Al4DB & DB4Al

Guoliang Li Tsinghua University

1970s	1990s	2010s	2020s
Relation & SQL	Large scale	Internet scale	Heterogenous
High performance	High availability	Scale-out	Autonomous

An intelligent era calls for a more intelligent database

AI-Native Database

AI4DB

- Manual → Automatic
- □ Self-optimization
- □ Self-configuration
- □ Self-monitoring
- □ Self-healing
- □ Self-security
- □ Self-design

DB4AI

- $AI \rightarrow as easy as DB$
- Declarative AI
- □ AI optimization
- Data governance
- **Data provenance**
- Model management

AI-Native Database

Declarative AI

scheduling

View advisor

5

Level 1: Al-advised DB

Database advisor for making database more intelligent

- Database Configuration
 - Knob tuning
 - Workload management
 - Automatic Upgrade
- Database Optimization
 - Index advisor
 - View advisor
 - Partition advisor

Al for Knob Tuning

DAutomatic Tuning is important and challenging

- □ Tunable options control nearly all aspects of runtime operations.
- □ The number of knobs in a DBMS is huge and the relationships are complex.

CDBTune

- using deep reinforcement learning (DRL), an
 end-to-end automatic CDB (Cloud DataBase)
 tuning system
 - deep deterministic policy gradient method (DDPG)
 - try-and-error strategy
- Characteristics:
 - end-to-end learning
 - using a limited number of samples
 - high-dimensional continuous knobs recommendation
 - reducing the possibility of Local Optimum
 - good adaptability
 - accelerates the convergence speed

CDBTune: Working Mechanism

DOffline Training

- Step 1: builds a training model
- Step 2: trains the training model
 - Training Data
 - Training Model
 - Training Data Generation

Online Tuning

- Step 3: utilizes the model to recommend knob settings for an online tuning request
- Step 4: updates the training model by taking the tuning request as training data

Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li. An End-to-End Automatic Cloud Database Tuning System Using Deep Reinforcement Learning. SIGMOD 2019

CDBTune

Reinforcement Learning

Reinforcement Learning

- Method: DDPG
- Goal: learn the best policy

□ Six key elements in RL

- Agent
 - receives reward and state, updates the policy
- Environment
 - Environment is the tuning target, specifically an instance of CDB
- State
 - the current state of the agent, i.e., the 63 metrics
 - describe the state at time t as s_t

– Reward

- a scalar described as r_t
- Action
 - described as a_t corresponds to a knob tuning operation
- Policy
 - described as $\mu(s_t)$
 - a mapping from state to action

DDPG

About DDPG

- a policy-based method, combination of DQN and actor-critic
- learn the policy with high dimensional states and actions

DDPG design

- Policy function: $a_t = \mu(s_t | \theta^{\mu})$
 - θ^{μ} : mapping the state s_t to the value of action a_t
- Critic function: $Q(s_t, a_t | \theta^Q)$
 - represent the value (score) with specific action a_t and state s_t
 - $\theta^{\rm Q}$ is learnable parameters
- Inheriting from Bellman Equation and DQN: $Q^{\mu}(s, a) = \mathbb{E}_{r_t, s_{t+1} \sim E}[r(s_t, a_t) + \gamma Q^{\mu}(s_{t+1}, \mu(s_{t+1}))]$
 - policy $\mu(s)$ is deterministic, s_{t+1} is the next state, $r_t = r(s_t, a_t)$ is the reward function, and γ is a discount factor
- Minimize the training objective: $\min L(\theta^Q) = \mathbb{E}[(Q(s, a | \theta^Q) y)^2]$
 - where $y = r(s_t, a_t) + \gamma Q^{\mu}(s_{t+1}, \mu(s_{t+1})|\theta^Q)$

Reward Function

About Reward Function

- feedback information between the agent and environment
- guides the agent to learn by telling what behavior is right or wrong

