable program (backend-specific)
. — VT
2 JCPU}| Phi| 1RackilMC DFS|i DIMM
&) X | X ........
§ GPU | ... Cluster [|A] ... ... NVMe

Miiller, I., Marroquin, R., Koutsoukos, D., Wawrzoniak, M., Akhadov, S.,
& Alonso, G. (2020, June). The collection Virtual Machine: an
abstraction for multi-frontend multi-backend data analysis.

In Proceedings of the 16th International Workshop on Data
Management on New Hardware (pp. 1-10).
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The current system: Modularis

Python

SQL || JSONiq || LA [Jdataffow]| Graph || ML | config | Category Operators
Orchestration operators Parameter Lookup, NestedMap

frontends

rewriting passes Probe, Partition, Semi-join, Sort,

L] L]
: Data processing operators (Parametrized) Map, Projection,
lib lib : :
v v Y Y Cartesian Product, Filter, Re-
5 | I I | | | duce (By Key), GroupBy, Zip,
Input program (IR) l Local Histogram, Build and

Y Top-K
output program (IR) Lv'vl'v-v-[-.---.-;-;-rl-v—v-l MPI-specific operators MPI Executor, MPI Histogram,
111 MPI Exchange
lowering v Lambda-specific operators Lambda Executor, Lambda Ex-
change
[ cPu jcutable prj - MmPI JaCk\end_S B Smart storage-specific operators | S3Select Scan
" A/‘ﬁ __!' 1 I\' S3Select ' Materialize and scan operators | Local Partitioning (AVX-based),
2 | CPU }| Phi ' Rack i ! Partition, Row Scan, Column
< X Yz : X lelelalelals ' Scan, Parquet Scan, Materialize
§ GPU | .. Cluster || A ] ... NVMe Row Vector, Arrow table to col-
lection

Miiller, I., Marroquin, R., Koutsoukos, D., Wawrzoniak, M., Akhadov, S.,
& Alonso, G. (2020, June). The collection Virtual Machine: an
abstraction for multi-frontend multi-backend data analysis.

In Proceedings of the 16th International Workshop on Data
Management on New Hardware (pp. 1-10).

Koutsoukos, D., Miiller, I., Marroquin, R., Klimovic, A., & Alonso, G. (2020). Modularis:
modular relational analytics over heterogeneous distributed platforms.
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Modular data processing (Modularis

Suboperator (
repositor . . .
il Modularis: Modular Relational Analytics
over Heterogeneous Distributed Platforms
g Dimitrios Koutsoukos Ingo Miiller Renato Marroquin®
platform choice — Query compiler — ETH Zurich, Switzerland ETH Zurich, Switzerland Oracle Inc., Zurich, Switzerland
DAG tr | RDMA I dkoutsou@inf.cthz.ch ingo.mucller@int.ethz.ch renato.marroquin@oracle.com
1 ans-
s Ana Klimovic Gustavo Alonso
f°"“f“°“ ETH Zurich, Switzerland ETH Zurich, Switzerland
= = aklimovic@ethz.ch alonso@inf.ethz.ch
Pipeline creation tabl Deployment ’ o
o ABSTRACT 1 INTRODUCTION
J- pldn The enormous quantity of data produced every day together with The growing popularity of machine learning applications and the
I LLVM IR | - advances in data analytics has led to a proliferation of data man- increasing amount of data that analytics applications must process
Serverless I agement and analysis systems. Typically, these systems are built have had a substantial influence on the way systems are designed
D—> @—>BD—> @@ Nestedap

~— & Bl - AT @ OB PO @B -
M e S -\ @
DD = D>@®—>®

HestedMap

MpiExecutor
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Example of sub-operators

i Inner [ outer !
relation part relation part
. e -
" v '-{;’ ™,
Histogram Histogram
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Network Network

e e K
partitioning partitioning
N/ \/

Local

partitioning
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Local

partitioning
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Hash build
and probe

