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Redefine database architecture

1st
Single-node DB

2nd
Cluster DB

3rd
Cloud DB

4th
AI-native DB
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1970s
Relation & SQL
High performance

1990s
Large scale

High availability

2010s
Internet scale
Scale-out

2020s
Heterogenous
Autonomous



An intelligent era calls for a more 
intelligent database
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AI-Native Database
AI4DB

Manual à Automatic
pSelf-optimization
pSelf-configuration
pSelf-monitoring
pSelf-healing
pSelf-security
pSelf-design
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DB4AI
AI à as easy as DB
pDeclarative AI
pAI optimization
pData governance
pData provenance
pModel management

AI

AI4DB

DB4AI4



AI-Native Database
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Workload
modeling
scheduling

Knob tuning
Index advisor
View advisor

Learned index
optimizer
Declarative AI

Self assembling
AI optimization

Self design
AI&DB Fusion



Level 1: AI-advised DB
pDatabase advisor for making database

more intelligent
– Database Configuration

• Knob tuning
• Workload management
• Automatic Upgrade

– Database Optimization
• Index advisor
• View advisor
• Partition advisor
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AI for Knob Tuning
pAutomatic Tuning is important and challenging

pTunable options control nearly all aspects of runtime 
operations. 

pThe number of knobs in a DBMS is huge and the 
relationships are complex.



CDBTune
RL CDBTune
Agent The tuning system
Environment DB instance
State Internal metrics
Reward Performance change
Action Knob configuration
Policy Deep neural network
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CDBTune
pCDBTune

– using deep reinforcement learning (DRL), an 
end-to-end automatic CDB (Cloud DataBase) 
tuning system
• deep deterministic policy gradient method (DDPG)
• try-and-error strategy

– Characteristics:
• end-to-end learning
• using a limited number of samples
• high-dimensional continuous knobs recommendation
• reducing the possibility of Local Optimum 
• good adaptability 
• accelerates the convergence speed



CDBTune: Working Mechanism
pOffline Training 

– Step 1: builds a training model
– Step 2: trains the training model

• Training Data
• Training Model
• Training Data Generation

pOnline Tuning
– Step 3: utilizes the model to recommend knob 

settings for an online tuning request
– Step 4: updates the training model by taking the 

tuning request as training data

Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li. An End-to-End Automatic Cloud 
Database Tuning System Using Deep Reinforcement Learning. SIGMOD 2019



CDBTune
send request to the 
server through the 
local interface 

interacts information 
among the client, 
CDB and CDBTune

conducts
stress testing

collects and 
processes 
related metrics

store processed 
data

outputs the knob 
configurations
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Reinforcement Learning 
pReinforcement Learning 

– Method: DDPG
– Goal: learn the best policy

pSix key elements in RL
– Agent

• receives reward and state, updates the policy 

– Environment
• Environment is the tuning target, specifically an instance of CDB

– State
• the current state of the agent, i.e., the 63 metrics
• describe the state at time t as st

– Reward
• a scalar described as rt

– Action
• described as at corresponds to a knob tuning operation

– Policy
• described as µ(st) 
• a mapping from state to action

Table 2: DetailedActor-Critic network andparameters
of DDPG.

Step Actor Critic

Layer Param Layer Param

1 full connection 128 parallel full connection 128 + 128
2 ReLU 0.2 1 full connection 256
3 BatchNorm 16 ReLU 0.2
4 full connection 128 BatchNorm 16
5 Tanh - full connection 256
6 Dropout 0.3 full connection 64
7 full connection 64 Tanh -
8 Tanh - Dropout 0.3
9 full connection 64 BatchNorm 16

the instance. Similar to most policy gradient methods, DDPG
has a parameterized policy function at = µ (st |� µ ) (� µ , map-
ping the state st to the value of action at which is usually
called actor. Critic function Q (st ,at |�Q ) ( �Q is learnable
parameters) of the network that aims to represent the value
(score) with speci�c action at and state st to guide the learn-
ing of actor. Speci�cally, critic function helps to evaluate the
knob settings generated by the actor according to the current
state of the instance. Inheriting the insights from Bellman
Equation and DQN, the expected Q (s,a) is de�ned as:

Q µ (s,a) = Ert ,st+1⇠E [r (st ,at ) + �Q
µ (st+1, µ (st+1))] (2)

where the policy µ (s ) is deterministic, st+1 is the next state,
rt = r (st ,at ) is the reward function, and � is a discount
factor which denotes the importance of the future reward
relative to the current reward. When parameterized by �Q ,
the critic will be represented asQ µ (s,a |�Q ) under the policy
µ. After sampling transitions (st , rt ,at , st+1) from the reply
memory, we apply Q-learning algorithm and minimize the
training objective:

minL(�Q ) = E[(Q (s,a |�Q ) � �)2] (3)

where
� = r (st ,at ) + �Q

µ (st+1, µ (st+1) |�Q )
Parameters of critic can be updated with gradient descent.

As for actor, we will apply the chain rule and update it with
policy gradient derived from Q (st ,at |�Q ):
r� µ � ⇡ E[r� µQ (s,a |�Q ) |s=st ,a=µ (st )]

= E[r� µQ (s,a |�Q ) |s=st ,a=µ (st )r� µ µ (s |� µ ) |s=st ]
The algorithm contains seven main steps as shown in

Algorithm 1.
Step 1.We �rst extract a batch of transition (st , rt ,at , st+1)
from the experience replay memory.
Step 2. We feed st+1 to the actor network and output the
knob settings a0t+1 to be executed at next moment.
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Figure 4: DDPG for CDBTune.

Step 3. We get the value (score) Vt+1 after both previously
obtained st+1 and a0t+1 are sent to the critic network.
Step 4. According to Q-Learning algorithm, Vt+1 is multi-
plied by discount factor � and added by the value of reward
at time t , and now we can estimate the value of V 0t of the
current state st .
Step 5. We feed st (obtained at the �rst step) to the critic
network and further acquire the valueVt of the current state.
Step 6.We compute the square di�erence betweenV 0t andVt
and optimize parameter �Q of the critic network by gradient
descent.
Step 7. We use Q (s = st , µ (st ) |�Q ) outputted by the critic
network as the loss function, and adopt gradient descent
means to guide the update of the actor network in order that
the critic network gives a higher score for the recommenda-
tion outputted by the actor network each time.

In order to make it easier for readers to understand clearly
and implement our algorithm, we elaborate the network
structure and speci�c parameters values of DDPG in Table 2.

In summary, deep deterministic policy gradient algorithm
makes it feasible for deep neural networks to process high
dimensional states and generate continuous actions. DQN
is not able to directly map states to continuous actions for
maximizing the action-value function. In DDPG, actor can
straightforwardly predict the value for each knob without
considering the Q-value with speci�c action and state.

4.2 Reward Function
The reward function is vital in RL, which provides impactful
feedback information between the agent and environment.
As the soul of RL, the reward function guides the agent to
learn by telling what behavior is right or wrong for the agent
according to its function value. The reasonably immediate re-
ward directly a�ects the training e�ciency and quality of the
model. Therefore, the designed reward function is supposed
to correctly re�ect the performance of CDB. Obviously, when
there are multiple metrics, it is not applicable to describe the
change of performance by giving a �xed reward. Besides,
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DDPG
p About DDPG

– a policy-based method, 
combination of DQN and actor-critic 

– learn the policy with 
high dimensional states and actions

p DDPG design
– Policy function: at = µ(st |θ µ)

• θµ: mapping the state st to the value of action at

– Critic function:  Q(st , at |θQ)
• represent the value (score) with specific action at and state st

• θQ is learnable parameters
– Inheriting from Bellman Equation and DQN:

• policy µ(s) is deterministic, st+1 is the next state, rt = r(st , at) is 
the reward function, and γ is a discount factor

– Minimize the training objective:
• where y = r(st , at) + γQ µ(st+1, µ(st+1)|θQ)

Table 2: DetailedActor-Critic network andparameters
of DDPG.

Step Actor Critic

Layer Param Layer Param

1 full connection 128 parallel full connection 128 + 128
2 ReLU 0.2 1 full connection 256
3 BatchNorm 16 ReLU 0.2
4 full connection 128 BatchNorm 16
5 Tanh - full connection 256
6 Dropout 0.3 full connection 64
7 full connection 64 Tanh -
8 Tanh - Dropout 0.3
9 full connection 64 BatchNorm 16

the instance. Similar to most policy gradient methods, DDPG
has a parameterized policy function at = µ (st |� µ ) (� µ , map-
ping the state st to the value of action at which is usually
called actor. Critic function Q (st ,at |�Q ) ( �Q is learnable
parameters) of the network that aims to represent the value
(score) with speci�c action at and state st to guide the learn-
ing of actor. Speci�cally, critic function helps to evaluate the
knob settings generated by the actor according to the current
state of the instance. Inheriting the insights from Bellman
Equation and DQN, the expected Q (s,a) is de�ned as:

Q µ (s,a) = Ert ,st+1⇠E [r (st ,at ) + �Q
µ (st+1, µ (st+1))] (2)

where the policy µ (s ) is deterministic, st+1 is the next state,
rt = r (st ,at ) is the reward function, and � is a discount
factor which denotes the importance of the future reward
relative to the current reward. When parameterized by �Q ,
the critic will be represented asQ µ (s,a |�Q ) under the policy
µ. After sampling transitions (st , rt ,at , st+1) from the reply
memory, we apply Q-learning algorithm and minimize the
training objective:

minL(�Q ) = E[(Q (s,a |�Q ) � �)2] (3)

where
� = r (st ,at ) + �Q

µ (st+1, µ (st+1) |�Q )
Parameters of critic can be updated with gradient descent.

As for actor, we will apply the chain rule and update it with
policy gradient derived from Q (st ,at |�Q ):
r� µ � ⇡ E[r� µQ (s,a |�Q ) |s=st ,a=µ (st )]

= E[r� µQ (s,a |�Q ) |s=st ,a=µ (st )r� µ µ (s |� µ ) |s=st ]
The algorithm contains seven main steps as shown in

Algorithm 1.
Step 1.We �rst extract a batch of transition (st , rt ,at , st+1)
from the experience replay memory.
Step 2. We feed st+1 to the actor network and output the
knob settings a0t+1 to be executed at next moment.
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Figure 4: DDPG for CDBTune.

Step 3. We get the value (score) Vt+1 after both previously
obtained st+1 and a0t+1 are sent to the critic network.
Step 4. According to Q-Learning algorithm, Vt+1 is multi-
plied by discount factor � and added by the value of reward
at time t , and now we can estimate the value of V 0t of the
current state st .
Step 5. We feed st (obtained at the �rst step) to the critic
network and further acquire the valueVt of the current state.
Step 6.We compute the square di�erence betweenV 0t andVt
and optimize parameter �Q of the critic network by gradient
descent.
Step 7. We use Q (s = st , µ (st ) |�Q ) outputted by the critic
network as the loss function, and adopt gradient descent
means to guide the update of the actor network in order that
the critic network gives a higher score for the recommenda-
tion outputted by the actor network each time.

In order to make it easier for readers to understand clearly
and implement our algorithm, we elaborate the network
structure and speci�c parameters values of DDPG in Table 2.

In summary, deep deterministic policy gradient algorithm
makes it feasible for deep neural networks to process high
dimensional states and generate continuous actions. DQN
is not able to directly map states to continuous actions for
maximizing the action-value function. In DDPG, actor can
straightforwardly predict the value for each knob without
considering the Q-value with speci�c action and state.

4.2 Reward Function
The reward function is vital in RL, which provides impactful
feedback information between the agent and environment.
As the soul of RL, the reward function guides the agent to
learn by telling what behavior is right or wrong for the agent
according to its function value. The reasonably immediate re-
ward directly a�ects the training e�ciency and quality of the
model. Therefore, the designed reward function is supposed
to correctly re�ect the performance of CDB. Obviously, when
there are multiple metrics, it is not applicable to describe the
change of performance by giving a �xed reward. Besides,
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Reward Function 
p About Reward Function 

– feedback information between the agent and environment
– guides the agent to learn by telling what behavior is right or wrong

p The design of the reward function
• r, T and L denote reward, throughput and latency

– 1. At time t, calculate the rate of performance change ∆ from time 
t−1 and the initial time to time t respectively.

– 2. Reward function:  use r to denote the sum of rewards of 
throughput and latency:     

r = cT ∗ rT + cL ∗ rL
• rT : the reward of throughput
• rL : the reward of latency
• r : the sum of rewards of throughput and latency
• cT and cL are different coefficients



Results

Figure 8: Performance by increasing number of knobs
(knobs randomly selected by CDBTune).

Table 3: Higher throughput (T) and lower latency (L) of
CDBTune than BestCon�g, DBA and OtterTune.

Workload BestCon�g DBA OtterTune

T L T L T L

RW " 68.28% # 51.65% " 4.48% # 8.91% " 29.80% # 35.51%
RO " 42.15% # 43.95% " 4.73% # 11.66% "44.46% # 23.63%
WO " 128.66% # 61.35% " 46.57% # 43.33% " 91.25% # 59.27%

takes more steps in the o�ine training process. Therefore, we
use the method of priority experience replay and adopt par-
allel computing to accelerate the convergence of our model.
According to the time cost of each step mentioned in sec-
tion 5.1, the average time spent on o�ine training is about
4.7 hours. This time will be further shortened if GPU is used.

5.2.3 Performance improvement. We also evaluate our
method on di�erent workloads with CDB-A and the result
is shown in Figure 9. The tuning performance improvement
percentage is shown in Table 3 compared with BestCon�g,
DBA and OtterTune. It can been seen that CDBTune achieves
higher performance than OtterTune, which in turn is better
than BestCon�g. Consequently, the learning-basedmethod is
more e�ective and our algorithm obtains the state-of-the-art
result. Besides, OtterTune performs inferior to the DBA in
most cases. This is because we use the try-and-error samples
in RL instead of massive high-quality DBA’s experience tun-
ing data. Compared with BestCon�g, we �nd that CDBTune
greatly outperforms it, because in a short time, BestCon�g
can hardly �nd the optimal con�gurations without any past
experience in a high-dimensional space. This veri�es that
the learning-based approach has overwhelming predomi-
nance in achieving better solution quickly than search-based
tuning, and also veri�es the superiority of CDBTune.
CDBTune is able to achieve better performance than other

candidates, especially gains a remarkable improvement un-
der the write-only workload. We observe except that the

(a) RW (Throughput) (b) RW (99%-tile Latency)

(c) RO (Throughput) (d) RO (99%-tile Latency)

(e) WO (Throughput) (f) WO (99%-tile Latency)
Figure 9: Performance comparison for Sysbench RW, RO
andWOworkload among CDBTune, MySQL default, BestCon-
�g, CDB default, DBA and OtterTune.

bu�er pool size is enlarged, con�gurations which CDBTune
recommended also expand the size of log �le properly. In
addition, innodb_read_io_threads will increase under the
RO workload while both innodb_write_io_threads and inn-
odb_purge_threads are becoming appropriately larger when
the workload is WO or RW. We list some most important
knobs for the DBAs which CDBTune recommends in Ap-
pendix C.1. This shows that our model can properly tune
knobs under di�erent workloads, which improve the CPU
utilization as well as the database performance. Of course,
for those knobs like innodb_�le_per_table, max_binlog_size
and skip_name_resolve, we obtain the same values as the
DBA advisors. According to the MySQL o�cial manual reg-
ulations, the product of innodb_log_�les_in_group and inn-
odb_log_�le_size is not allowed to be greater than the value
of disk capacity. Also, we �nd that during the real training
process of our model, the CDB’s instance will easily crash
once the product exceeds the threshold, because the log �les
take up too much disk space, resulting that more data can-
not be written. An interesting �nding is that faced with this
situation, we do not limit the range of these two parameters
but give a large negative reward (e.g., -100) for punishment.
Instead, the practical results verify this method achieves a
good e�ect with the constant reward feedback in RL and this
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addition, innodb_read_io_threads will increase under the
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odb_purge_threads are becoming appropriately larger when
the workload is WO or RW. We list some most important
knobs for the DBAs which CDBTune recommends in Ap-
pendix C.1. This shows that our model can properly tune
knobs under di�erent workloads, which improve the CPU
utilization as well as the database performance. Of course,
for those knobs like innodb_�le_per_table, max_binlog_size
and skip_name_resolve, we obtain the same values as the
DBA advisors. According to the MySQL o�cial manual reg-
ulations, the product of innodb_log_�les_in_group and inn-
odb_log_�le_size is not allowed to be greater than the value
of disk capacity. Also, we �nd that during the real training
process of our model, the CDB’s instance will easily crash
once the product exceeds the threshold, because the log �les
take up too much disk space, resulting that more data can-
not be written. An interesting �nding is that faced with this
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QTune: Query-Aware Tuning
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Insert Delete Update Select   tbl1   tbl2  tbl3 ... tbl8  Hash_Join    Seq_Scan    Aggregate  ...