□ The design of the reward function

- r, T and L denote reward, throughput and latency
- 1. At time t, calculate the rate of performance change Δ from time t-1 and the initial time to time t respectively.
- 2. Reward function: use *r* to denote the sum of rewards of throughput and latency:

$$\mathbf{r} = \mathbf{c}_T * \mathbf{r}_T + \mathbf{c}_L * \mathbf{r}_L$$

- r_T : the reward of throughput
- *r_L* : the reward of latency
- *r* : the sum of rewards of throughput and latency
- c_T and c_L are different coefficients

 $\Delta T = \begin{cases} \Delta T_{t \to 0} = & \frac{I_t - I_0}{T_0} \\ \Delta T_{t \to t-1} = & \frac{T_t - T_{t-1}}{T_{t-1}} \end{cases}$ $\Delta L = \begin{cases} \Delta L_{t \to 0} = & \frac{-L_t + L_0}{L_0} \\ \Delta L_{t \to t-1} = & \frac{-L_t + L_{t-1}}{L_{t-1}} \end{cases}$

$$r = \begin{cases} ((1 + \Delta_{t \to 0})^2 - 1)|1 + \Delta_{t \to t-1}|, \Delta_{t \to 0} > 0\\ -((1 - \Delta_{t \to 0})^2 - 1)|1 - \Delta_{t \to t-1}|, \Delta_{t \to 0} \le 0 \end{cases}$$

Results on Postgres

Figure 14: Performance comparison for TPC-C workload using instance CDB-D among CDBTune, Postgres default, CDB default, BestConfig, DBA and OtterTune (on Postgres).

Results on MySQL

Results on MongoDB

Figure 13: Performance comparison for YCSB workload using instance CDB-E among CDBTune, MongoDB default, CDB default, BestConfig, DBA and OtterTune (on MongoDB).

QTune: Query-Aware Tuning

Query-aware tuning Encoding queries Encoding cost Double state tuning

bl1.info = '%act%'

Guoliang Li, Xuanhe Zhou. QTune: A Query-Aware Database Tuning 40.91 25.04 ... System with Deep Reinforcement Learning. VLDB 2019 (8 Rew

(2)

QTune

2000

(P)

View Advisor

Equivalent subquery detector Subquery cost/benefit estimator View selector

View Advisor: Framework

- 1. MV Candidate Generation
- 2. MV Estimation Model encoder-reducer
- 3. MV Selection DRL
- 4. MV-aware Query Rewriting

View Advisor: Equivalent Subquery

- Expensive to verify equivalence
- Extract SPJG segments
- Evaluate SPJG segments

View Advisor: Cost Estimator

4. Fine-tuning

25

View Advisor: Subquery Selector

□Learn the benefit of materializing a view of a subquery

AI-Native Database

Level 2: AI-Assisted DB

DMonitor and manage DB

- Self monitoring
 - Statistics, workload, system
- Self diagnosis
 - Error detection
- Self healing
 - Failure recovery
- Self configuring
 - Workload, upgrade
- Self optimizing
 - SQL rewriter, online statistics

Self Monitoring

Workload Configuration

DWorkload modelling

- -Feature, cost, latency, resources
- Over the second scheduling
 - Prioritize workload
 - -OLAP & OLTP
- **DWorkload prediction**
 - Predicting workloads

AI-Native Database

Level 3: AI-Enhanced DB

DAI4DB: Learned DB components

- -Learned Index
- -Learned Cost estimator
- -Learned Optimizer
- Learned Statistics

DB4AI: Declarative AI

- Use SQL for using AI algorithms
- -Lower the burden of using Al

Learned Cost Estimator

DTraditional Cost Estimator

- Histogram
- Sketch
- Empirical functions
- Failed for correlations between multiple tables

