Stage-Aware Anomaly Detection
Through Execution Flow Tracking

Cristiana Amza

Department of Electrical and Computer Engineering
University of Toronto

Logging in Large Scale Systems

*Distributed storage systems of large-scale websites:

» 1000s of servers
*Designed to be fault tolerant (automatic failure masking)

*Generate large volume of log data

9

« e AP ACHE
‘@had a/o Cassandra HEHSE

Why Logging ?

*\We log detailed information for anomaly diagnosis

*Verbose logging: Calls, network, control flow, errors

*Goal: Understand call graph, execution flow, root
cause analysis

Whos Cloudy

with a chance of
failure

filgaom.com

RecoveA

DatasA'rom

U
/
age loud@dtora
Max Eddy, 27 A
w?/vw.gegkosys i | LOSS
tober 2011,

o1, Sults 1in
.com
Chad Brooks, 10
www.businessn&wsdaily.com
Slide courtesy of Haryadi S. Gunawi

Often

Call Graph for FS

37 errors out of 188 calls

<\/ Slide courtesy of Haryadi S. Gunawi

(3 nodes)

ion

icat

HDFS: 3-way Repl

(dp)

S
B O
© C
O o
S 8
S &
o k-

e
-
mb
g8

o
> L
A A
o
S »
S o
S O
HJ
= 8
2 3
Lo
o X
s O
Om®
N =
o

| <

Single failures

\] A08F CRRaaaay

: 700 nodes

» Ebay
()
0

Multiple failures

~N

In An Ildeal World ...

In the Real World of Logs, Logs, ...

FileTransfer
LOG(“Sending file "+file.name); //L1 ¢
int i=0; <E;Z>

while(i < file.size)({
int ack=send recv(dest,file.block(1i));
if(ack == 0){
i++;

LOG(“Sent block "+ i); //L2 @
telse{
lsec

LOG(“Failed to send file "+ file.name); / /L3
return -1;

}

}
LOG(“Sent file "+ file.name); / /L4 @

return O;

-
| execution path N duration '

Logs

1:10.032 Sending file A
l1:10. 04—

Logs contain information about the
1:11 execution flow and duration

Logs Contain Detailed Information

FileTransfer
LOG(“Sending file "+file.name); //L1 (E;Z)
int i=0;

while(i < file.size){

int ack=send recv(dest,file.block(1i));

if(ack == 0){
i++;
LOG(“Sent block "+ i); //L2

telse{
LOG(“Failed to send file "+ file.name); //L3
return -1;

}

}
LOG(“Sent file "+ file.name); //L4

return O;

Logs

1:10.023 Sending file F
1:10.042 Sent block 1

1:10.099 Sent block 2

1:11.130 Sent block 300
1:11.131 Failed to send file F

Logs Contain Detailed Information

FileTransfer

LOG(“Sending file "+file.name); //L1
int i=0;
while(i < file.size){
int ack=send recv(dest,file.block(1i));
if(ack == 0){
i++;
LOG(“Sent block "+ i); //L2
telse{
LOG(‘Failed to send file "+ file.name); //L3
return -1;
}

}
LOG(“Sent file "+ file.name); //L4

return O;

Logs

1:10.032 Sending file B
1:10.042 Sent block 1
1:10.099 Sent block 2

1:14.030 Sent block 1000
1:14.032 Sent file B

|10

1sec

4 sec

:10.
:10.
:10.

t11
11

Inferring Execution Flow from Logs

023
042
099

.130
131

Sending file F
Sent block 1
Sent block 2

Sent block 300
Failed to send file F

Challenges

*|dentify tasks from logs
*Distinguish normal vs. anomalous tasks

*Qverheads

» Storage and processing

12

Challenge |: Identify tasks from logs

Normal Execution Flow Anomalous Execution Flow
1:10.023 Start sending file A 1:10.033 Start sending file F
1:10.042 Sent block 1 1:10.032 Sent block 1

1:10.099 Sent block 2 1:11.049 Sent block 2

1:11.130 Sent block 1000 1:11.050 Sent block 300
1:11.132 Sent file A 1:11.131 Failed to send file F

—

:10.023 start sending file A
:10.033 Start sending file F
:10.032 Sent block 1
:10.042 Sent block 1
:11.049 Sent block 2
£10.099 Sent block 2

R = = = = =

:11.050 Sent block 300
:11.130 Sent block 1000
:11.131 Failed to send file F
:11.132 Sent file A

= = ==

Server runs forever, how to delimit tasks ?