[ 0 0 0 1 1 1 1 ... 0 0.1401 -0.166 -0.2423 ... ]

(1) DML (2) Tables (3) Operation Costs

Normalized Feature Vector

           
FROM                                     tbl1,   tbl2,   tbl3              
WHERE                                tbl1.info = '%act%'            
                       AND              tbl1.id = tbl3.type_id      
                       AND       tbl2.movie_id = tbl3.movie_id  

SELECT MIN(tbl3.movie_id)

Figure 3: Character Encoding.

shows the vector of a SQL query.

Vector for multiple queries. Given multiple queries
q1, q2, · · · , qm, suppose their vectors are v1, v2, · · · , vm re-
spectively. To tune the database for this query workload,
we need to combine the vectors together. To this end, for
each query vector, we need to consider all the query types
and tables, and thus we compute the union of the query vec-
tors. And for each table, if the value is 1, we replace it with
the row number of the table. Thus it can capture the actions
like deleting/inserting rows and improve system’s adaptiv-
ity; for cost vector, we need to sum up all the costs. Thus
we can combine the vector as follows.

[[m
1 vi[1], . . . ,[m

1 vi[4+|T |],
Pm

1 vi[5+|T |], · · · ,
Pm

1 vi[4+|T |+|P |]]
Supporting Update. We discuss how to support the

update of the databases. The database update can only
a↵ect the query vector, as the cost vector is computed on-
the-fly from the optimizer, which can get the updated cost.
For query vector, only adding/removing tables will a↵ect
the query vector. To this end, we can leave several positions
for capturing future updates of adding/deleting tables.

4. DEEP REINFORCEMENT LEARNING FOR

KNOB TUNING

Since there are hundreds of knobs in a database and many
of them are in continuous space [5], the database tuning
problem is NP hard and it is rather expensive to find high-
quality configurations [29]. We utilize the deep reinforce-
ment learning model, which combines reinforcement learn-
ing and neural networks to automatically learn the knob
values from limited samples. Note that existing DRL mod-
els [13, 16, 12] cannot utilize the query features as they
ignore the e↵ects to the environment state from the query,

Figure 4: The DS-DDPG Model

Table 1: Mapping from DS-DDPG to Tuning

DS-DDPG The tuning problem
Environment Database being tuned
Inner state Database knobs (e.g., work mem)

Outer metrics State statistics (e.g., updated tuples)
Action Tuning database knobs
Reward Database performance changes
Agent The Actor-Critic networks

Predictor A neural network for predicting metrics
Actor A neural network for making actions
Critic A neural network for evaluating Actor

and we propose a Double-State Deep Deterministic Policy
Gradient (DS-DDPG) model to enable query-aware tuning.

4.1 DS-DDPG Model

The DS-DDPG model contains five components as shown
in Figure 4. Table 1 shows the mapping from the DS-DDPG
model to the tuning problem. Environment contains the
database information, which includes the inner state and the
outer metrics. The inner state records the database config-
uration (i.e., knob configurations) which can be tuned, and
the outer metrics record the state statistics (e.g., database
key performance indicators), which reflect database status
and cannot be tuned. For example, in PostgreSQL the
inner state includes working memory, e↵ective cache size,
etc, and the outer metrics include the number of committed
transactions, the number of deadlocks, etc. Query2Vector
generates the feature vector for a given query (or a work-
load). Predictor is a deep neural network, which predicts
the changes in outer metrics of before/after processing the
queries. We predict �S because most of the outer metrics
are accumulative variables (others are related to the system
performance, such as the time to read a block) and their
di↵erence in values can reflect the workload’s e↵ect to the
database state. Besides, predicting �S is much easier than
S0, as S0 is not only related to the workload features, but cur-
rent database state. Environment combines these changes
�S with its original metrics S and generates the observation
S0 = S + �S to simulate the outer metrics after executing
the queries. Agent is used to tune the inner state based
on the observation S0. Agent contains two modules, Actor
and Critic, which are two independent neural networks.
Actor takes S0 as input, and outputs an action (a vector
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Since there are hundreds of knobs in a database and many
of them are in continuous space [5], the database tuning
problem is NP hard and it is rather expensive to find high-
quality configurations [29]. We utilize the deep reinforce-
ment learning model, which combines reinforcement learn-
ing and neural networks to automatically learn the knob
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and we propose a Double-State Deep Deterministic Policy
Gradient (DS-DDPG) model to enable query-aware tuning.

4.1 DS-DDPG Model

The DS-DDPG model contains five components as shown
in Figure 4. Table 1 shows the mapping from the DS-DDPG
model to the tuning problem. Environment contains the
database information, which includes the inner state and the
outer metrics. The inner state records the database config-
uration (i.e., knob configurations) which can be tuned, and
the outer metrics record the state statistics (e.g., database
key performance indicators), which reflect database status
and cannot be tuned. For example, in PostgreSQL the
inner state includes working memory, e↵ective cache size,
etc, and the outer metrics include the number of committed
transactions, the number of deadlocks, etc. Query2Vector
generates the feature vector for a given query (or a work-
load). Predictor is a deep neural network, which predicts
the changes in outer metrics of before/after processing the
queries. We predict �S because most of the outer metrics
are accumulative variables (others are related to the system
performance, such as the time to read a block) and their
di↵erence in values can reflect the workload’s e↵ect to the
database state. Besides, predicting �S is much easier than
S0, as S0 is not only related to the workload features, but cur-
rent database state. Environment combines these changes
�S with its original metrics S and generates the observation
S0 = S + �S to simulate the outer metrics after executing
the queries. Agent is used to tune the inner state based
on the observation S0. Agent contains two modules, Actor
and Critic, which are two independent neural networks.
Actor takes S0 as input, and outputs an action (a vector
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Figure 2: Workflow of QTune

query cost of processing the query, e.g., the selection cost
and join cost. The third is to uniformly featurize the query
and cost information such that each feature of the vector
for di↵erent queries has the same meaning. Next we discuss
how to address these challenges in the following sections.

3.1 Query Information

A SQL query includes query type (e.g., insert, delete, se-
lect, update), tables, attributes, operations (e.g., selection,
join, groupby). Query type is important as di↵erent query
types have di↵erent query cost (e.g, OLTP and OLAP have
di↵erent e↵ect on the database), and thus we need to capture
the query type information in the vector. Tables involved in
a query are also important, because the data volumes and
structures of tables will significantly a↵ect the database per-
formance. Based on the table information, our tuning model
decides whether the current system configuration can pro-
vide high performance; if not, our tuning system can tune
the corresponding knobs. For example, if the bu↵er is not
large enough, we can increase the bu↵er.

Note that we do not featurize the attributes (i.e., columns)
and operations (i.e., selection conditions) due to three rea-
sons. First, the query cost will capture the operation infor-
mation and cost, and we do not need to maintain duplicated
information. Second, operations are too specific and adding
specific operations into the vectors will reduce the general-
ization ability. Third, the attributes and operations will be
frequently updated and it requires to redesign the model for
the updates. We will compare with the method that also
considers attributes and operations in Section 6.1.2 .

In summary, for query information, we maintain a 4+ |T |
dimensional vector, where |T | is the number of tables in the
database. The first four features capture the query types,
e.g., insert, select, update, delete. For an insert/select/up-

date/delete query, the corresponding value is 1; 0 otherwise.
Each last |T | feature denotes a table. If the query contains
the table, the corresponding value is 1; 0 otherwise. For ex-
ample, Figure 3 shows a query vector. There are 8 tables.
The first 12 features are used for query information. It is a
selection query and uses tbl1, tbl2 and tbl3, so the first four
values are 1 and the other 8 values are 0.

3.2 Cost Information

The cost information captures the cost of processing the
query. However, a query usually has many possible phys-
ical plans and each plan has di↵erent query cost. So it is
not realistic to directly parse the query statement to extract
query cost. Instead, we utilize the query plan generated by
the query optimizer, which has a cost estimation for each op-
eration. Figure 3 shows an example query plan, where each
node has a cost estimation. As each database has a fixed
number of operations, e.g., scan, hash join, aggregate, we use
the cost on these operations to capture the cost information.
For example, in PostgreSQL there are 38 operations. Note
that an operation may appear in di↵erent nodes of the tree
plan, and the cost of the same operation should be summed
up as the corresponding cost value in the query cost vector.
For example, in Figure 3, the value of hash join equals to the
sum of the costs in the two Hash Join nodes. After gaining
the query cost, we normalize the cost by subtracting mean
and dividing the std deviation.

In summary, for cost information, we maintain a |P | di-
mensional vector, where P is the set of operations in database,
and |P | is the number of operations.

3.3 Character Encoding

We concatenate the query vector and cost vector to gen-
erate an overall vector of a query. For example, Figure 3
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Figure 8: Comparison with existing methods Default settings, BestConfig, OtterTune, CDBTune, DBA on
Sysbench (RW), JOB (RO) and TPC-H (RO) on PostgreSQL. QTune (Q) represents query-level tunig. QTune
(W) represents workload-level tuning. And QTune (C-C) and QTune (C-D) indicate cluster-level tuning using
Continuous Tuner and Discrete Tuner respectively.

than the chosen ones but still takes e↵ect on the database
performance. This pipeline architecture limits the model
from learning from real data. The DBAs are experienced
experts, who can map the state to a typical scenario tem-
plate and tune the related configurations by experience. But
it’s nearly impossible for humans to master the complex cor-
relations among hundreds of knobs. DBAs usually just try
several impactful knobs. With rich experience they can find
a usable configuration in a short time, but the results are
usually not good enough. Moreover, it takes DBAs very
long time to figure out an ideal knob pattern. BestConfig
starts by randomly choosing some knob combinations and
explores from the best configuration points iteratively. Since
the provided resource is limited, it usually can only gain a
sub-optimal configuration. Besides, each searching period
restarts and cannot utilize the past searching results. So
the performance improvement is not very good sometimes.
Second, QTune (C-D), cluster-level tuning with discrete

tuner, achieves the highest throughput, because it makes
good tradeo↵ between providing good knobs for a group of
queries and achieving high tuning time. QTune (Q), query-
level tuning achieves the lowest latency, because it provides

the best knob values for each query.
Third, CDBTune takes the longest training time. On the

one hand, in each training cycle, it requires to run training
examples on the databases, which is time consuming. On
the other hand, it only tunes according to the database state
and without filtering it utilizes all the dynamic knobs, which
takes longer time to meet the performance requirements. In-
stead, the training time of BestConfig is controlled by the
resource limits. OtterTune recommends configurations ac-
cording to both the workload and performance metrics and
do not need to actually run the training examples.

Fourth, our method has much larger improvement on TPC-
H than JOB and Sysbench. This is because TPC-H simu-
lates the real OLAP working scenarios and each query con-
tains many complex operations, such as the “join”. In order
to support such complex workload, QTune has large improve-
ment space to explore and thus gets great gains by e�ciently
analyzing the query characters and database states. And
queries in JOB also contain many join operations and are
costly to execute, and thus QTune still can optimize the query
plan and execution procedure. But in Sysbench, the queries
are simple and randomly produced based on several simple
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Figure 8: Comparison with existing methods Default settings, BestConfig, OtterTune, CDBTune, DBA on
Sysbench (RW), JOB (RO) and TPC-H (RO) on PostgreSQL. QTune (Q) represents query-level tunig. QTune
(W) represents workload-level tuning. And QTune (C-C) and QTune (C-D) indicate cluster-level tuning using
Continuous Tuner and Discrete Tuner respectively.

than the chosen ones but still takes e↵ect on the database
performance. This pipeline architecture limits the model
from learning from real data. The DBAs are experienced
experts, who can map the state to a typical scenario tem-
plate and tune the related configurations by experience. But
it’s nearly impossible for humans to master the complex cor-
relations among hundreds of knobs. DBAs usually just try
several impactful knobs. With rich experience they can find
a usable configuration in a short time, but the results are
usually not good enough. Moreover, it takes DBAs very
long time to figure out an ideal knob pattern. BestConfig
starts by randomly choosing some knob combinations and
explores from the best configuration points iteratively. Since
the provided resource is limited, it usually can only gain a
sub-optimal configuration. Besides, each searching period
restarts and cannot utilize the past searching results. So
the performance improvement is not very good sometimes.

Second, QTune (C-D), cluster-level tuning with discrete
tuner, achieves the highest throughput, because it makes
good tradeo↵ between providing good knobs for a group of
queries and achieving high tuning time. QTune (Q), query-
level tuning achieves the lowest latency, because it provides

the best knob values for each query.
Third, CDBTune takes the longest training time. On the

one hand, in each training cycle, it requires to run training
examples on the databases, which is time consuming. On
the other hand, it only tunes according to the database state
and without filtering it utilizes all the dynamic knobs, which
takes longer time to meet the performance requirements. In-
stead, the training time of BestConfig is controlled by the
resource limits. OtterTune recommends configurations ac-
cording to both the workload and performance metrics and
do not need to actually run the training examples.

Fourth, our method has much larger improvement on TPC-
H than JOB and Sysbench. This is because TPC-H simu-
lates the real OLAP working scenarios and each query con-
tains many complex operations, such as the “join”. In order
to support such complex workload, QTune has large improve-
ment space to explore and thus gets great gains by e�ciently
analyzing the query characters and database states. And
queries in JOB also contain many join operations and are
costly to execute, and thus QTune still can optimize the query
plan and execution procedure. But in Sysbench, the queries
are simple and randomly produced based on several simple
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pSubquery cost/benefit estimator
pView selector

There are several challenges to resolve the ILP problem.
First, it is expensive to check whether two subqueries are
equivalent and we propose an e↵ective subquery equivalence
detector in Section 4. Second, it is hard to estimate the
computation cost, and we propose a deep learning based
method in Section 5. Third, the ILP problem is NP hard
and we propose a reinforcement learning model to address
the problem in Section 6.