Partitioned hash join

Inner Quter
relation part relation part
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Histogram Histogram
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! Y Vi
Network Network
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Local Local
partitioning partitioning
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Gustavo Alonso. Systems Group. D-INFK. ETH Zurich

Category

Operators

Orchestration operators

Parameter Lookup, NestedMap

Data processing operators

iParametrized) Map, Pr ojection,
Cartesian Product, Filter, Re-
duce (By Key), GroupBy, Zip,
Local Histogram, Build and
Probe, Partition, Semi-join, Sort,
Top-K

MPI-specific operators

MPI Executor, MPI Histogram,
MPI Exchange

Lambda-specific operators

Lambda Executor, Lambda Ex-
change

Smart storage-specific operators

S3Select Scan

Materialize and scan operators

Local Partitioning (AVX-based),
Partition, Row Scan, Column
Scan, Parquet Scan, Materialize
Row Vector, Arrow table to col-
lection

Inner Outer Inner Outer
relation part relation part relation part relation part
vV W Vv v
Histogram Histogram Histogram Histogram

computation computation

computation

computation

v v " v v
Network Network Network Network
partitioning partitioning partitioning partitioning

¥ ¥ iz 37

Local Local Local Local
partitioning partitioning partitioning partitioning

Hash build
and probe

Hash build
and probe
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A distributed join

M@_}@ / i :E:'_.- }iﬁp
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D—>F—>E_
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HestadMap
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Figure 3: Plan that runs the distributed hash join with modular operators across manyv nodes
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Figure 5: Plan that runs the distributed GROUP BY with modular operators across many nodes

Gustavo Alonso. Systems Group. D-INFK. ETH Zurich
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Full queries

P Y
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Figure 6: Modularis plan for TPC-H Q12 on RDMA
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Figure 7: Modularis plan for TPC-H Q12 on Serverless
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Deployment engine

* The deployment engine takes the query plan represented in LLVM IR
and instantiates the sub-operators that are architecture dependent to

produce an executable plan

e Current possible deployments:
« RDMA based clusters (using MPIl as communication library and for some
operators)
e Serverless computing (Amazon Lambdas) on S3
» Serverless computing (Amazon Lambdas) and smart storage

* Working on deployments over disaggregated memory and using hardware
accelerators



TPC-H SF-500 (RDMA)
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TPC-H SF-500 (Serverless)
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The advantage?

* The effort goes into implementing sub-operators using a standardized
interface

* Query optimization, tailoring to the underlying architecture, and using
features of the hardware are all done automatically but are
orthogonal to each other

* Where a query runs is just one more parameter passed to the system
at query compilation time.



Impact: similar systems starting to appear
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Synergies

e Modularis has attracted a lot of attention

* We are exploring synergies with several efforts:
* Velox (Meta)
e Gluten (Intel)
e Use of GPU and DPUs (Microsoft)
* Heterogeneous and disaggregated systems (Amazon)

* Agreement that an approach such as that of Modularis is the correct
one to address all these challenges.

* Now engaged in a complete system redesign => Maximus



From Modularis to Maximus

* We have started a complete rewrite of Modularis into a new system

* Maximus:
* Push execution model (vectorized)
e Standard interfaces (compatible with Velox library)
* Written in C++, high performance first
* Integrating GPUs and other accelerators (smartNICs)
e Porting relational operators to GPUs
* Disaggregated storage and memory
Beyond relational (ML, vectors, embeddings, etc.)
* Reuse of componets already available
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Future Work

* Continue system development with regular releases

* Develop algorithms on CPU, GPU, DPU and compare across the
implementations and use cases

* Interfaces and execution models for heterogeneous architectures

* Derive a cost model and heuristics for choosing the best type of
hardware to execute a given operator

* Query optimization in heterogeneous and distributed settings
* Generalization and interaction with other systems
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Conclusions
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Conclusions

* Data is growing
* Performance demands are growing
* But there are many options that new hardware provides

* The challenge is to redesign data processing so that it can evolve with
the platforms and hardware
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