Challenge |: Identify tasks from logs

Normal Execution Flow Anomalous Execution Flow
1:10.023 Start sending file A 1:10.033 Start sending file F
1:10.042 Sent block 1 1:10.032 Sent block 1

1:10.099 Sent block 2 1:11.049 Sent block 2

1:11.130 Sent block 1000 1:11.050 Sent block 300
1:11.132 Sent file A 1:11.131 Failed to send file F

—

:10.023 start sending file A
:10.033 Start sending file F
:10.032 Sent block 1
:10.042 Sent block 1
:11.049 Sent block 2
£10.099 Sent block 2

R = = = = =

:11.050 Sent block 300
:11.130 Sent block 1000
:11.131 Failed to send file F
:11.132 Sent file A

= = ==

Thread reuse, data flow tracking may obscure

task execution flow

Challenge 2: Normal vs Anomaly

*No baseline

* Anomalies do not always generate an explicit
error/warning log message

l How to identify hormal vs. rare execution flows? '

Challenge 3: Overhead

*l.og messages are text to be read by human

*Verbose logging generates huge log volume!

- 2600 times more than INFO-level (default) logging

* Text processing is expensive and imprecise

p

2.4TB per day for a 100 node Cassandra cluster
Not many people can look into a 2TB log file

Key Observation

Many server codes have a modular or stage-based
architecture

*Stage-aware anomaly detection
»on-the-fly
»with low overhead

»almost completely automated

|7

Staged-Architecture

Server
Foo Bar Baz

iR

3

b ASDL
S ysuj
9 ¥SBJ

|18

Staged-Architecture

Server
Bar in 5
Foo Bar Baz B

v ASUL
.19 SV
O ¥sv]

1 | \)

2 log(..)//L, * * *
EEE §§§§ EE% : o | :

5 log(.)//L, | *

6 ’ N

7

8

log (..) / /L, * * *

Task Execution Flow

Task4: L,, L,
Task5: L,, L,, L,
Task6: L;, L,

¥SD [
BG4
¥SD [

p.
We capture execution flow from log points on-

the-fly without generating logs

19

Staged-Architecture
Server' stage

. Bar Iog point ‘\\‘ \ ‘\‘\
Foo Bar Baz
log (.)//L, % & K
% EE §§ % EE E if (".) ““‘ I\) ““‘
log (..)//L, | %

log (..) / /L, * * *

v ASUL
.19 SV
O ¥sv]

o J o O w N

100’s

.
*

| Task Execution Flow

Task4: L,, L,
Task5: L,, L,, L,

g § g Task6: L,, L,
(S h;% (S
‘?\7‘ ‘?\7‘
N o o

We exploit similarity between tasks for
statistical anomaly detection

20

Stage-Aware Anomaly Detection

*|_everage the staged code structure
» To track start and end of each task

*Log statements as trace points
» To track execution flow of the tasks

*Exploit the statistical similarity of tasks to detect
» Flow anomalies: rare execution paths

» Performance anomalies: unusually high duration

21

Prototype

__
//////
__
-’ RS

——
’
, \

/ N
/ \
I/ \

Server —il Statistical
Task Execution Tracker _ Analyzer

Logger Synopses

S ’

*Task Execution Tracker on each sever
» tracks log points encountered by each task
» generates synopses of task execution flows

» streams to Statistical Analyzer for real-time anomaly detection

22

Instrumentation

FileTransfer

Tracker.setContext ("FileTransfer’, task_id);

LOG(“Sending file "+file.name); //L1

int i=0;
while(i < file.size)({
int ack=send recv(dest,file.block(1i));
if(ack == 0){
i++;

LOG(“Sent block "+ i); //L2
telse({

LOG(‘Failed to send file "+ file.name); //L3
return -1;
}
}
LOG(“Sent file "+ file.name); //L4

return O;

23

FileTransfer:134

Tracking Log Points

FileTransfer]] FileTransfer:134
Tracker.setContext(FileTransfer , task id)
LoG(1l,“Sending file "+file.name); //L1
int i=0;

while(i < file.size){

int ack=send recv(dest,file.block(1i));

if(ack == 0){
i++;
LOG(2,“Sent block "+ i); //L2

telse({
LOG(3,“Failed to send file "+ file.name); //L3
return -1;

}
}

LOG(4,“sent file "+ file.name); //L4
return O;

%

Synopsis: <134, "FileTransfer”, 3.5 ms, [L, L, L,]>

24

Automatic Instrumentation

Foo Bar
consumer thread

Producer ﬂ Consumer While (1){
Threads Threads reqg=deqeue()

Tracker.setConte:
server Hstages
do(req)
(producer-consumer model ’ } HDFS 10
HBase 38
Foo — Bar
worker thread C d 78
: aSSandra
Dispatcher Worker [oi1d Thread.run(){
Threads Threads | pracker.setContext ("FileTransfer , task id)
do()
}

| dispatcher-worker model)

25

Model Building (per Stage)

Anomaly:

statistically significant
FileTransfer increase of outliers

99.9% 0.1% flow
@ outlier

0.9%

outlier

performance]

