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Specialization
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General purpose computing

Slow improvements lead

to specialization
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Processor specialization
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Driving specialization

• The cloud is the big game changer:
• New business model

• Economies of scale

• Very large workloads

• Every hyper scaler is its own “Killer App”
• The scale makes many things feasible

• The gains have a very large multiplier
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https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-
insights/how-high-tech-suppliers-are-responding-to-the-hyperscaler-opportunity



The Data Center Tax
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Profiling a warehouse-scale computer, ISCA 2015



Consequences:

Everything that is demanding enough and 
common enough is moving to dedicated 

accelerators
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Running virtual machines
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Microsoft Azure Boost
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Accelerating ML/AI
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Accelerating video processing (VCU)

• 500+ hrs of video are uploaded to 
YouTube every minute!

• Need to transcode each video to diff 
formats & resolutions for diff devices

• VCU achieves 20-33x better compute-
efficiency vs. optimized CPU baseline

• Use-cases: 
• video conferencing, livestreaming
• virtual/augmented reality
• cloud gaming
• video in IoT devices

• See paper at ASPLOS’21: 
https://research.google/pubs/pub50300/
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https://research.google/pubs/pub50300/


Cloud caches (Amazon Aqua)
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“AQUA is designed to deliver up to 10X 

performance on queries that perform large 
scans, aggregates, and filtering with LIKE and 
SIMILAR_TO predicates. Over time we expect to 
add support for additional queries.” 

https://aws.amazon.com/blogs/aws/new-aqua-advanced-
query-accelerator-for-amazon-redshift/



Data Compression (Microsoft Zipline/Corsica)
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https://azure.microsoft.com/en-us/blog/improved-cloud-service-performance-through-asic-acceleration/



Example
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VLDB 2022



Disaggregation
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Trend towards disaggregation
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The future of accelerators
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Example



Disaggregated Memory (Farview)
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Use case
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https://docs.oracle.com/cd/E11882_01/server.112/e40540/process.htm#CNCPT902



Smart Disaggregated Memory (Farview)
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The goal is to reduce the amount of memory that needs to be allocated 
in computing nodes by using a common buffer cache in DRAM available 

through the network via RDMA



Farview: overhead
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Evaluation

• Farview compared to two baselines
• Buffer cache implemented in local 

memory with processing on the 
local CPU

• Remote buffer cache, without 
FPGA, implemented in a remote 
machine accessed through 
commercial Mellanox NIC via 
RDMA
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Response times for selection queries with 50% selectivity:

Response time comparisons for a group by query with aggregation:

Response time comparisons for a distinct query with 6 concurrent clients:



Generalizing the idea

• The same can be done on:
• Remote storage (cloud storage layer)

• Local disks

• Local memory

• Remote memory through a smart NIC

• Caching layer similar to AQUA

• One can even think of a common interface for all these systems to 
make the operator offloading completely transparent
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Streaming
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Near Data Processing

• Given the high cost of data movement, storage must be:
• Distributed – for capacity reasons

• Smart – to minimize data movement

• Efficient – avoid unnecessary overheads

• Ideally, storage of any kind (DRAM, local disk, network attached, 
object repositories, storage layers, data lakes, etc.) should enable 
processing of the data at or near the storage itself

• This has to be done in a streaming fashion to avoid adding latency
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Processing on memory streams
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Active pipelines on the data path
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Maximus
Modularis: Modular Relational Analytics over Heterogeneous Distributed Platforms. 
VLDB 2021
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Program once, run everywhere

• Database engines and data processing systems tend to be very 
monolithic

• Difficult to evolve

• Expensive to maintain and change

• Lots of legacy

• Is there a way to build systems that makes them as independent as 
possible of the underlying computing platform?

• Make the choice of hardware part of the optimization process

• Organize the system around its functionality, not its implementation
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The initial idea
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Müller, I., Marroquín, R., Koutsoukos, D., Wawrzoniak, M., Akhadov, S., 
& Alonso, G. (2020, June). The collection Virtual Machine: an 
abstraction for multi-frontend multi-backend data analysis. 
In Proceedings of the 16th International Workshop on Data 
Management on New Hardware (pp. 1-10).



The current system: Modularis
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Modular data processing (Modularis)
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Example of sub-operators
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Partitioned hash join



A distributed join
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Full queries

Gustavo Alonso. Systems Group. D-INFK. ETH Zurich 36



Deployment engine

• The deployment engine takes the query plan represented in LLVM IR 
and instantiates the sub-operators that are architecture dependent to 
produce an executable plan

• Current possible deployments:
• RDMA based clusters (using MPI as communication library and for some 

operators)

• Serverless computing (Amazon Lambdas) on S3

• Serverless computing (Amazon Lambdas) and smart storage

• Working on deployments over disaggregated memory and using hardware 
accelerators
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TPC-H SF-500 (RDMA)
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TPC-H SF-500 (Serverless)
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The advantage?

• The effort goes into implementing sub-operators using a standardized 
interface

• Query optimization, tailoring to the underlying architecture, and using 
features of the hardware are all done automatically but are 
orthogonal to each other

• Where a query runs is just one more parameter passed to the system 
at query compilation time. 
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Impact: similar systems starting to appear
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Synergies

• Modularis has attracted a lot of attention

• We are exploring synergies with several efforts:
• Velox (Meta)

• Gluten (Intel)

• Use of GPU and DPUs (Microsoft)

• Heterogeneous and disaggregated systems (Amazon)

• Agreement that an approach such as that of Modularis is the correct 
one to address all  these challenges.

• Now engaged in a complete system redesign => Maximus
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From Modularis to Maximus

• We have started a complete rewrite of Modularis into a new system

• Maximus:
• Push execution model (vectorized)

• Standard interfaces (compatible with Velox library)

• Written in C++, high performance first

• Integrating GPUs and other accelerators (smartNICs)

• Porting relational operators to GPUs

• Disaggregated storage and memory

• Beyond relational (ML, vectors, embeddings, etc.)

• Reuse of componets already available
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The future system: Maximus
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Future Work

• Continue system development with regular releases

• Develop algorithms on CPU, GPU, DPU and compare across the 
implementations and use cases

• Interfaces and execution models for heterogeneous architectures

• Derive a cost model and heuristics for choosing the best type of 
hardware to execute a given operator

• Query optimization in heterogeneous and distributed settings

• Generalization and interaction with other systems
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Conclusions
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Conclusions

• Data is growing

• Performance demands are growing

• But there are many options that new hardware provides

• The challenge is to redesign data processing so that it can evolve with 
the platforms and hardware
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