2.3 Related Work

SQL Equivalence. Relational query equivalence is a widely
studied problem in database theory. [45] has proven that
first-order logic on the class of all finite models is unde-
cidable, and there are also some other works focusing on
decidable SQL fragments like [5, 39, 14, 6]. However, these
works never lead to any implementation in real products.
Cossete [11, 10, 12] verifies the equivalence of SQL by for-
malizing a substantial fragment of SQL in the Coq Proof As-
sistant and the Rosette symbolic virtual machine, but this
toolkit is mainly based on syntax rewriting while not seman-
tics. Satisfiability Modulo Theories (SMT)[3] and Symbolic
Execution [28, 36] are theory foundation to check whether a
first-order predicate is satisfiable. We use Z33 as satisfiable
solver in our system, where Z3 returns a positive result if a
formula is satisfiable or a negative result if unsatisfiable.

Subquery Selection. Given a set of queries, there are
many methods on selecting subqueries to reuse according
to the survey [33], where the target is minimizing a cost
function(e.g. storage and computation cost) under a set of
constraints (e.g. query deadline and space budget). Gener-
ally, the most popular way of reusing subqueries is to gen-
erate materialized views for selected subqueries. Some early
studies focus on materialized views selection in the context
of data warehouse [16, 17], and several current works aim
to improve query latency in analytics clusters by selecting
views to materialize. However, the above used views in-
clude the computations that do not appear in SQL queries,
which increase the complexity of subquery selection. There-
fore, some related works have only considered subquery se-
lection in SQL server[48]. In addition, other related works
have considered common subqueries among di↵erent queries
for reusing[26, 4, 37, 40]. In particular, [37] has studied
history-aware query optimization with materialized interme-
diate views. [4] has used an AND/OR graph representation
and an ILP-based solution to select common subqueries to
reuse for Pig script. [40, 26] have considered computation
reusing for common subqueries in cloud computing platform.

Cost Estimation. Optimizers estimate the cost of a query
plan using a mathematical model of query execution cost
that relies heavily on estimates of the cardinality, or num-
ber of tuples, following through each edge in a query plan[25,
20, 24]. Traditionally, database systems[41, 38] estimate se-
lectivities through fairly detailed statistics on the distribu-
tion of values in each column, such as histograms. However,
there is no method for estimating subquery computation
cost. Benefit from the development of deep learning (e.g.
CNN[23, 44, 18], RNN[22, 2, 21, 42]), neural networks have
been applied to estimate costs in many domains, such as
tra�c time prediction[31], so we utilize the RNN[22] model
to encode logical subquery plan into distributed vector and
then extend the e↵ective Wide&Deep model [8] to estimate
logical subquery plan cost.
3http://theory.stanford.edu/ nikolaj/programmingz3.html
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Figure 3: System Framework

3. SYSTEM OVERVIEW

In this section, we present our system framework. As
shown in Figure 3, the system can be divided into online
query processing and o✏ine optimization. O✏ine part mainly
contains two components, Materialized View Optimizer

and View Generator. Generally, when clients request for
materialized view optimization, Materialized View Optimizer

would first collect previous queries from the meta database,
where stores historical queries, and then detect equivalent
subqueries and select optimal subqueries to materialize. Fi-
nally, View Generator generates views for the selected sub-
queries and materializes the views into database. Materialized
View Optimizer consists of four components: Subquery Extractor,
Equivalent Subquery Detector, Subquery Cost Estimator

and Materialized View Selector. In particular, the of-
fline optimization process can be summarized as follows:
(1) Subquery Extractor first collects queries from the meta
database and then compiles the queries into logical plan
trees. For each logical plan tree, we can use BFS (Breadth-
First Search) or DFS (Depth-First Search) to traverse it for
getting subqueries. We only consider the subqueries whose
roots are Aggregate/Project/Join operations.
(2) Afterward, Equivalent Subquery Detection aims to in-
ference whether two subqueries are equivalent and subse-
quently generate equivalent subquery pairs.
(3) Simultaneously, Subquery Cost Estimator would first
leverage historical query information to train a computation
cost estimation model and then load the trained model to
estimate computation cost for each subquery. In addition,
we can directly estimate storage cost for subqueries based
on byte size of subqueries according to Definition 4.
(4) At last, Materialized View Selector would select some
subqueries to generate materialized view for computation
reusing. As mentioned before, the selection problem can be
regarded as an ILP optimization problem. In particular, we
leverage the techniques of reinforcement learning to solve
the problem e�ciently.

Online processing can be summarized as follows. Firstly,
when clients request results for batch queries, SQL Engine

first parses and compiles the queries into logical expressions
and then uses the logical expressions to match corresponding
subexpressions of materialized subquery views. Secondly, we
would rewrite SQL statements based on matched subqueries.
Finally, SQL engine generates physical plans for rewritten
queries and returns results to clients. Moreover, executed
queries and corresponding meta information are collected
and stored in the meta database.

In summary, Materialized View Optimizer is the im-
portant module of the system, so we will explain components
of the module in details.

4
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Figure 1: AutoView Framework.

Related Work. Traditional MV methods generate can-
didate MVs by exploiting common subqueries that appear
frequently in the workload [1, 6, 10, 11, 16]. To make MVs
more general, some studies rewrite the subqueries to find
equivalent sub-queries [1] and merge subqueries [18]. To
apply MVs on queries, query equivalence will be checked
and queries will be rewritten based on the MVs. There are
two main methods for query equivalence checking and query
rewriting, using graphs [6, 8, 11,16] and using rules [2, 3, 7].

Another challenge is to estimate the cost and benefit of
using a view to answer a query. Existing cost model is not
accurate, because traditional cardinality methods, sampling
and histogram methods cannot capture the correlations be-
tween queries and views. Recently, some studies [12,15] pro-
pose cost and cardinality estimation based on deep learning,
which can make use of the history information and extract
more rich information from the data. These methods focus
on estimation of queries, but cannot deal with the corre-
lation between queries and MVs. Therefore, we propose a
deep learning model that can capture the correlation for a
better estimation of queries with MVs.

2. AutoView OVERVIEW

The autonomous MV management framework is shown in
Figure 1. The goal of AutoView is to automatically generate
MVs by analyzing the query workload and utilize the MVs
to optimize queries. The system includes four modules, MV
candidate generation, MV estimation model, MV selection,
and MV-aware query rewriting.

MV Candidate Generation. It analyzes the workload
to find common subqueries for MVs generation. A straight-
forward method enumerates all the subqueries, counts the
frequency of subqueries, and selects the most frequent sub-
queries to generate the views. More e↵ective methods will
rewrite the subqueries (e.g., rewritting“country_code = us”
to “GROUP BY country_code”, to make it more general)
[1, 18], check the equivalence between subqueries [3, 6, 16],
and estimate the benefit and cost of materializing a sub-
query as a view. This paper focuses on cost and benefit
estimation, and please refer to [2, 3, 6–8, 11, 16] for query
rewriting and equivalence checking.

MV Estimation Model. It analyzes the workload and
candidate MVs, denoted as (Q,V ), where Q = {qi} is the
set of queries in the workload and V = {vj} is the set
of candidate MVs. This module will estimate the saved
execution time from executing qi by making use of vj for
qi 2 Q, vj 2 V . The saved execution time, called benefit,

can be calculated by the formula below:

B(qi, vj) = tqi � tqi,vj (1)

where tqi is the execution time of qi without using views and
tqi,vj is the execution time of executing qi using vj .

We propose an Encoder-Reducer model to predict tqi and
tqi,vj using the features of queries and MVs. The details is
presented in Section 3. We will not enumerate and predict all
pairs of (qi, vj) with a quadratic time complexity. Instead,
we will prune impossible pairs that a view cannot be used to
answer a query using join and selection conditions. Finally
the estimated benefits and vectors outputted by the neural
network is passed to the MVs selection module. The cost of
a view vj includes the space cost |vj | and the view generation
time cost, which can also be estimated using our Encoder-
Reducer model.

MV Selection. Given a space limit, this module will select
a subset of candidate MVs to maximize the benefit within
the space limit. We model this selection problem as a knap-
sack problem and propose an RL model to address it. The
details of MV selection is presented in Section 4.

MV-aware Query Rewriting. Given a query, if the query
can be answered using the MVs, we use our estimation model
to select the most appropriate views and rewrite the query
using the views.

3. ESTIMATION MODEL

This section first presents how to estimate the benefit
B(qi, vj) of using a view vj to answer a query qi, and then
discusses how to estimate the cost. Note that the benefit
cannot be calculated by a simple subtraction of query’s exe-
cution time and MV’s generation time, i.e., tqi �tvj 6= tqi,vj ,
where tvj is the time of generating the vj . Note that for some
(qi, vj) pairs, tqi,vj is even higher than tqi .
There are two main challenges. (1) How to input a SQL

query into the tensor model? We propose a serializing and
encoding mechanism to encode the features of both queries
and views. (2) How to capture the correlation between
queries and views? We propose a deep learning model,
Encoder-Reducer, to estimate both tqi and tqi,vj . Note that
our Encoder-Reducer model is di↵erent from the traditional
Encoder-Decoder model [4]. Encoder-Decoder uses encoder
to encode a sequence of a language into a semantic vector
and uses decoder to translate it to another language. In-
stead, our Encoder-Reducer model aims to estimate tqi and
tqi,vj . Our encoder encodes qi into a vector and outputs tqi .
Our reducer reduces qi by inputting vj and outputs tqi,vj .

2

1. MV Candidate Generation 
2. MV Estimation Model - encoder-reducer
3. MV Selection - DRL
4. MV-aware Query Rewriting 
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  select t1.user_id,count(*) as cnt 
from (
      select user_id,memo from user_memo
      where dt='1010'and memo_type = 'pen' )
 t1 inner join (
      select user_id,action from user_action
      where type = 1 and dt='1010' ) 
t2 on t1.user_id = t2.user_id
  group by t1.user_id;

 SQL Statement

count

dt=‘1010’
memo_type=‘pen’ dt=‘1010’

type=1

user_id_1,
memo

user_id_2,
action

user_id_1=user_id_2

user_memo user_action

Abstract Syntax Tree

S1S1

S2S2

S3S3

LogicalAggregate(group=[{user_id_1}],cnt=[COUNT()])
   LogicalJoin(condition=[EQ(user_id_1, user_id_2)], joinType=[inner])
      LogicalProject(user_id_1=[user_id],memo=[memo])
        LogicalFilter(condition=[AND(EQ(dt, '1010'), EQ(memo_type, 'pen')])
           LogicalTableScan(table=[[user_memo])
      LogicalProject(user_id_2=[user_id],action=[action])
        LogicalFilter(condition=[AND(EQ(type, 1),EQ(dt, '1010'))])
           LogicalTableScan(table=[[user_action]])

Logical Plan

S1S1

S2S2

S3S3

��
����

����
�� ���� ��

S3S3

S1S1 S2S2

Figure 1: An example of query and its subqueries

queries until they converge. Since this is an NP-hard prob-
lem and it is di�cult to get converged global optimization
results by directly computing probability for labeling sub-
query vertices. To address this issue, we design a reinforce-
ment learning based method to generate converged result by
regarding the bipartite labeling process as a Markov decision
process. In summary, we make the following contributions.
(1) We propose an end-to-end system for computation shar-
ing and integrate it into our big data platform seamlessly.
(2) We design an e�cient and e↵ective method to find equiv-
alent subqueries.
(3) We extract useful subquery features to estimate sub-
query costs from di↵erent perspectives and encode the fea-
tures into distributed vectors based on deep learning. We
present an e↵ective model Wide-Deep to estimate computa-
tion costs for subqueries based on deep learning.
(4) We define the subquery selection problem as a bipartite
labeling problem and design the method RLBased-Label to
solve the problem based on deep reinforcement learning.
(5) We conduct a comprehensive evaluation on real datasets.
The results show that our method outperforms existing ap-
proaches significantly.

2. PRELIMINARIES

2.1 Subquery Equivalence and Utility

Subquery. A SQL query can be parsed into an abstract
syntax tree as shown in Figure 1. We call each subtree
as a subquery. In the example, we extract three example
subqueries (e.g. S1, S2 and S3). In addition, we use corre-
sponding logical plans to express subqueries in this paper.
The reason of using logical plan but not physical plan is two-
fold. On the one hand, a logical plan can be transformed
into di↵erent physical plans according to di↵erent optimiza-
tion strategies, i.e., there is no one-to-one correspondence
between subqueries and physical plans. Thus our method
is more general and can be used in any database system.

(a) Total vs Equivalent (b) Cumulative Equivalence

Figure 2: Subquery Equivalence on Several Projects

On the other hand, physical plan is generally more compli-
cated than logical plan, which makes matching subqueries
for reusing materialized views more di�cult.

Subquery Equivalence. Given a set of SQL queries, there
might be some subqueries with the same execution results
and we name the subqueries as equivalent subqueries. No-
tably, equivalent subqueries may have di↵erent logical ex-
pressions. To accurately describe subquery equivalence, we
give its formal definition as follows.

Definition 1 (Subquery Equivalence). Each logical sub-
query plan S corresponds to a relational algebra expression,
which is denoted as R(S). For R(S), we can use some equiv-
alent transformation strategies to convert it into other ex-
pressions. Given two subqueries S1 and S2, the two sub-
queries are equivalent if and only if R(S1) and R(S2) can be
converted into each other.

According to Definition 1, we can avoid duplicate compu-
tations and save costs through sharing common results for
equivalent subqueries. For instance, Figure 2 summarizes
Subquery Equivalence on a real workload. Notably, queries
in the workload are grouped by projects and each project
consists of di↵erent queries. Figure 2(a) respectively illus-
trates the number of total queries (denoted as Total) and the
number of queries containing equivalent subqueries (denoted
as Equivalence) on six projects, and the proportion of Equiv-
alence among Total is in the range of 11% to 33%. For ex-
ample, the project P4 consists of 2,119 queries and there are
702 queries containing equivalent subqueries in the project,
which means the proportion is 702/2119 = 33%. Moreover,
we also consider Subquery Equivalence between di↵erent
projects. We choose several projects and compute the cu-
mulative proportion of queries containing equivalent sub-
queries among total queries. As shown in Figure 2(b), the
cumulative percentage increases as the number of projects
increases, which indicates that many queries in di↵erent
projects contain equivalent subqueries. In summary, many
queries in di↵erent projects contain equivalent subqueries,
which causes serious waste of resources, and thus it calls for
e↵ective methods to share the computations.

Subquery Utility. Firstly, we consider costs related to
computation resources for executing subqueries, such as CPU
usage and memory usage. Notably, the costs of a common
subquery are di↵erent in di↵erent queries. Therefore, we
need to consider the queries when computing subquery com-
putation cost, which are formally defined as follows:

Definition 2 (Computation Cost). Given a subquery
S of a query Q, we respectively use A�(S,Q) and A�(S,Q)
to denote CPU usage and memory usage. Let P (S,Q) rep-
resent computation related features of the subquery S in the
context of query Q, then we have A�(S,Q) = F�(P (S,Q))
and A�(S,Q) = F�(P (S,Q)), where F� and F� respectively
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4. EQUIVALENT SUBQUERY DETECTION

Existing literatures [26, 27] just detect overlapping sub-
queries for di↵erent SQL jobs, but they cannot be adapted
to detect equivalent subqueries. The most intuitive reason
is that expressions of two equivalent subqueries may be dif-
ferent. Subqueries can be considered as one-order logic ex-
pressions and we can convert query equivalence problem to
logic equivalence problem which is a well studied problem
in theory and proved to be mathematically undecidable [1,
10, 12]. Satisfiability Modulo Theories (SMT) and symbolic
execution technologies can solve the equivalence problem by
inferencing whether Exp1([a, b, c, · · · ]) ^ Exp2([a, b, c, · · · ])
is satisfiable for all possible inputs [a, b, c, · · · ] (where Exp1

and Exp2 are logic expressions generated from subqueries).
The biggest challenge is how to e�ciently determine whether
two subqueries are equivalent especially for large queries.