DLearned Cost Estimator

- Estimation model
- Tree-structure model
- Predicate embedding

Learned Cost Estimator

One-hot Encoding		Sample Datasets										
Operator	one-hot	Column	one-hot	info_typ			movie_companies.production_year comp		any_type.kind			
=	0001			top 260	top 260 rank (as Metro-Go		as Metro-Goldwyn-Mayer Pictures)		1987	product	tion companies	
	0010	mc.movie_id	0000000000000	top 270	rank	(2006)(USA)(TV))(TV)	2013	di	stributors	
	0100	<u>t.id</u>	00000000010	top 250	rank		(2006)(worldwi	ide)(TV)	1995	special effects companies		
not like	0100	mi idx movie id	00000000100	top 250	rank		(2011)(UK)(TV)		1966 miscellane		eous companies	
like	1000		0000000000000000	Distis	2012/	Lid	Operation	MetaData	Bradicato		Sample Bitman	
]	<u>mi_idx.info_type_id</u>	000000001000	Dictionary		iu	Operation	MelaDala	riedicate		Sample Ditmap	
Operation	one-hot	14 1 al	00000010000	Token	Token	Represent	1	0001	padding	00000000001 0001 00000	0000010	padding
Nested Loop	0001	<u>IT.IO</u>	00000010000		ation	2	0010	padding	00000000001 0001 0000	0000100	padding	
Hash Join	0010	<u>it.info</u>	000000100000	'top 250 rank'	0.14,0.43,	3	0010	padding	00000001000 0001 00000	0010000	padding	
Seq Scan	0100	mc.company_type_id	000001000000	'production	0.51.0.92	4	0100	0001	000000100000 0001 0.14,0.4	43,,0.92	0011	
Index Scan	1000	<u>moompany type ia</u>		companies'	,0.11	5	0100	0010	padding		1111	
Table Name		<u>ct.id</u>	000010000000			6	0010	padding	000001000000 0001 00001	0000000	padding	
	one-not	ct.kind	00010000000	Goldwyn-Maver	0.91,0.35,	7	0100	0100	00010000000 0001 0.51,0.2	22,,0.11	1000	
info_type	0001	ma noto	00100000000	Pictures)'	,0.25				00100000000 0100 0.91,0.3	35,,0.25		
movie_info_idx	0010	mc.note	001000000000000		0.37.0.11.	8	0100	1000	00100000000 1000 0.37,0.	11,,0.02	1000	
company type	0100	mc.production_year	01000000000	'(co-production)'	,0.02				00100000000 1000 0.13,0.4	41,,0.76		
movie_companie	es 1000	<u>mc.id</u>	100000000000	(presents)'	0.13,0.41, ,0.76	9	1000	1000	01000000000 0010 0 1000000000 0001 00000).81)000100	0100	