26

Evaluation

* Three distributed storage systems:
» Hadoop Distributed Filesystem (HDFS)
» HBase

» Cassandra

*Write intensive workload of Yahoo Cloud Serving
Benchmark (YCSB)

» Similar to real-world scenarios

» Stress the system

27

Experiment Setup

4)
Workload

Emulator
_ _J

Statistical

Analyzer

Cassandra write 1/0 path

Error on write I/0O to WAL

write

Buffer pool
(in-memory tables)

Error on write 170 ()

Cassandra |

Fault: failing 1% of write to WAL m——

Execution Flow

Log id Log Statement
—L101 “memtable is already frozen; another thread must be flushing it”
L102 “Applying”
Normal 1103 “pdding hint for”
L104 “... applied. Sending response to”
L105 “applying mutation of row {}”

Anomalous “memtable is already frozen; another thread must be flushing it”

0 10 20 30 40 50

Time (Minute)
Error logs X

Input/output error Fatal exception — crash!

30

Error on write 1/0

Error log message [|
Anomaly in execution flow A

Fault: failing 1% of write to WAL m——

| | | | 450
IncomingTcpConnection 4 A

CassandraDaemon - Yoo L 400
StorageProxy 4 | |/} !
Cassandra | St IR VA |

LogRecordAdder - ' | 350

Table -

- 300

- 250

- 200

- 150

- 100

 ————————— | T T 50
0 10 20 30 40 50

Time (Minute)

31

Throughput (op/sec)

Uncovering Bugs & Misconfigurations

| Type Component Description

1 | Bug HDFS Data Node Empty Packet

2 | Bug Hbase Regionserver | Distributed Log splitting gets stuck

3 | Misconfig. | HBase Regionserver | No live nodes contain current block

4 | Misconfig. | Hbase Regionserver | Zookeeper missed heartbeat due to lengthy
GC

32

Analysis Cost

*State of the Art, based on regular expression matching:

» Offline processing of 1.6GB log data
- 12 millions log messages

» 12 Minutes on 8 cores full utilization

*QOur solution
» Real time on one core

» Average of 3% CPU utilization

33

Storage Overhead

“ Verbose Logging = SAAD

1,600.0 / 1,456.5 1,431.3

1,200.0 -

927.7

MB

800.0 -

400.0 -

=
0o
[
O

HDFS HBase Cassandra

| Up to 1000x storage saving vs. verbose logging ’

34

Runtime Overhead

B Default (INFO) Logging W SAAD

=

(0]

(@)

N

© o o o

N

Throughput (normalized)

o

No overhead when using SAAD vs. default (INFO) logging

False Positive: Flow anomalies

Each experiment : 90min (10 times)

50

M Before fault W During fault
40
30
20
10
0.3 0.6 i 0.3 0.1 0.5 0.1 0.5
O e —— — e —— . e —
Lo

W High Low High Low

Avergae Number of Detected
Flow Anomalies

Low High

WAL MemTable WAL MemTable

Error Delay

. 1 false alarm per hour)

36

Stage Aware Anomaly Detection

Provides context to the anomaly
» Code module (stage)
» Execution flow (log points)

In Real Time, with Low overhead

» Minimal runtime overhead
» Low storage cost (synopses instead of logs)

» Low processing cost

Portable, evaluated on 3 distributed storage systems

37

Questions

Details in Saeed Ghanbari's PhD Thesis (2014)
and in ACM/IFIP/Usenix Middleware 2014

In collaboration with

Saeed Ghanbari and Ali Hashemi

38

Ongoing Work: Model Transformation

Cache L1 L2 L3

Corei7 256 kB 1024 kB 8192 kB

Intel Core i7
12,000 T

& 10,000 -

[a'a]

S

= 8,000

_§ m 10,000-12,000

@ 6000 -

o m 8,000-10,000

£ 4,000 - 6,000-8,000

(1]

€ 2,000 - = 4,000-6,000
0 - = 2,000-4,000

m 0-2,000

Size (Bytes)

Guidance: e.g., 3D to 2D reduction

14,000

12,000

10,000

8,000

6,000

Read throughput (MB/s)

4,000

2,000

L1 L2 L3
Xeon 256kB 2048 kB 20480 kB
s16 Corei7 256kB 1024 kB 8192kB

—o— Core i7

\FA -— —— Xeon

Size (Bytes)

With minimum new samples ...

Read throughput (MB/s)

Intel Xeon

Stride
(x8 Bytes)

(0.0]
N O
— 1N
v N
v
%)

:

256m

Size (Bytes)

Cache L1 L2 L3

20480
Xeon 256 kB 2048 kB kB

™ 10,000-12,000

M 8,000-10,000
6,000-8,000

™ 4,000-6,000

m 2,000-4,000

m 0-2,000