As we know, solving large logic expression is very costly
even for Z3(an e�cient SMT solver developed by Microsoft),
if we put the expression containing all the logical relations
in large query into solver, the overhead would be large. In
our investigation, only around 51% of the equivalent sub-
query pairs we have found in our real projects are totally
the same, 36% of remaining equivalent pairs have di↵erent
join orders and 62% have di↵erent but equivalent predicates.
Based on these findings, we can reduce number of variables
and logic relations by solving the problem in ’divide-and-
conquer’ manner, the details are as follows.

Firstly, we separate each subquery into SPJG segments
by Aggregate/Projection operators as figure 4 and build a
new plan tree (✓-tree) in higher level where each segment
is a node and relations remain. The two subqueries are
equivalent if and only if all the nodes in two ✓-trees can be
matched. Next, we solve the equivalence problem of two
✓-tree bottom up. For all the leaf nodes in two ✓-trees in
each round, they have inputs from either relation scans or
results of nodes below, we should compare all the nodes
from two ✓-trees which share same inputs, if the current leaf
nodes are not all matched, the program would return False,

 A. [Aggregate, user_id, cnt, COUNT]
 B.�>Join, EQ, user_id, user_id, inner]
 C. [Project, user_id, memo]
 D. [Filter, AND, EQ, dt, ‘1010’, EQ, memo_type, ‘pen’]
 E. [Scan, user_memo]
 F.  [Project, user_id, action]
 G. [Filter, AND, EQ, type, ‘1’, EQ, dt, ‘1010’]
 H. [Scan, user_action]

OdpsLogicalAggregate(group=[{user_id_1}],cnt=[COUNT()])
   LogicalJoin(condition=[EQ(user_id_1, user_id_2)], joinType=[inner])
      OdpsLogicalProject(user_id_1=[user_id],memo=[memo])
        OdpsLogicalFilter(condition=[AND(EQ(dt, '1010'), EQ(memo_type, 'pen')])
           OdpsLogicalTableScan(table=[[user_memo])
      OdpsLogicalProject(user_id_2=[user_id],action=[action])
        OdpsLogicalFilter(condition=[AND(EQ(type, 1),EQ(dt, '1010'))])
           OdpsLogicalTableScan(table=[[user_action]])

nodes 
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QQ
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Figure 6: Feature Extraction from Expressions

otherwise the outputs of leaf nodes would become inputs of
their parent nodes and the parent nodes would become new
leaf nodes. We continue this process iteratively until there
are no more nodes in the two ✓-trees and return True.

Next we introduce the method to match SPJG segments(✓-
tree nodes) in details. Shown as figure 5, variables of in-
puts will go through all kinds of operations like filtering,
transforming and aggregating before they come to the out-
put layer, we build filtering condition expression and logic
transformation expression for each output, if we can prove
equivalence of outputs by using SMT solver, then the two
segments are equivalent. It is worth noting that join condi-
tions bring correlations to outputs from di↵erent relations,
this will merge several logic expressions into large one and
the total cost would growth exponentially. Therefore we do
not consider join conditions when using SMT solver while
comparing them in syntax as a complement, this improves
the performance of equivalence detection drastically espe-
cially for large queries.

5. SUBQUERY COST ESTIMATION

In this section, we focus on estimating computation cost
of subqueries. Firstly, according to the Definition 2, to de-
sign a machine learning algorithm for e↵ectively estimating
the cost of a subquery S in the context of raw query Q, the
first step is to extract computation related features P (S,Q).
In particular, we extract features from related information,
which can be split into four types: expressions, input, out-
put and system setting information. Secondly, for e�ciently
using sequential features, we design an encoding model to
align them by the techniques of deep learning. Finally, we
design an end-to-end model to estimate subquery computa-
tion costs.

In summary, Section 5.1 introduces how to extract useful
features, Section 5.2 describes how to encode the features,
and Section 5.3 presents our cost estimation model.

5.1 Feature Extraction

Expressions Information: Give a query Q and its sub-
query S, we first extract features from their logical expres-
sions. Each logical expression is a tree structure and each
node in the tree corresponds to an operator. To e↵ectively
extract features from expressions, we choose to convert ex-
pression trees into corresponding sequences. First of all, we
convert each operator node expression into a sequence, and
the sequence is composed of two parts. The first part is the
operator type (e.g. Project, Scan, Filter, Join and Aggre-
gate), and the second part is attributes about the operator
node. Benefit from e↵ectiveness of an SQL engine, we can
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Figure 3: Query plan tree of query Q in Table 1.

3.1 Serializing and Encoding

Deep neural networks only accept tensor models and SQL
queries cannot be directly input into neural networks. To
address this problem, we propose a serializing and encoding
method that transforms SQLs to tensors while keeping its
structural and semantic information.

We use the query plan tree to extract features. We first
use the postorder traversal to transform the tree into a se-
quence. The tree nodes (elements in the sequences) can be
classified into four classifications, reserved word, metadata,
string and numeric. The reserved word includes reserved
words and mathematical operator. The metadata includes
table names and column names. The string and numeric

includes strings and numeric values that appear in the SQL
queries respectively.

For example, Table 1 shows a query. The query plan tree
of the query is shown in Figure 3. We scan the query plan
tree by the postorder traversal and extract Relation Name,
Index Name, Index Cond, Hash Cond, Filter, Join Cond,
Recheck Cond, Join Type, Join Filter and Node Type. Ex-
pressions like “episode nr < 100”will be rewritten in postfix
expressions like “episode nr, 100, <”. The serialization re-
sult of the query is shown in Table 1.

After serialization, we encode the elements in the sequence
into fixed-length tensors as shown in Figure 4. For reserved
word and metadata, we use word embedding [13] to map
them to dense tensors. However, the strings and numeric
values are too sparse for embedding or one-hot encoding, so
we use di↵erent strategies to encode them. For string, we
use a convolution neural network to encode it, which consists
of a linear convolution layer and a full connect layer. Con-

Table 1: Serialization example of query Q.
SELECT MIN(t.title) AS series named after char
FROM keyword AS k,

movie keyword AS mk,
title AS t

WHERE k.keyword =’character-name-in-title’
AND t.episode nr < 100
AND t.id = mk.movie id
AND mk.keyword id = k.id;

(keyword, metadata), (keyword.keyword, metadata),
(character-name-in-title, string), (=, reserved word),
(Seq Scan, reserved word), (keyword id movie keyword,
metadata), (keyword id, metadata), (keyword.id, metadata),
(=, reserved word), (Bitmap Index Scan, reserved word),
(movie keyword, metadata) · · ·

Figure 4: Encoding Methods.

volution neural network can help us capture the information
that whether the string appears in both queries and MVs.
For numeric, we model it as binary for easier comparison.

3.2 Encoder-Reducer Model

We design the Encoder-Reducer model to estimate tqi and
tqi,vj . The model is shown in the middle of Figure 2. We use
the encoder, an Recurrent Neural Network (RNN), to encode
the query sequence into a semantic vector which integrates
the information of the query, especially the execution time.
Encoder predicts the execution time of the query. Then we
use reducer, another RNN, to “reduce” the semantic content
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into fixed-length tensors as shown in Figure 4. For reserved
word and metadata, we use word embedding [13] to map
them to dense tensors. However, the strings and numeric
values are too sparse for embedding or one-hot encoding, so
we use di↵erent strategies to encode them. For string, we
use a convolution neural network to encode it, which consists
of a linear convolution layer and a full connect layer. Con-
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SELECT MIN(t.title) AS series named after char
FROM keyword AS k,

movie keyword AS mk,
title AS t
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AND mk.keyword id = k.id;
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tqi,vj . The model is shown in the middle of Figure 2. We use
the encoder, an Recurrent Neural Network (RNN), to encode
the query sequence into a semantic vector which integrates
the information of the query, especially the execution time.
Encoder predicts the execution time of the query. Then we
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ing problem. Specifically, we train a deep neural network
to predict Q-value for a given state, which is denoted as
q(s) = µ(s|✓). Notably, q(s) is |CS |-dimensional in our set-
tings due to that we have |CS | actions to choose. We com-
pare values among |CS | dimensions of q(s) and select the
dimension corresponding to the maximum value as action
for q(s). Specifically, we implement the dueling deep rein-
forcement network, which consists of a state value network
and an advantage network. As shown in Figure 9, in our al-
gorithm, state value network and advantage network share
four layers and the number of neurons in the four layers re-
spectively are 512, 1024, 2048, 1024. Di↵erently, the output
layer of state value network contains one neuron while the
output layer of advantage network is in the size of |CS |. The
final output q(s) is computed by adding outputs of the two
networks based on broadcasting.

Algorithm 2 lists the procedure of solving the reinforce-
ment learning problem in details. We first initial Z and Y by
function IterLabel to get an e↵ective initial state, and then
randomly initial deep neural network (line 2-5). We use a
memory M to store experience replay, where each experi-
ence is formed with the tuple hst, at, rt, st+1i. The reward
rt between st and st+1 is defined as the di↵erence between
their utilities, which is denoted as Rt+1 � Rt. In each iter-
ation, we respectively use the network to update Z and use
function EdgeLabel to update Y (line 8-11). When the size
of memory is greater than the given threshold, we would
train the network parameters and parameters by the func-
tion DQN. Specifically, we first sample experience replay
data hst, at, rt, st+1i from the memory M (line 1). Then
we use the network to respectively predict q(st) and q(st+1)
(line 2-3). Afterwards, we generate estimated value q

0(st)
by replacing the value in the at-th dimension of q(st) with
�max{q(st+1)}+ rt (line 4). Finally, we use MSE metric as
a loss function to update parameters (line 5).

7. EXPERIMENTS
In this section, we designed extensive experiments to eval-

uate the performance of our system. Firstly, we illustrated
two workloads, which were collected from real SQL query
jobs in Alibaba. Secondly, we compared our proposed cost
model Wide-Deep with some popular machine learning meth-
ods. Thirdly, we evaluated the e↵ectiveness of the material-
ized views selection algorithm RLBased-Label. Finally, we
evaluated the overall performance of our system.

Datasets. We selected two workloads with di↵erent scales
from real SQL query jobs in Alibaba and the two workloads
were respectively called WK1 and WK2. For each work-
load, we collected related information as shown in Table 2.
Firstly, we directly counted the number of projects, the num-
ber of queries and the number of extracted SPJG subqueries,
which were respectively named as # project, # query and

Table 2: Workloads Datasets

workloads WK1 WK2
# project 21 25
# query 38,596 157,612

# subquery 79,593 302,495
# equivalent pairs 27,445 98,532

# related subqueries 8,522 34,514
# related queries 4,642 14,191

# subquery clusters 2,252 6,871
# intersection pairs 4,286 5521

# subquery. Secondly, we got equivalent subquery pairs by
equivalent subquery detection and recorded the number of
equivalent pairs, which were named as # equivalent pairs.
Moreover, we computed the number of subqueries and the
number of queries, which were related to equivalent sub-
query pairs, and respectively denoted them as # related sub-
queries and # related queries. Importantly, equivalent sub-
queries would be split into the same cluster and we counted
the number of clusters as # subquery clusters. Finally, some
subqueries had the relationship of Subquery Intersection,
so we recorded these subqueries and denoted the number of
them as # intersection pairs. Taking WK1 as an example,
this workload consisted of 38, 596 queries, which belonged to
21 projects. We extracted 79, 593 SPJG subqueries and de-
tected 27, 445 subquery pairs. Importantly, there were 8, 522
related SPJG subqueries and 4, 642 related queries, where the
related subqueries contained 4, 286 pairs of intersection sub-
queries and could be split into 2, 252 clusters.

7.1 Experimental Setup

Baseline methods. (1) For evaluating the e↵ectiveness
of Wide-Deep, we compared it with some popular machine
learning models. Firstly, we utilized two traditional methods
LR and GDBT to predict subquery computation costs. In
order to make comparisons more fair, we leveraged the same
Encoding Model to align features for all methods and the
two traditional methods were respectively called LR+EM (LR
and Encoding Model) and GBDT+EM (GDBT and Encoding
Model). In addition, in order to evaluate the e↵ectiveness of
Encoding Model, we used the padding techniques to align se-
quential features for traditional methods, which respectively
called LR+PAD (LR and Padding) and GBDT+PAD (GDBT and
Padding). (2) We implemented four greedy baseline meth-
ods to compare with our algorithm RLBased-Label, and we
respectively named them as TopkFrequency, TopkStorage,
TopkUtility, TopkNormalize. The four methods were ex-
tended from [15], and they first sorted candidate subqueries
according to di↵erent standards, then they selected top-k
subqueries to generate views and used ILP solvers to get
maximum benefit. In particular, TopkFrequency ranked
subqueries based on the number of times they appeared
in di↵erent queries, TopkStorage sorted subqueries by stor-
age cost from small to large,TopkUtility ranked subqueries
based on their optimal maximum utilities for all queries and
TopkNormalize ranked subqueries by normalizing maximum
utilities, which was computed by dividing storage costs of
corresponding subqueries. In addition, to demonstrate that
RLBased-Label can converge into a stable solution, we re-
garded the function IterLabel as a baseline method and com-
pared its results with RLBased-Label, where the method was
denoted as ProBased-Label.

Parameters. The parameters in our system can be divided
into two parts. The first part was manually set by users,
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Figure 3: Arrival Rate History – The past arrival rates for the largest
cluster and the top four queries within that cluster from BusTracker.

Another approach is to use the template’s logical features, such
as the tables/columns it accesses and the properties of the query’s
syntax tree. Unlike physical features, these logical features do not
depend on the DBMS’s con�guration nor the characteristics of the
workload (e.g., which queries execute more often than others). The
disadvantage, however, is that they may generate clusters without
a discernible workload pattern because there is limited information
from the logical feature and thus the forecasting models make poor
predictions. The ine�ciency of logical features has also been iden-
ti�ed in previous work on predicting query runtime metrics [23].

QB5000 uses a better approach to cluster queries based on their
arrival rate history (i.e., the sequence of their past arrival rates). For
example, consider the cluster shown in Figure 3 from the BusTracker
application that is derived from four templates with similar arrival
rate patterns. The cluster center represents the average arrival rate
of the templates within the cluster. Although the total volume per
template varies at any given time, they all follow the same cyclic
patterns. This is because these queries are invoked together as part
of performing a higher level functionality in the application (e.g., a
transaction). Since templates within the same cluster exhibit similar
arrival rate patterns, the system can build a single forecasting model
for each cluster that captures the behavior of their queries.

Calculating the similarity between a pair of arrival rate history
features is straightforward. QB5000 �rst randomly samples times-
tamps before the current time point. Then for each series of arrival
rate history, QB5000 takes the subset of values at those timestamps
to form a vector. The similarity between the two features is de�ned
as the cosine similarity of the two vectors. If the template is new,
we compare its available timestamps with the corresponding subset
in the vectors of other templates. Our current implementation uses
10k time points in the last month of a template’s arrival rate history
as its feature vector. We found that this is enough to capture the
pattern of every arrival rate history in our experiments.