Learned Cost Estimator

String Embedding

	Rules	(
"Din" \"Din"	$\langle Prefix, P_t("Din"), 3 \rangle$	Prefix Trie
$DIII \rightarrow DIII$	$\langle Prefix, P_C P_t("in"), 3 \rangle$	
	$\langle Prefix, P_t("D")P_l, 3 \rangle$	
	$\langle Prefix, P_C P_l, 3 \rangle$	
"Dinos" \rightarrow "Din"	$\langle Prefix, P_C P_t("i") P_l, 3 \rangle$	
	$\langle Prefix, P_C P_t("in") P_l, 3 \rangle$	
	$\langle Prefix, P_t("Din")P_l, 3 \rangle$	
	$\langle Prefix, P_t("D")P_lP_s, 3 \rangle$	
	$\langle Prefix, P_C P_l P_s, 3 \rangle$	D6 /
"Dinos " \rightarrow "Din"	$\langle Prefix, P_C P_t("i") P_l P_s, 3 \rangle$	09010206
	$\langle Prefix, P_C P_t("in") P_l P_s, 3 \rangle$	0.0 0.1 0.2 0.0
	$\langle Prefix, P_t("Din")P_lP_s, 3 \rangle$	D
	$\langle Prefix, P_t("D")P_lP_sP_l, 3 \rangle$	
	$\langle Prefix, P_C P_l P_s P_l, 3 \rangle$	0.5 0.4
"Dinos in" \rightarrow "Din"	$\langle Prefix, P_C P_t("i") P_l P_s P_l, 3 \rangle$	
	$\langle Prefix, P_C P_t("in") P_l P_s P_l, 3 \rangle$	
	$\langle Prefix, P_t("Din") P_l P_s P_l, 3 \rangle$	
	$\langle Prefix, P_t("D")P_lP_sP_lP_s, 3 \rangle$	
	$\langle Prefix, P_C P_l P_s P_l P_s, 3 \rangle$	
"Dinos in " \rightarrow "Din"	$\langle Prefix, P_C P_t("i") P_l P_s P_l P_s, 3 \rangle$	
	$\langle Prefix, P_C P_t("in") P_l P_s P_l P_s, 3 \rangle$	L
	$\frac{\langle Prefix, P_t("Din") P_l P_s P_l P_s, 3 \rangle}{\langle D_s P_s P_s P_s P_s P_s P_s P_s P_s P_s P$	
	$\langle Prefix, P_t("D")P_lP_sP_lP_sP_CP_l, 3 \rangle$	
	$\langle PreJix, P_CP_lP_sP_lP_sP_CP_l, 3 \rangle$	
"Dinos in Kas" \rightarrow "Din"	$ \langle Prejix, P_CP_t("i")P_lP_sP_lP_sP_CP_l, 3 \rangle $	
	$ \langle FTeJix, FCFt("in")FlFsFlFsFCFl, 3 \rangle $	
	$ \langle Prejix, P_t(Din) P_l P_s P_l P_s P_C P_l, 3 \rangle$	

Like 'Din%'

It is expensive to get the optimal plan Estimation is not accurate

- Cost-based method
- -Rule-based method

#Relations (n)	#Processing Trees	#Solutions (#Trees $\cdot n!$)	
1	1	1	Worst In Workload
2	1	2	WOISt III WOIKIOau
3	2	12	60x - Left-Deep
4	5	120	Learning
5	14	1,680	ff 45x -
6	42	30,240	e and a second se
7	132	$665,\!280$	ta 30x -
8	429	17,297,280	D-q
9	1,430	518,918,400	8 15x -
10	4,862	$17,\!643,\!225,\!600$	
11	16,796	670, 442, 572, 800	Ox -
12	58,786	$28,\!158,\!588,\!057,\!600$	Index-Mostly Hybrid Hash Hash Reuse
:	:	:	

Learned Optimizer Query feature encoding Reward of a join

MEAN RELEVANT COST TO DYNAMIC PROGRAMMING MRC benchmark TPC-H JOB algorithm 1.01 1.00 RTOS ReJoin 1.75 1.00 QP100 7.81 1.06 QP1000 1.62 1.00 DQ 2.34 (1.31) 1.01

TABLE II

 TABLE III

 EXPONENTIAL MEAN LOG RELEVANT LATENCY (GMRL) TO D

GMRL benchmark algorithm	JOB	ТРС-Н
RTOS	0.67	0.92
ReJoin	1.14	0.96
QP100	NA	1.03
QP1000	1.90	1.00
DQ	1.23	0.99

Level 3: AI-Enhanced DB

DAI4DB: Learned DB components

- -Learned Index
- -Learned Cost estimator
- Learned Optimizer
- -Learned Statistics
- **DB4AI: Declarative AI**
 - -Use SQL for using AI algorithms
 - -Lower the burden of using AI

DB4AI

Declarative Al

- AI to SQL
- SQL completeness
- SQL advisor

DAI optimizations

- Cost estimation
- Auto parameter
- Auto model
- Parallel computing

Data Governance

- Data discovery
- Data cleaning and fusion

AI-Native Database

Level 4: AI-Assembled DB

DSelf-Assembling

- Each component has multiple options
 - Optimizer
 - CBO, RBO, Learned
- -Assemble the components as a database
 - Reinforcement learning (RL)
- From single path to multiple paths
 - Like map navigator
- Scheduling on diversified hardware
 - Learned tensor model on AI hardware
 - Traditional (cost) model on general hardware