Logical features and arrival rate history features express di�erent
characteristics of the queries. But as we show in Section 7.7, cluster-
ing on the arrival rate features produce better models for real-world
applications because they capture how queries impact the system’s
performance. Though using the template’s arrival rates avoids re-
building clusters whenever the DBMS changes, it is still susceptible
to workload variations, such as when the system identi�es a new
template or the arrival rates of existing ones change.

5.2 On-line Clustering
QB5000 uses a modi�ed version of DBSCAN [21] algorithm. It is
a density-based clustering scheme: given a set of points in some
space, it groups together points with many nearby neighbors (called
core objects), and marks points that lie alone in low-density regions
as outliers (i.e., points whose nearest neighbors are too far away).

Unlike K-means, this algorithm is not a�ected by the number of
small clusters or the cluster densities1.

The original DBSCAN algorithm evaluates whether an object
belongs to a cluster by checking the minimum distance between
the object and any core object of the cluster. But we want to assign
templates to clusters based on how close they are to a cluster’s
center and not just any random core object. This is because QB5000
uses the center of a cluster to represent the templates that are
members of that cluster, and builds forecasting models with the
center. An on-line extension of the canonical DBSCAN algorithm
also has high overhead when updating clusters [20].

Our on-line variant of DBSCAN uses a threshold, � (0  �  1),
to decide how similar the arrival rates of the templates must be
for them to belong to the same cluster. The higher � is, the more
similar the arrival rates of the templates within a cluster are, so
the modeling result will be more accurate. But the computational
overhead will also be higher given the larger number of generated
clusters. We conduct a sensitivity analysis on setting this value in
Appendix A. As shown in Figure 4, QB5000’s incremental clustering
algorithm periodically performs the following three steps together:

Step #1: For each new template, QB5000 �rst checks whether
the similarity score between its arrival rate history and the center
of any cluster is greater than �. The template is assigned to the
cluster with the highest similarity score that is greater than �. We
use a kd-tree to allow QB5000 to quickly �nd the closest center of
existing clusters to the template in a high-dimensional space [8].
Then QB5000 will update the center of that cluster, which is the
arithmetic average of the arrival rate history of all templates in that
cluster. If there is no existing cluster (this is the �rst query) or none
of the clusters’ centers are close enough to the template, QB5000
will create a new cluster with that template as its only member.

Step #2:QB5000 checks the similarity of previous templates with
the centers of the clusters they belong to. If a template’s similarity is
no longer greater than �, QB5000 removes it from its current cluster
and then repeat step (1) to �nd a new cluster placement. Sometimes
moving a template from one cluster to another causes the centers of
the two clusters to change, and recursively forces other templates
from the two clusters to move. QB5000 defers modifying the clusters
until the next update period. QB5000 removes a template if it has
not received one of its queries for an extended period.

Step #3: QB5000 computes the similarity between the clusters’
centers and merges two clusters with a score greater than �.

In addition to periodically executing these three steps, QB5000
monitors the new templates in the workload. If the percentage of
previously unseen templates is above a threshold, it then triggers
these steps to adapt to the workload change. Setting this threshold
properly is dependent on the performance attributes of the target
DBMS. We defer investigating this problem as future work.

QB5000’s incremental algorithm adaptively adjusts the clusters
for a dynamic workload without requiring a warm-up period or
having prior knowledge of the workload. More importantly, it guar-
antees that the similarity between a template’s arrival rate history

1We also evaluated K-means clustering, but it has a known problem when the workload has a large
number of small clusters, or the clusters have di�erent sizes or densities. These issues have also
been observed for previous database workload modeling techniques [11].
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cution in feature extraction. We embed these features into
our tree-structured model, which can estimate the cost and
cardinality utilizing the tree structure (see Section 4).
(3) For predicates with string values, we propose an effective
method to encode string values for improving the general-
ization ability. As it is prohibitively expensive to enumerate
all possible string values, we design a pattern-based method,
which selects patterns to cover string values and utilizes the
patterns to embed the string values (see Section 5).
(4) We conducted experiments on real-world datasets, and
experimental results showed that our method outperformed
existing approaches (see Section 6).

2. RELATED WORK

Traditional Cardinality Estimation. Traditional car-
dinality estimation techniques can be broadly classified into
three classes. The first is histogram-based methods [13]. The
core idea is to divide the cell values into equal depth or
equal width buckets, keep the cardinality of each bucket,
and estimate the cardinality according to the buckets. The
method is easy to implement and has been widely used in
commercialized databases. However, it is not effective to
estimate the correlations between different columns. The
second is sketching, which aims to solve distinct cardinal-
ity estimation problem, including FM [7], MinCount [10],
LinearCount [27], LogLog [6], HyperLogLog [8]. The basic
idea first maps the tuple values to bitmaps, then counts the
continuous zeros or the number of hitting for each position,
and finally infers the approximate number of distinct values.
These methods can estimate the distinct number of rows for
each dataset effectively. However, they are not suitable for
estimating range query. The third is sampling-based meth-
ods [18, 25, 29, 16]. These methods utilize the data samples
to estimate the cardinality. In order to address the sample
vanishing problem (valid samples decrease rapidly for joins),
[16] proposed index-based sampling. Sampling methods im-
prove the accuracy of cardinality estimation, but they bring
space overhead and only be adopted by in-memory database
like HyPer [24]. Another limitation of this method is 0-tuple
problem, i.e., when a query is sparse, if the bitmap equals
to 0, the sample is invalid.
Traditional Cost Model. Traditional cost estimation is
estimated by combining multiple factors like cost of sequen-
tial page fetch, cost of random page fetch, cost of CPU
cost of processing a tuple and cost of performing operation.
Firstly, these factors are highly correlated to the cardinal-
ity of data affected by the query. Secondly, the weight of
each factor has to be tuned. There are some works focus-
ing the cost model tuning [28, 19, 15], and [15] conducted
experiments on the IMDB dataset to show that cardinality
estimation is much more crucial than the cost model for cost
estimation and query optimization.
Learning-based Cardinality Estimation. The database
community starts to solve this problem by using learning-
based method like statistic machine learning or deep neural
network. The first learning based work on cardinality es-
timation [21] first classifies queries according to the query
structure (join condition, attributes in predicates etc.), and
then trains a model on the values of the predicates, but the
model is ineffective to train on unknown structured query.
The state-of-the-art method [14] trains a multi-set convolu-
tional network on queries, but this method is not suitable
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Figure 1: Comparison of Traditional Cost Estimation and
Learning-based Cost Estimation.

for query optimization, because the query-based encoding
is too tricky when optimizing on a tree structure, and the
generalization is limited. [26] proposed a vision of training
representation for the join tree with reinforcement learning.
However, this method does not support query plans with a
complex tree structure and cannot support complex queries.
Learning-based Performance Prediction. There are
several works on performance prediction by using machine
learning and statistics [4, 28, 17, 9, 30], but they all require
experts to select the features according to operation proper-
ties. A deep learning based approach [22] is also proposed.
However, this method must take the estimated cardinality
and the cost of PostgreSQL as features without learning the
semantic of predicates, and it is not an end-to-end solution.

3. OVERVIEW OF END-TO-END COST ES-

TIMATOR

Cost estimation is to estimate the execution cost of a
query plan, and the estimated cost is used by the query
optimizer to select physical plans with low cost. Cardinality
estimation is to estimate the number of tuples in the re-
sult of a (sub)query. In this section we propose the system
overview of cost and cardinality estimation.

Traditional databases estimate the cost and cardinality
using statistics. For filter operations, cardinality estimator
(e.g., PostgreSQL[2], DB2[1]) estimates the cardinality us-
ing the histograms; for join operations, the cardinality is
estimated by empirical functions with selectivity of joined
tables (nodes) as variables. In Figure 1, the numbers on top
of each node are estimated cardinality and real cardinality.
We find that there exist large errors in traditional methods.

In general, we can effectively estimate the cardinality for
leaf nodes (like Scan) by using the histogram; however, the
error would be very large for joins because of the correla-
tions between tables. Usually the more joins are, the larger
error is. Unlike traditional cost estimation methods, our
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Figure 3: Running Example of query plan encoding

learning-based model can learn the correlation among mul-
tiple columns and tables, and the representation can retain
accurate information on distribution of results even for the
queries with dozens of operations.

Moreover, the query plan is a tree structure, and the plan
is executed in a bottom-up manner. Intuitively, the cost/-
cardinality of a plan should be estimated based on its sub-
plans. To this end, we design a tree-structured model that
matches the plan naturally, where each model can be com-
posed of some sub-models in the same way as a plan is made
up of sub-plans. We use the tree-structured model to esti-
mate the cost/cardinality of a plan in a bottom-up manner.
Learning-based Cost Estimator. The end-to-end
learning-based tree-structured cost estimator includes three
main components, including training data generator, feature
extractor, and tree-structured model, as shown in Figure 2.
1) Training Data Generator generates training data
based on the data and query workload. It first generates
a large number of queries according to the potential join
graph of the dataset and the predicates in the workload.
Then for each query, it extracts a physical plan by the op-
timizer and gets the real cost/cardinality. Thus a training
data is a triple ha physical plan, the real cost of the plan,
the real cardinality of the plani.
2) Feature Extractor extracts useful features from the
query plan, e.g., query operation and predicates. Each node
in the query plan is encoded into feature vectors and each

vector is organized into tensors. Then the tree-structured
vectors are taken as input of the training model. For sim-
ple features, we can encode them by using one-hot vector or
bitmap. While for complicated features, e.g., LIKE predi-
cate, we encode each tuple hcolumn, operator, operandi into
vectors, by using a one-to-one mapping (see Section 4.1).
3) Tree-structured Model defines a tree-structured model
which can learn representations for the (sub)plans, and the
representations can be used in cost and cardinality estima-
tion. The model is trained based on the training data, stores
the updated parameters in the model, and estimates cost
and cardinality for new query plans.
Workflow. For offline training, the training data are gen-
erated by Training Data Generator, which are encoded into
tensors by Feature Extractor. Then the training data is fed
into the Training Model and the model updates weights by
back-propagating based on current training loss. The details
of model training is discussed in Section 4.3.

For online cost estimation, when the query optimizer asks
the cost of a plan, Feature Extractor encodes it in a up-down
manner recursively. If the sub-plan rooted at the current
node has been evaluated before, it extracts representation
from Representation Memory Pool, which stores a mapping
from a query plan to its estimated cost. If the current sub-
plan is new, Feature Extractor encodes the root and goes to
its children nodes. We input the encoded plan vector into
Tree-structured Model, and then the model evaluates the cost
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"Node Type":"Index Scan"
“Table Name":"movie_companies"
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learning-based model can learn the correlation among mul-
tiple columns and tables, and the representation can retain
accurate information on distribution of results even for the
queries with dozens of operations.

Moreover, the query plan is a tree structure, and the plan
is executed in a bottom-up manner. Intuitively, the cost/-
cardinality of a plan should be estimated based on its sub-
plans. To this end, we design a tree-structured model that
matches the plan naturally, where each model can be com-
posed of some sub-models in the same way as a plan is made
up of sub-plans. We use the tree-structured model to esti-
mate the cost/cardinality of a plan in a bottom-up manner.
Learning-based Cost Estimator. The end-to-end
learning-based tree-structured cost estimator includes three
main components, including training data generator, feature
extractor, and tree-structured model, as shown in Figure 2.
1) Training Data Generator generates training data
based on the data and query workload. It first generates
a large number of queries according to the potential join
graph of the dataset and the predicates in the workload.
Then for each query, it extracts a physical plan by the op-
timizer and gets the real cost/cardinality. Thus a training
data is a triple ha physical plan, the real cost of the plan,
the real cardinality of the plani.
2) Feature Extractor extracts useful features from the
query plan, e.g., query operation and predicates. Each node
in the query plan is encoded into feature vectors and each

vector is organized into tensors. Then the tree-structured
vectors are taken as input of the training model. For sim-
ple features, we can encode them by using one-hot vector or
bitmap. While for complicated features, e.g., LIKE predi-
cate, we encode each tuple hcolumn, operator, operandi into
vectors, by using a one-to-one mapping (see Section 4.1).
3) Tree-structured Model defines a tree-structured model
which can learn representations for the (sub)plans, and the
representations can be used in cost and cardinality estima-
tion. The model is trained based on the training data, stores
the updated parameters in the model, and estimates cost
and cardinality for new query plans.
Workflow. For offline training, the training data are gen-
erated by Training Data Generator, which are encoded into
tensors by Feature Extractor. Then the training data is fed
into the Training Model and the model updates weights by
back-propagating based on current training loss. The details
of model training is discussed in Section 4.3.

For online cost estimation, when the query optimizer asks
the cost of a plan, Feature Extractor encodes it in a up-down
manner recursively. If the sub-plan rooted at the current
node has been evaluated before, it extracts representation
from Representation Memory Pool, which stores a mapping
from a query plan to its estimated cost. If the current sub-
plan is new, Feature Extractor encodes the root and goes to
its children nodes. We input the encoded plan vector into
Tree-structured Model, and then the model evaluates the cost
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learning-based model can learn the correlation among mul-
tiple columns and tables, and the representation can retain
accurate information on distribution of results even for the
queries with dozens of operations.

Moreover, the query plan is a tree structure, and the plan
is executed in a bottom-up manner. Intuitively, the cost/-
cardinality of a plan should be estimated based on its sub-
plans. To this end, we design a tree-structured model that
matches the plan naturally, where each model can be com-
posed of some sub-models in the same way as a plan is made
up of sub-plans. We use the tree-structured model to esti-
mate the cost/cardinality of a plan in a bottom-up manner.
Learning-based Cost Estimator. The end-to-end
learning-based tree-structured cost estimator includes three
main components, including training data generator, feature
extractor, and tree-structured model, as shown in Figure 2.
1) Training Data Generator generates training data
based on the data and query workload. It first generates
a large number of queries according to the potential join
graph of the dataset and the predicates in the workload.
Then for each query, it extracts a physical plan by the op-
timizer and gets the real cost/cardinality. Thus a training
data is a triple ha physical plan, the real cost of the plan,
the real cardinality of the plani.
2) Feature Extractor extracts useful features from the
query plan, e.g., query operation and predicates. Each node
in the query plan is encoded into feature vectors and each

vector is organized into tensors. Then the tree-structured
vectors are taken as input of the training model. For sim-
ple features, we can encode them by using one-hot vector or
bitmap. While for complicated features, e.g., LIKE predi-
cate, we encode each tuple hcolumn, operator, operandi into
vectors, by using a one-to-one mapping (see Section 4.1).
3) Tree-structured Model defines a tree-structured model
which can learn representations for the (sub)plans, and the
representations can be used in cost and cardinality estima-
tion. The model is trained based on the training data, stores
the updated parameters in the model, and estimates cost
and cardinality for new query plans.
Workflow. For offline training, the training data are gen-
erated by Training Data Generator, which are encoded into
tensors by Feature Extractor. Then the training data is fed
into the Training Model and the model updates weights by
back-propagating based on current training loss. The details
of model training is discussed in Section 4.3.

For online cost estimation, when the query optimizer asks
the cost of a plan, Feature Extractor encodes it in a up-down
manner recursively. If the sub-plan rooted at the current
node has been evaluated before, it extracts representation
from Representation Memory Pool, which stores a mapping
from a query plan to its estimated cost. If the current sub-
plan is new, Feature Extractor encodes the root and goes to
its children nodes. We input the encoded plan vector into
Tree-structured Model, and then the model evaluates the cost
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SELECT MIN(mc.note) AS production_note,
              MIN(t.title) AS movie_title,
              MIN(t.production_year) AS movie_year
FROM company_type AS ct,
           info_type AS it,
           movie_companies AS mc,
           movie_info_idx AS mi_idx,
           title AS t
WHERE ct.kind = 'production companies'
      AND it.info = 'top 250 rank'
      AND mc.note NOT LIKE '%(as Metro-Goldwyn-Mayer Pictures)%'
      AND (mc.note LIKE '%(co-production)%')
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      AND t.id = mi_idx.movie_id
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Figure 5: Two Level Tree Model

tor is complicated because it contains multiple AND/OR
semantics, and we design an effective model to learn the
representation of predicates.

Our goal is to estimate the number of tuples that satisfy a
predicate. For an atomic predicate, we can directly use the
vector. But for a compound predicate with multiple condi-
tions, we need to learn the semantic of the predicates and
the distribution of the results after applying the predicates
on the dataset.

Consider a compound predicate with two atomic predi-
cates using the AND semantic. We can estimate the number
of results satisfying the predicate by the minimum number of
estimated results satisfying the atomic predicates. Thus we
use the min pooling layer to combine the two atomic pred-
icates. Consider a compound predicate with two atomic
predicates using the OR semantic. We can estimate the
number of results satisfying the predicate by the maximum
number of estimated results satisfying the atomic predicates.
Thus we use the max pooling layer to combine the two
atomic predicates.

In this way, we use a tree pooling to encode a predicate,
where the tree structure is the same as the predicate tree
structure. Particularly, the leaf node is a fully connected
neural network, the OR semantic is replaced with the max
pooling layer and the AND semantic is replaced with the min
pooling layer. The advantages of this model are two folds.
The first is that only the leaf nodes need to be trained so
that it’s easy to do efficient batch training. The second is
that this model converges faster and performs better.

Figure 4 shows a compound predicate and its embedded
model. For leaf nodes, we use a fully connected neural net-
work. For conjunction nodes, we use max pooling layer for
‘OR’ and min pooling layer for ‘AND’ which meet the se-
mantic of ‘AND’ and ‘OR’.
Embedding Formulation. We denote features Opera-

tion, Metadata, Predicate and Sample Bitmap of nodet as
Ot,Mt, Pt, Bt respectively, and we denote each node of fea-
ture Predicate as Pt with P

l
t as its left child and P

r
t right

child. Embedding Model can be formalized as below. E is
the embedding output. W is the weight of a fully connected
neural network. b is a bias.
E = [embed(Ot), embed(Mt), embed(Bt), embed(Pt)]

embed(Ot) = ReLU(Wo ·Ot + bo)

embed(Mt) = ReLU(Wm ·Mt + bm)

embed(Bt) = ReLU(Wb ·Bt + bb)

embed(Pt) =

8
<

:

min(embed(P l
t ), embed(P r

t )) type(Pt) = AND,

max(embed(P l
t ), embed(P r

t )) type(Pt) = OR,

Wp · Pt + bp type(Pt) = Exp.

where type(Pt) is the type of a node, which includes AND,
OR, and a predicate expression.

4.2.2 Representation Layer

Cost estimation has two main challenges – information
vanishing and space explosion. First, it is easy to estimate
the cost for simple operations, e.g., estimating the cost of
a filtering predicate on a single table, but it is rather hard

5

Tree-structured Model

36



Learned Cost Estimator
String Embedding

Table 4: Candidate rules for "Dinos in Kas" ! "Din%"
Rules

"Din" ! "Din" hPrefix, Pt(“Din”), 3i
hPrefix, PCPt(“in”), 3i

"Dinos" ! "Din"

hPrefix, Pt(“D”)Pl, 3i
hPrefix, PCPl, 3i

hPrefix, PCPt(“i”)Pl, 3i
hPrefix, PCPt(“in”)Pl, 3i
hPrefix, Pt(“Din”)Pl, 3i

"Dinos " ! "Din"

hPrefix, Pt(“D”)PlPs, 3i
hPrefix, PCPlPs, 3i

hPrefix, PCPt(“i”)PlPs, 3i
hPrefix, PCPt(“in”)PlPs, 3i
hPrefix, Pt(“Din”)PlPs, 3i

"Dinos in" ! "Din"

hPrefix, Pt(“D”)PlPsPl, 3i
hPrefix, PCPlPsPl, 3i

hPrefix, PCPt(“i”)PlPsPl, 3i
hPrefix, PCPt(“in”)PlPsPl, 3i
hPrefix, Pt(“Din”)PlPsPl, 3i

"Dinos in " ! "Din"

hPrefix, Pt(“D”)PlPsPlPs, 3i
hPrefix, PCPlPsPlPs, 3i

hPrefix, PCPt(“i”)PlPsPlPs, 3i
hPrefix, PCPt(“in”)PlPsPlPs, 3i
hPrefix, Pt(“Din”)PlPsPlPs, 3i

"Dinos in Kas" ! "Din"

hPrefix, Pt(“D”)PlPsPlPsPCPl, 3i
hPrefix, PCPlPsPlPsPCPl, 3i

hPrefix, PCPt(“i”)PlPsPlPsPCPl, 3i
hPrefix, PCPt(“in”)PlPsPlPsPCPl, 3i
hPrefix, Pt(“Din”)PlPsPlPsPCPl, 3i

Table 5: Candidate rules for "(2002-06-29)" ! "%06%"
Rules

"06" ! "06"

hPrefix, Pt(“06”), 2i
hPrefix, PnPt(“6”), 2i

hPrefix, Pn, 2i
hPrefix, Pt(“0”)Pn, 2i

"06-" ! "06"

hPrefix, Pt(“06”)Pt(“�”), 2i
hPrefix, PnPt(“6”)Pt(“�”), 2i

hPrefix, PnPt(“�”), 2i
hPrefix, Pt(“0”)PnPt(“�”), 2i

"06-29" ! "06"

hPrefix, Pt(“06”)Pt(“�”)Pn, 2i
hPrefix, PnPt(“6”)Pt(“�”)Pn, 2i

hPrefix, PnPt(“�”)Pn, 2i
hPrefix, Pt(“0”)PnPt(“�”)Pn, 2i

"06-29)" ! "06"

hPrefix, Pt(“06”)Pt(“�”)PnPt(“)”), 2i
hPrefix, PnPt(“6”)Pt(“�”)PnPt(“)”), 2i

hPrefix, PnPt(“�”)PnPt(“)”), 2i
hPrefix, Pt(“0”)PnPt(“�”)PnPt(“)”), 2i

"06" ! "06"

hSuffix, Pt(“06”), 2i
hSuffix, PnPt(“6”), 2i

hSuffix, Pn, 2i
hSuffix, Pt(“0”)Pn, 2i

"-06" ! "06"

hSuffix, Pt(“�”)Pt(“06”), 2i
hSuffix, Pt(“�”)PnPt(“6”), 2i

hSuffix, Pt(“�”)Pn, 2i
hSuffix, Pt(“�”)Pt(“0”)Pn, 2i

"2002-06" ! "06"

hSuffix, PnPt(“�”)Pt(“06”), 2i
hSuffix, PnPt(“�”)PnPt(“6”), 2i

hSuffix, PnPt(“�”)Pn, 2i
hSuffix, PnPt(“�”)Pt(“0”)Pn, 2i

"(2002-06" ! "06"

hSuffix, Pt(“(”)PnPt(“�”)Pt(“06”), 2i
hSuffix, Pt(“(”)PnPt(“�”)PnPt(“6”), 2i

hSuffix, Pt(“(”)PnPt(“�”)Pn, 2i
hSuffix, Pt(“(”)PnPt(“�”)Pt(“0”)Pn, 2i

is composed of three parts, pattern, string function and size.
The pattern matches substrings of tuples in the dataset. The
string function decides which substring of tuples should be
extracted. The size indicates the length of the substring to
be extracted.

The pattern includes capital letters PC , lowercase letters
Pl, numerical values Pn, white spaces Ps and exact match-
ing token Pt(T ) which can only match a specific substring
T . The string function includes two types, Prefix and Suffix.
Prefix extracts the prefix of the string and Suffix extracts
the suffix of the string. The rule can be formalized as below:

F 2 {Prefix, Suffix}
P 2 combination{PC ,Pl,Ps,Pt(T )}

PC = [A�Z]+

Pl = [a�z]+

Ps = whitespace+

Pn = [0�9]+

Pt(T ) = T

rule = hF ,P,Li

where P is a pattern, F is a string function, and L is the
length of a substring.
Rule Candidate Set. Given a query string in the predi-
cate and a tuple string in the dataset, we first find all sub-
strings of the tuple string that match the query string. Then
for each matched substring, we generate all possible patterns
that map the query string to the substring, by enumerating
all possible combinations of patterns in PC , Pl, Pn, Ps,
Pt(T ). If the predicate is prefix search (e.g., LIKE “Din%”),
then for each possible pattern p, we generate a rule (prefix,
p, size of the query string). If the predicate is suffix search,
we generate a rule (suffix, p, size of the query string). If the
predicate is substring search, we generate a rule (prefix/-
suffix, p, size of the query string), based on how the query
string matches the substring. All the possible rules will form
a Rule Candidate Set.

For example, Table 4 shows some predicates and their
sample substrings where ‘Dinos in Kas’ is a value selected
by the predicate "title LIKE ‘Din%’". Table 5 shows the
rules for “%06%”.
Rule Selection. Based on the candidate rules, we aim
to find an optimal set of rules, which finds the minimum
number of rules to cover the query workload. However, if
we select those too general rules, the number of substrings
would be too large. Therefore, we set an upper bound for
the total number of extracted substrings.

Let R denote a subset of candidate rule set CR which
could cover the strings in the workload, SR be the set of sub-
strings which are extracted by rules in R from the datasets,
and SW is the set of strings in the workload. We aim to
minimize the size of R with an upper bound B where SR
contains all strings in SW . The problem is formalized below:

R = arg min
R✓CR

(|R|)

s.t. |SR| < B, SW ✓ SR

This is an NP-hard problem by a reduction from a classical
set cover problem (SCP)[3]. Now the universe is SW , and
the subset is Sr \ SW where r 2 CR. We also have that
the union of subsets

P
r2CR

Sr \ SW equals to the universe
SW . Our target is to find the minimum number of subsets
to cover the universe.

We propose a greedy solution to address this problem ap-
proximately. We add a rule r to the rule set R covering the
most substrings in SW each time. If the total size of SR
exceeds the bound B, we remove the rule r with the largest

8

Algorithm 1: RuleSelection
Input: String values set S; Strings in workload set

TW ; Candidate rules set CR; An upper
bound B

Output: Selected rule set R
Initialize rule set R = ;;
for r 2 CR do

r ! hr, Sr, |Sr�SW |i;
Sort CR in descending order of |Sr�SW |;
while SW � SR 6= ; or CR 6= ; do

r
⇤,Sr⇤ ,L⇤ = pop(CR);
R = add(R, r⇤);
SR = add(Sr⇤ ,SR);
if |SR| � B then

r
0 = argminr2R

|SR\SW |
|SR| ;

R = remove(r0,R);
SR = remove(Sr0 ,SR);

return R;
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Figure 6: Trie Index Structure
Sr and repeat. The pseudo code of the algorithm is shown
in Algorithm 1.

For example, consider three rules in the Ta-
ble 5, hPrefix, Pt(“06”), 2i, hPrefix, Pn, 2i and
hSuffix, Pt(“(”)PnPt(“�”)Pn, 2i. The first rule can
only extract ‘06’. The second rule can extract 6 substrings
including {‘2002’, ‘06’, ‘29’, ‘2014’, ‘08’, ‘26’}. The third
rule can extract {‘06’, ‘08’}. The third rule would be
selected in our algorithm, because it’s general and will not
extract too many substrings.

Based on the selected rules, we generate all the string
values in the dataset and store the extracted substrings in
the dictionary.

5.3 String Indexing

There could be a large number of strings and it is expen-
sive to maintain all strings in a dictionary. In order to avoid
storing a huge number of duplicate tokens, we build a trie
index to store the mapping from a string to its code.
String Indexing. We use both prefix trie and suffix trie
as string index. Figure 6 shows an example of a prefix trie.
Substrings extracted by the prefix function are stored into
prefix trie and substrings extracted by the suffix function are
stored in suffix trie. In this way, each string in the dictionary
must have one or two paths in the index. Leaf nodes of the
trie index are representation vectors of strings.
Online Searching. When a new query comes, there may
be some query strings which do not exist in the dictio-
nary. These query strings may be in prefix searching (LIKE

s%), suffix searching(LIKE %s), keyword searching(=) or
containment searching(LIKE %s%). For prefix search, we
search the longest prefix of the query string. For suffix
search, we search the longest suffix of the query string. For
other searches, we search both the longest prefix and longest
suffix of the query string, and then pick the longest one as
the representation. Considering "title LIKE ‘Dino%’", we
search the prefix trie and take the representation of ‘Din’
as the representation of ‘Dino’. In this way, we can encode
queries online quickly.

6. EXPERIMENTS

We conduct extensive experiments to evaluate our method
from three aspects. (1) The effectiveness of our tree-
structured model on cost and cardinality estimation. (2)
The effectiveness of predicates embedding. (3) The effi-
ciency of our model on cost estimation.

6.1 Experiment Setting

Datasets. We use the real dataset IMDB and the real work-
load JOB. It is much harder to estimate the cardinality and
cost on the IMDB dataset than TPC-H, because of the cor-
relations and skew distributions of the real-world data. The
IMDB dataset includes 22 tables, which are joined on pri-
mary keys and foreign keys. We build indexes on primary
keys. We use two types of query workloads.

(1) The first workload contains predicates with numeric
attributes only [14]. It contains synthesis workload, scale
workload and JOB-light workload1. We adopt all three
workloads with only numeric predicates. The Synthesis

workload contains queries with 2 joins at most and there
are 5000 queries. The Scale workload contains queries with
0-4 joins and there are 500 queries. The JOB-light workload
contains queries with 1-4 joins, and there are 70 queries.

(2) The second workload contains complex predicates with
string attributes. We generate training data based on the
join graph of IMDB and predicates used in the JOB work-
loads. We take 90% of generated queries as training data
and 10% as validation data. The 113 JOB queries2 are
taken as the test workload. Different from previous cardi-
nality estimation methods [14], we obtain query plans from
PostgreSQL, and use the plans to train our model.
Metrics. The mean is the average errors of all the tested
queries. The max is the maximum errors in the tested work-
load. The median is the median of errors of all the tested
queries. The Kth is the average of top-{1-K%} largest errors
in the tested workload.
Environment. We use a machine with Intel(R) Xeon(R)
CPU E5-2630 v4, 128GB Memory, and GeForce GTX 1080.