Level 4: AI-Assembled DB

Level 4: AI-Assembled DB

Self-Assembling

- Each component has multiple options
 - Optimizer
 - CBO, RBO, Learned
- -Assemble the components as a database
 - Reinforcement learning (RL)
- From single path to multiple paths
 - Like map navigator
- Scheduling on diversified hardware
 - Learned tensor model on AI hardware
 - Traditional (cost) model on general hardware

AI-Native Database

Level 5: Al-Designed DB

DAI-based design

- Data structure design
- Transaction design
- Storage design
- Index design
- Optimizer design
- **DAI & DB Co-design**
 - Unified model
 - Unified optimization

Al-Native Database

Unified SQL Interface

Self-Configuring Self-Healing Self-Security Workload Workload Workload Knob Software Software **Fault Recovery** Masking Scheduling Predicting Tuning Patching Upgrading Modeling Live Migration Self-Optimizing Auditing **Self-Diagnosis SQL** Optimization SQL Index View Partition Hardware Error Access Control Advisor Advisor Rewriter Advisor **Query Optimizer** Software Error Cardinality Cost Join Order Immutability Learned RBO CBO Estimation Estimation Selection Optimizer Self-Monitoring **Executor Engine Data Statistics** Traceability Column Row Vectorization System Statistics **Data Storage** Transparent Encryption **In-Memory** Row Column **Workload Statistics**

Self-Assembling					
AI Framework					
AI as UDF	AI as View	Model-Free	Problem-Free		
Heterogeneous Computing Framework					
Relational Model	Graph Model	Time-series Model	Tensor Model		
X86	ARM	GPU NPU	FPGA		

Five Levels of DB4AI

AI Advised:

1

2

3

4

5

- Offline AI-based knob tuning/statistics recommendation, offline data placement;
- Offline workload management, offline optimization;

AI Assisted:

- Self monitoring/tuning: online knob tuning, monitoring;
 - Self optimization: query tuning, online index/view advisor;
 - Self diagnoses, healing, protection;

AI Enhanced:

- Using AI-based algorithms to enhance the core components of database;
 - Learned index, learned optimizer, learned storage, query engine customization, etc.;
 - AI in database, declarative AI, DB-optimized AI;

AI Assembled:

- Functions decoupled as services. Functions deployed on heterogeneous environments;
- AI-based algorithms to choose the best execution paths of different services;

AI Designed:

- DB designed by AI, hardware and software codesign, automatic evaluation.
 - AI-assisted semi-formal or formal verification for trustworthy and security;

Five Levels of DB4AI

Level	Consumability	Description	AI Skill Level
1	AI Models as UDFs	Algorithms available in the underlying DB system as UDFs or Stored Procedures	High
2	AI Models as Views	Materialized the trained models as 'views' which can be utilized by other users. The views will be automatically updated which is triggered by data update or model update	Medium
3	Model-free	No need to specify models. Given a problem, automatically identify the models.	Low
4	Problem-free	No need to specify problems. Automatically identify the problems and models.	Low
5	Full-automatic	Automatically discover AI opportunities, including model selection, algorithm selection and data discovery	Very Low

Lessons Learned

DAI4DB

Database can learn from both internal and external "environments" to achieve high performance

□ AI enhances database, especially

- Fast, flexible and strong adaptability

- Make DB more intelligent

DB4AI

□ In-DB AI consumability

□ Make AI easily used in different fields

Challenges and Opportunities

□Hardware/Software Co-Design

- Database chips
- -Tensor model
- -DB evaluation tool
 - Like EDA
- **D**OLAP 2.0
 - Multi-model, DB&AI

DOLTP 2.0

- New hardware
- NVM, RDMA, etc.
- Programable RDMA

Agile Hardware Dev. Methodology

Thanks! Q&A