6.2 Effectiveness on workloads with only nu-

meric predicates

Methods. Table 6 shows the methods evaluated on work-
loads with numeric predicates. The Target is cardinality or
cost. The Represent is the model we use as representation
layer described in Section 4.2.2, including LSTM and Neu-
ral Network. The Predicate is the model we use as a pred-
icate embedding layer described in Section 4.2.1, including
Min-Max Pooling model and tree-LSTM. The Estimate is
1https://github.com/andreaskipf/learnedcardinalities
2https://github.com/gregrahn/join-order-benchmark
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Table 9: Methods on JOB workload (with strings)
Methods TargetRepresentPredicateEstimate String
PGCard Card No No No No

TLSTMHashCard Card LSTM LSTM MULT Hash
TLSTMEmbNRCard Card LSTM LSTM MULT Embed
TLSTMEmbRCard Card LSTM LSTM MULT Rule+Embed
TPoolEmbRCard Card LSTM Pool MULT Rule+Embed

PGCost Cost No No No No
TLSTMHashMCost Cost LSTM LSTM MULT Hash
TLSTMEmbNRMCost Cost LSTM LSTM MULT Embed
TLSTMEmbRMCost Cost LSTM LSTM MULT Rule+Embed
TPoolEmbRMCost Cost LSTM Pool MULT Rule+Embed

Table 10: Cardinality errors on the JOB workload
Cardinality median 90th 95th 99th max mean

PGCard 184 8303 34204 1.06e5 6.70e5 10416
TLSTMHashCard 11.1 207 359 824 1371 83.3
TLSTMEmbNRCard 11.6 181 339 777 1142 70.2
TLSTMEmbRCard 10.9 136 227 682 904 55.0
TPoolEmbRCard 10.1 74.7 193 679 798 47.5

Table 11: Cost errors on the JOB workload
Cost median 90th 95th 99th max mean
PGCost 4.90 80.8 104 3577 4920 105

TLSTMHashMCost 4.47 53.6 149 239 478 24.1
TLSTMEmbNRMCost 4.12 18.1 44.1 105 166 10.3
TLSTMEmbRMCost 4.28 13.3 22.5 104 126 8.6
TPoolEmbRMCost 4.07 11.6 17.5 63.1 67.3 7.06

by more than 2 times on max error for cost estimation. The
reason is that multitask learning can improve the general-
ization ability of the model for complex queries.

In summary, sample bitmap, tree-structured model,
LSTM, and multitask learning can improve the quality of
cost and cardinality estimation.

6.3 Effectiveness on the JOB workload with

both string and numeric predicates

Methods. Table 9 shows the methods tested on the JOB
workload with string and numeric predicates. The String

shows methods in Section 5 which use the string embedding
technique, including embedding on rules generation strings
and embedding only on string values in datasets.

In order to investigate different techniques proposed in
the paper effectively, we divide the training data into two
parts and train on them respectively. The first is workload
without join, and the second is workload with multiple joins.
All these training queries contain complicated predicates on
both numeric and string values, and they are generated ran-
domly. Firstly, we train our models on the first workload
and test them on single table validation workload, and this
can compare the performance of different predicate embed-
ding techniques directly. Secondly, we train our models on
the second workload and evaluate them on 113 JOB queries,
and this can compare the effects of different predicate em-
bedding techniques on complicated queries estimation.

6.3.1 Evaluation on single table workload

The predicates in the workload contain string equal
search, string pattern search, range query and numeric equal
search. For conjunction predicates, the complex predicates
are composed of expressions with ‘AND’ and ‘OR’ seman-
tics. The most complex predicate in the workload has 4
boolean conjunctions and 5 expressions. We set the batch
size as 64 and divide all 56,000 queries into 882 batches. We
take the first 800 batches as the training data, and the re-
mainders as validation data. We use the Adam optimizer

Figure 8: Cardinality Validation Error on A Single Table

(a) Cardinality (b) Cost
Figure 9: Estimation errors on the JOB workload. The box
boundaries are at the 25th/50th/75th percentiles
and the learning rate is 0.001. Since the semantic of pred-
icates doesn’t have much effect on execution cost on single
table queries (Scan operation on the same table takes sim-
ilar time no matter what predicate is.), we only report the
validation error for cardinality estimation. The results are
shown in Figure 8.
Hash Bitmap vs String Embedding. As shown
in Figure 8, TLSTMHashCard performs the worst on val-
idation queries and it converge speed is the slowest.
TLSTMEmbNRCard outperforms TLSTMHashCard by 30%, be-
cause string embedding can capture coexistence relation
among different strings to improve the performance on the
validation workload.
Rule vs No-Rule. In Figure 8, TLSTMEmbRCard outper-
forms TLSTMEmbNRCard by around 15% on cardinality esti-
mation, because the coverage of strings in the workload to
be trained is different, and the rules are selected for covering
more strings in the workload and the method with rule can
pre-train many more strings and encode them with more
accurate distributed representations.
Tree-Pooling Predicate vs Tree-LSTM Predicate.
Both TLSTMEmbRCard and TPoolEmbRCard can make full use
of string embedding, but they make difference in cardinality
estimation (TPoolEmbRCard outperforms TLSTMEmbRCard by
20% on validation workload), because the tree structure with
Min-Max pooling is more capable of representing compound
predicate in semantic, and it can learn a better predicate
representation with stronger generalization ability.

6.3.2 Evaluation on the JOB workload

We train the representation and output layers on 100,000
queries with multiple joins. We take 90% of multi-table
join queries as training data and 10% of them as validation
data. We train the model until the validation cardinality
error will not decrease anymore, and then we evaluate the
trained model on JOB queries. The results for cardinality
estimation are shown in Table 10 and the results for cost
estimation are shown in Table 11.
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by more than 2 times on max error for cost estimation. The
reason is that multitask learning can improve the general-
ization ability of the model for complex queries.

In summary, sample bitmap, tree-structured model,
LSTM, and multitask learning can improve the quality of
cost and cardinality estimation.

6.3 Effectiveness on the JOB workload with
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Methods. Table 9 shows the methods tested on the JOB
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In order to investigate different techniques proposed in
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both numeric and string values, and they are generated ran-
domly. Firstly, we train our models on the first workload
and test them on single table validation workload, and this
can compare the performance of different predicate embed-
ding techniques directly. Secondly, we train our models on
the second workload and evaluate them on 113 JOB queries,
and this can compare the effects of different predicate em-
bedding techniques on complicated queries estimation.

6.3.1 Evaluation on single table workload

The predicates in the workload contain string equal
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search. For conjunction predicates, the complex predicates
are composed of expressions with ‘AND’ and ‘OR’ seman-
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table queries (Scan operation on the same table takes sim-
ilar time no matter what predicate is.), we only report the
validation error for cardinality estimation. The results are
shown in Figure 8.
Hash Bitmap vs String Embedding. As shown
in Figure 8, TLSTMHashCard performs the worst on val-
idation queries and it converge speed is the slowest.
TLSTMEmbNRCard outperforms TLSTMHashCard by 30%, be-
cause string embedding can capture coexistence relation
among different strings to improve the performance on the
validation workload.
Rule vs No-Rule. In Figure 8, TLSTMEmbRCard outper-
forms TLSTMEmbNRCard by around 15% on cardinality esti-
mation, because the coverage of strings in the workload to
be trained is different, and the rules are selected for covering
more strings in the workload and the method with rule can
pre-train many more strings and encode them with more
accurate distributed representations.
Tree-Pooling Predicate vs Tree-LSTM Predicate.
Both TLSTMEmbRCard and TPoolEmbRCard can make full use
of string embedding, but they make difference in cardinality
estimation (TPoolEmbRCard outperforms TLSTMEmbRCard by
20% on validation workload), because the tree structure with
Min-Max pooling is more capable of representing compound
predicate in semantic, and it can learn a better predicate
representation with stronger generalization ability.

6.3.2 Evaluation on the JOB workload

We train the representation and output layers on 100,000
queries with multiple joins. We take 90% of multi-table
join queries as training data and 10% of them as validation
data. We train the model until the validation cardinality
error will not decrease anymore, and then we evaluate the
trained model on JOB queries. The results for cardinality
estimation are shown in Table 10 and the results for cost
estimation are shown in Table 11.
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Q1:Select * From T1,T2,T3,T4 Where T1.a = T2.a and T2.b = T3.b 
      and  T1.c = T3.c and T3.d = T4.d and  T1.e = T4.e 
      and T2.f = T4.f   and  T1.h  > 50  and T1.h < 100

T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4
T1.a = T2.a T3.d = T4.d T1.e = T4.e

Terminal StateIntermediate stateIntermediate stateInitial State

action action action
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database. This step can be considered as fine-tuning. We use
latency as the standard for the optimizer selection in this step.

B. CTJOIN framework

The Figure 3 shows us the framework of the entire system.
1) DRL optimizer:

• State maintains the state information for the join process.
Specifically, as shown in figure 2, the state in join process
is a join forest. A join forest is composed of several join
trees. Termination state is one join tree all tables are
joined together. It will be converted to query plan and
passed it to the DBMS for execution. Non-terminating

state is the state during the join process. It will be
passed to the planner to get the action that should be
performed now, and state itself is updated according to
the selected action. The State can be described as a join
tree and initialized using the tables in given query, Eg.
initial state s = {T1, T2, T3, T4} for query accessing
T1, T2, T3, T4.

• Planner corresponds to the agent in the RL, is the
core part of the entire system. For a given state,
each candidate join condition can be considered an ac-
tion. Action Space={(T1.a = T2.a, joinTree(T1.a =
T2.a)), ...} contains all possible actions and correspond-
ing join tree. For join trees in the action space, we will use
TreeLSTM to represent them and get the corresponding
estimated long-term reward. Action selection gets the
result of each join tree from TreeLSTM and selects the
action corresponding to the optimal join tree.

action = arg min
action2Action Space

TreeLSTM(joinTree(action))

• Memory pool records the status of the plan generated
by CTJOIN and the feedback from the DBMS. DRL is a
neural network-based approach that requires training data
to train neural networks. Common practices use replay
memory [15] to record the status and systems feedback.
We use a memory pool here and sample training data
from it to train the TreeLSTM.

2) DBMS: CTJOIN generate the join plan for given query
and then passes the join plan to the real DBMS. The DBMS
consists of two components, an Estimator and an Executor.
Estimator can give the cost of the plan using the static. Esti-

mator uses statistics to estimate the cost without executingS.
Executor

Getting the latency of each join condition is difficult. In
order to reduce the difficulty of implementation and make
the system easier to migrate to other systems, we adopt
a similar approach to ReJoin [12], DQ [10]. We set the
feedback(reward) of each step of the intermediate state to 0,
and the feedback of the termination state to the cost(latency)
of the entire plan.
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Fig. 4. State represtation in CTJOIN

Table Representation Table is an important unit of the
database. For a table t, it is composed of k columns. We use
these column’s representation R

c to construct its representa-
tion R

t. We concatenate k columns representation R
c
i into a

matrix M
t with shape (k, hs), M

t = (Rc
1�R

c
2 . . .�R

c
k) and

apply an average pooling layer(kernel shape (k, 1) ) to get the
table representation of shape (1, hs). As shown in figure 4.(b),

R
t = Pool(M t)

C. Tree-model for CTJOIN

The join state S is composed of forest F and q. F is
composed of join trees T . The Join tree is a graph structure,
and it is difficult to obtain his representation directly by
constructing a feature vector. In order to automatically learn
the structure of the join tree and get the representation of forest
R

F . We construct a tree structure model and use Tree-LSTM
to learn its representation.

1) TreeLSTM: Tradition LSTM show its powerful ability
to acquire sequential data features, but can not be directly
applied into complex structure, e.g. tree-structure. In order
to solve the limitation of traditional LSTM that can only
receive sequential input, the Child-Sum Tree-LSTM and the
N-ary Tree-LSTM are proposed to running on a tree structure
input [22]. With the given tree, Tree-LSTM can automatically
learn the structure information of the tree and give the repre-
sentation of the tree.

Two kinds of Tree-LSTM structure are proposed to solve
two different scenarios.

Child-Sum Tree-LSTM Child-Sum Tree-LSTM does not
consider the order of its children. For a given node j with

several children node ↵jk, it sums all the children node’s
representation, then constructs its state representation.

N-ary Tree-LSTM N -ary Tree-LSTM considers the order
of its children. For a given node j, the representation of its
k-th child node ↵jk will be calculated separately. For the k-th
child node, it will have its own weight matrix m

n-ary
k with

respect to k. The order information will be caught by these
position dependent weight matrix.

We combine these two Tree-LSTM according to the char-
acteristics of the forest. The forest F is composed of several
join trees T . Without any human feature on tree structure, we
take the join trees as input and use the model to automatically
learn the representation R

T of these join trees T .
2) Representation for Join Tree: A node j in join tree

corresponds to a join and is composed of 4 parts

node = (Tleft, cleft, cright, Tright).

Tleft and Tright are two join trees(tables) need to be joined and
cleft and cright are columns in this join. T and c are position
sensitive, we apply N -ary Tree-LSTM in the join tree.

As shown in Figure 4(C), we construct a tree model for join
tree. Each node j in the tree has two children (sub-join trees
to be joined) ↵j,1 and ↵j,2 and two inputs(columns in join
condition) �j,1 and �j,2.

For a node j, we use hj to denote the representation of this
node ,mj denote the memory cell in LSTM of node j.

• If node j is a single table, hj = R
t[nodej ],

mj = zeros((1, hs))
• If node j is a column, hj = R

c[nodej ]
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database. This step can be considered as fine-tuning. We use
latency as the standard for the optimizer selection in this step.

B. CTJOIN framework

The Figure 3 shows us the framework of the entire system.
1) DRL optimizer:

• State maintains the state information for the join process.
Specifically, as shown in figure 2, the state in join process
is a join forest. A join forest is composed of several join
trees. Termination state is one join tree all tables are
joined together. It will be converted to query plan and
passed it to the DBMS for execution. Non-terminating

state is the state during the join process. It will be
passed to the planner to get the action that should be
performed now, and state itself is updated according to
the selected action. The State can be described as a join
tree and initialized using the tables in given query, Eg.
initial state s = {T1, T2, T3, T4} for query accessing
T1, T2, T3, T4.

• Planner corresponds to the agent in the RL, is the
core part of the entire system. For a given state,
each candidate join condition can be considered an ac-
tion. Action Space={(T1.a = T2.a, joinTree(T1.a =
T2.a)), ...} contains all possible actions and correspond-
ing join tree. For join trees in the action space, we will use
TreeLSTM to represent them and get the corresponding
estimated long-term reward. Action selection gets the
result of each join tree from TreeLSTM and selects the
action corresponding to the optimal join tree.

action = arg min
action2Action Space

TreeLSTM(joinTree(action))

• Memory pool records the status of the plan generated
by CTJOIN and the feedback from the DBMS. DRL is a
neural network-based approach that requires training data
to train neural networks. Common practices use replay
memory [15] to record the status and systems feedback.
We use a memory pool here and sample training data
from it to train the TreeLSTM.

2) DBMS: CTJOIN generate the join plan for given query
and then passes the join plan to the real DBMS. The DBMS
consists of two components, an Estimator and an Executor.
Estimator can give the cost of the plan using the static. Esti-

mator uses statistics to estimate the cost without executingS.
Executor

Getting the latency of each join condition is difficult. In
order to reduce the difficulty of implementation and make
the system easier to migrate to other systems, we adopt
a similar approach to ReJoin [12], DQ [10]. We set the
feedback(reward) of each step of the intermediate state to 0,
and the feedback of the termination state to the cost(latency)
of the entire plan.
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Fig. 4. Representation in RTOS

Let n be the number of tables in a database, and each table
has a unique identifier from 0 to n � 1. Let m be a n ⇤ n

matrix where each cell is 0 or 1. mi,j is 1 means that there
is a join relation between the i-th table and j-th table and
0 otherwise. This matrix is then flattened into a vector v by
putting all rows, from 0 to n � 1, of the original matrix m

into the vector, i.e., vi⇤n+j = mi,j and |v| = n ⇤ n.
Afterwards, we apply one Fully connect (FC) layer on the

vector v (see Figure 4(A)) to get the representation of q:

R(q) = FC(v) = �(vW + b)

where � is one activation function (e.g., tanh, Sigmoid, ReLU)
in neural network; W (matrix with shape (n ⇤ n, hs)) and b

(vector with shape (1, hs)) are parameters in FC layer which
need to be learned using training samples; hs is the size of
hidden layers in neural network; and R(q) is a vector with
shape (1, hs) that represents the query q.

One improved method from this matrix based representation
for learning the query has good properties to handle schema
changes and multi-aliases, which will be further discussed in
Section V-A.

B. Representation of Columns and Tables
Columns and tables are two key components in a query.

Next we first discuss the representation R(c) of a column
c, followed by using column representations to construct the
representation R(t) of a table t.

Column Representation. We consider two types of columns:
numerical values and other values (e.g., string). Note that in
a query, a column c can be associated with two operations,
Join and Selection, and both need to be considered. In

particular, we encode Selection information into column
representation R(c) for column c, which can be viewed as
pushing all Selection into leaves in join tree.

(i) For a column c with numerical values, the Selection

operation can be categorized into three cases: =, > and<.
Therefore, we encode c as a feature vector of length 4:
F (c) = (con, c=, c>, c<), where con = 1 if the column c

exists in a join predicate and 0 otherwise. For the other
three Selection operations, solely encoding the existence
as the Join operation is not enough because the value in
the predicate matters. For example, given a predicate c > v,
we should consider the value v as the feature. Since data in
different columns has different scales, we normalize the value
into [0, 1] based on the the maximum (cmax) and minimum
(cmin) value in the column. Next we illustrate the three cases.

• For predicate c = v, if v < cmin or v > cmax, we set
c= = �1 because we cannot retrieve any data in that
situation, otherwise c= = vnor + 1 = v�cmin

cmax�cmin
+ 1.

• For predicate c > v, if v � cmax then c> = 1, else if
v < cmin then c> = 0, otherwise c> = vnor.

• For predicate c < v, if v  cmin then c< = 1, else if
v > cmax then c< = 0, otherwise c< = 1 � vnor.

Example 3: Consider the query in Figure 4(A), F (T1.h) =
(0, 0, 0.3, 0.5). Column T1.h has no join condition nor “=”
predicate, hence c= = 0 and con = 0. The maximum and
minimum for T1.h are 0 and 100, so we set c> = 0.3 for
T1.h > 30 and c< = 1 � 0.5 = 0.5 for T1.h < 50. ⇤

We define a matrix M(c) with shape (4, hs) for each
column c. M(c) has learned parameters that contain the infor-
mation of the column. The representation R(c) for numerical
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TABLE II
MEAN RELEVANT COST TO DYNAMIC PROGRAMMING

algorithm

MRC benchmark
JOB TPC-H

RTOS 1.01 1.00
ReJoin 1.75 1.00
QP100 7.81 1.06

QP1000 1.62 1.00
DQ 2.34 (1.31) 1.01

all DRL methods here collected training samples by getting
feedback only from the DBMS.

Latency Collection. We first got the latency LDP (q) and cost
CDP (q) of DP’s plan for each query q. To avoid wasting
unnecessary time, we limited the execution time to 5 times
of latency by DP’s plan 5 ⇤ LDP (q) and recorded the latency
of plan. Single core was used when collecting latency from
execution.

Planning Time. DRL methods typically use polynomial time,
e.g., O(n2) for ReJoin and O(n3) for DQ, depending on the
calculation of the neural network as a constant. RTOS is also
O(n3) but has a larger constant. The planning time of the
largest query (17 relations) in JOB is 213ms (RTOS), 97ms

(DQ), and 63ms (ReJoin). For all 113 queries in JOB, the
total planning time of RTOS is 8s, which is about 1% of the
total latency 712s. Hence, planning time will not be discussed
in the following.

A. Cost Training
We first evaluated the cost training which uses cost as

feedback to guide RTOS. We choose DP as the baseline and
reported the mean relative cost (MRC) of other methods as
previous work, where MRC = 1 means the same cost as DP.

MRC =

P
q2Q

cost(q)
costDP (q)

|Q|
From Table II, we can see that RTOS outperforms the other

4 methods and performs as good as DP. In TPC-H, all methods
can get near optimal plan. After further investigating TPC-H
queries, we found these queries are typically short (do not
exceed 8 relations) which limit the search space. Hence, join
order is not a major problem in TPC-H. QP1000 can even
enumerate the search space and get the equal plan of DP.
Even QP100 achieves MRC of 1.06. In JOB, the MRC gap
between different methods is obvious for the reason that the
queries in JOB are large (up to 17 relations), so it is harder
to enumerate the search space. The MRC of RTOS (1.01)
still outperforms the other two DRL methods (1.75 and 2.34)
and QP1000 (1.62). The MRC of RTOS even exceeds the
reported value 1.31 in DQ (pre-trained from good samples
of dynamic programming). The MRC of RTOS 1.01 indicates
the competitive performance of RTOS even on estimated cost.

Figure 8 depicts a training curve on JOB. We can see that all
DRL methods performed bad at the beginning, and much better
after enough training. We can see that RTOS went even beyond
QP1000 after ⇠8000 episodes. The results show that RTOS not
only benefits from the random exploration in DRL, but also
learns the join feature of the database. The training curves of

Fig. 8. The training curve on JOB. We train RTOS on 90% queries and the
curve show the performance of other 10% queries. One episode means one
time that DRL method generates a plan and gets feedback.

TABLE III
EXPONENTIAL MEAN LOG RELEVANT LATENCY (GMRL) TO DP

algorithm

GMRL benchmark
JOB TPC-H

RTOS 0.67 0.92
ReJoin 1.14 0.96
QP100 NA 1.03
QP1000 1.90 1.00

DQ 1.23 0.99

ReJoin and DQ vibrated up and down and cannot converge
to a good one. One major reason is that these two methods
project two different plans into the same representation. Neural
network outputs the right value for one plan which makes
the other fail. This conflict makes neural network difficult to
converge to a real better plan for all queries.

B. Latency Tuning
After cost training, we have got a neural network that has a

understanding of data distribution and can generate a plan with
low cost. From this trained model, we further used latency as
feedback to fine-tune to get a plan with lower latency.

GMRL. We also chose DP as our baseline. Note that DRL-
based methods yield better plans than DP after latency tuning,
which makes MRC unsuitable to capture the relative per-
formance to DP. For example, given two queries, if a DRL
method generates join plans with twice (2) and half (0.5)
latency, compared with DP, the relative performance should be
1, but MRL will give 2+0.5

2 = 1.25. Hence, we use geometric
average based Geometric Mean Relevant Latency (GMRL).

GMRL = (⇧n
i=1

Lantency(qi)
LantencyDP (qi)

)
1
n

GMRL for 2 and 0.5 will be
p

2 ⇤ 0.5 = 1 which can
indicate the performance improvement in ratio directly. We
report GMRL as average performance ratio of DP.

Table III shows the GMRL of all methods. We can see that
RTOS outperforms other methods on these two benchmarks.
GMRL (0.67 on JOB and 0.92 on TPC-H) is lower than 1
means that we can get better plan than DP on latency. We
did not give the results of QP100 on JOB because it gave
bad plan for some queries which took long time to execute.
For TPC-H, all DRL methods can get lower GMRL than DP
which is different from the cost results in Table II. This result
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TABLE II
MEAN RELEVANT COST TO DYNAMIC PROGRAMMING

algorithm

MRC benchmark
JOB TPC-H

RTOS 1.01 1.00
ReJoin 1.75 1.00
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QP1000 1.62 1.00
DQ 2.34 (1.31) 1.01

all DRL methods here collected training samples by getting
feedback only from the DBMS.

Latency Collection. We first got the latency LDP (q) and cost
CDP (q) of DP’s plan for each query q. To avoid wasting
unnecessary time, we limited the execution time to 5 times
of latency by DP’s plan 5 ⇤ LDP (q) and recorded the latency
of plan. Single core was used when collecting latency from
execution.

Planning Time. DRL methods typically use polynomial time,
e.g., O(n2) for ReJoin and O(n3) for DQ, depending on the
calculation of the neural network as a constant. RTOS is also
O(n3) but has a larger constant. The planning time of the
largest query (17 relations) in JOB is 213ms (RTOS), 97ms

(DQ), and 63ms (ReJoin). For all 113 queries in JOB, the
total planning time of RTOS is 8s, which is about 1% of the
total latency 712s. Hence, planning time will not be discussed
in the following.

A. Cost Training
We first evaluated the cost training which uses cost as

feedback to guide RTOS. We choose DP as the baseline and
reported the mean relative cost (MRC) of other methods as
previous work, where MRC = 1 means the same cost as DP.

MRC =

P
q2Q

cost(q)
costDP (q)

|Q|
From Table II, we can see that RTOS outperforms the other

4 methods and performs as good as DP. In TPC-H, all methods
can get near optimal plan. After further investigating TPC-H
queries, we found these queries are typically short (do not
exceed 8 relations) which limit the search space. Hence, join
order is not a major problem in TPC-H. QP1000 can even
enumerate the search space and get the equal plan of DP.
Even QP100 achieves MRC of 1.06. In JOB, the MRC gap
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to enumerate the search space. The MRC of RTOS (1.01)
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learns the join feature of the database. The training curves of

Fig. 8. The training curve on JOB. We train RTOS on 90% queries and the
curve show the performance of other 10% queries. One episode means one
time that DRL method generates a plan and gets feedback.

TABLE III
EXPONENTIAL MEAN LOG RELEVANT LATENCY (GMRL) TO DP

algorithm

GMRL benchmark
JOB TPC-H

RTOS 0.67 0.92
ReJoin 1.14 0.96
QP100 NA 1.03
QP1000 1.90 1.00

DQ 1.23 0.99

ReJoin and DQ vibrated up and down and cannot converge
to a good one. One major reason is that these two methods
project two different plans into the same representation. Neural
network outputs the right value for one plan which makes
the other fail. This conflict makes neural network difficult to
converge to a real better plan for all queries.

B. Latency Tuning
After cost training, we have got a neural network that has a

understanding of data distribution and can generate a plan with
low cost. From this trained model, we further used latency as
feedback to fine-tune to get a plan with lower latency.

GMRL. We also chose DP as our baseline. Note that DRL-
based methods yield better plans than DP after latency tuning,
which makes MRC unsuitable to capture the relative per-
formance to DP. For example, given two queries, if a DRL
method generates join plans with twice (2) and half (0.5)
latency, compared with DP, the relative performance should be
1, but MRL will give 2+0.5

2 = 1.25. Hence, we use geometric
average based Geometric Mean Relevant Latency (GMRL).

GMRL = (⇧n
i=1

Lantency(qi)
LantencyDP (qi)

)
1
n

GMRL for 2 and 0.5 will be
p

2 ⇤ 0.5 = 1 which can
indicate the performance improvement in ratio directly. We
report GMRL as average performance ratio of DP.

Table III shows the GMRL of all methods. We can see that
RTOS outperforms other methods on these two benchmarks.
GMRL (0.67 on JOB and 0.92 on TPC-H) is lower than 1
means that we can get better plan than DP on latency. We
did not give the results of QP100 on JOB because it gave
bad plan for some queries which took long time to execute.
For TPC-H, all DRL methods can get lower GMRL than DP
which is different from the cost results in Table II. This result
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Level 3: AI-Enhanced DB
pAI4DB: Learned DB components

– Learned Index
– Learned Cost estimator
– Learned Optimizer
– Learned Statistics

pDB4AI: Declarative AI
– Use SQL for using AI algorithms
– Lower the burden of using AI
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DB4AI
pDeclarative AI

– AI to SQL
– SQL completeness
– SQL advisor

pAI optimizations
– Cost estimation
– Auto parameter
– Auto model
– Parallel computing

pData Governance
– Data discovery
– Data cleaning and fusion
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AI-Native Database
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Level 4: AI-Assembled DB
pSelf-Assembling

– Each component has multiple options
• Optimizer

– CBO, RBO, Learned

– Assemble the components as a database
• Reinforcement learning (RL)

– From single path to multiple paths
• Like map navigator

– Scheduling on diversified hardware
• Learned tensor model on AI hardware
• Traditional (cost) model on general hardware
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Level 4: AI-Assembled DB

Parser
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Optimizer

Executor

Storage

Hardware

Parser
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Hardware
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SQL
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Optimizer
(Learned)

Executor (Column)

Storage
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Storage
(Memory)

Hardware
(ARM)
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Hardware
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Hardware
(SSD)
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Level 4: AI-Assembled DB
pSelf-Assembling

– Each component has multiple options
• Optimizer

– CBO, RBO, Learned

– Assemble the components as a database
• Reinforcement learning (RL)

– From single path to multiple paths
• Like map navigator

– Scheduling on diversified hardware
• Learned tensor model on AI hardware
• Traditional (cost) model on general hardware
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AI-Native Database
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Level 5: AI-Designed DB
pAI-based design

– Data structure design
– Transaction design
– Storage design
– Index design
– Optimizer design

pAI & DB Co-design
– Unified model
– Unified optimization
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AI-Native Database
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Five Levels of DB4AI
1

AI Advised:
• Offline AI-based knob tuning/statistics recommendation, offline data placement;
• Offline workload management, offline optimization;

2
AI Assisted:
• Self monitoring/tuning: online knob tuning, monitoring;
• Self optimization: query tuning, online index/view advisor;
• Self diagnoses, healing, protection;

3
AI Enhanced:
• Using AI-based algorithms to enhance the core components of database;
• Learned index, learned optimizer, learned storage, query engine customization, etc.;
• AI in database, declarative AI, DB-optimized AI;

4
AI Assembled:
• Functions decoupled as services. Functions deployed on heterogeneous environments;
• AI-based algorithms to choose the best execution paths of different services;

5
AI Designed:
• DB designed by AI, hardware and software codesign, automatic evaluation.
• AI-assisted semi-formal or formal verification for trustworthy and security;
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Five Levels of DB4AI
Level Consumability Description AI Skill

Level
1 AI Models as

UDFs
Algorithms available in the underlying DB 
system as UDFs or Stored Procedures

High

2 AI Models as
Views

Materialized the trained models as ‘views’
which can be utilized by other users. The views
will be automatically updated which is
triggered by data update or model update

Medium

3 Model-free No need to specify models. Given a problem,
automatically identify the models.

Low

4 Problem-free No need to specify problems. Automatically
identify the problems and models.

Low

5 Full-automatic Automatically discover AI opportunities,
including model selection, algorithm selection
and data discovery

Very Low
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Lessons Learned
pAI4DB

pDatabase can learn from both internal and 
external “environments” to achieve high
performance

pAI enhances database, especially
– Fast, flexible and strong adaptability

– Make DB more intelligent

pDB4AI
p In-DB AI consumability
pMake AI easily used in different fields
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Challenges and Opportunities
pHardware/Software Co-Design

– Database chips
– Tensor model
– DB evaluation tool

• Like EDA

pOLAP 2.0
– Multi-model, DB&AI

pOLTP 2.0
– New hardware
– NVM, RDMA, etc.
– Programable RDMA

CPU 1
Core

1
Core

n…

LLC

CPU 2
Core

1
Core

n…

LLC

Shared Memory

Accelerator
Program
mable 
NIC

DB Process 

CRUD/DDL

DB Process 

Analytics style
Query

DB 
Process

Logger/
Shared 

Data

Optimizer/Tuner Paxos
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Thanks!
Q&A
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