ML for IR: Sentiment Analysis and Multi-label Categorization

Jay Aslam Cheng Li, Bingyu Wang, Virgil Pavlu Northeastern University An Empirical Study of Skip-gram Features and Regularization for Learning on Sentiment Analysis

An Amazon Product Review

<hr/>
A Paperwhite is, in my opinion, the ultimate way to read. The front light is great and has not given me any eye fatigue, which I'm prone to. If you are a heavy reader and are looking for an e-device, you will be doing your eyes a big favor by getting this over a Fire or other color tablet.
Comment Was this review helpful to you? Yes No Report abuse

An Amazon Product Review

★★★★★ The front light is great and has By Amazon Customer on March 14, 2016 Connectivity: Wi-Fi Only Offer Type: With Special Off	s not given me any eye fatigue
A Paperwhite is, in my opinion, the ultimate way to. If you are a heavy reader and are looking for color tablet.	y to read. The front light is great and has not given me any eye fatigue, which I'm prone r an e-device, you will be doing your eyes a big favor by getting this over a Fire or other
Comment Was this review helpful to you?	? Yes No Report abuse
	Sentiment Analysis
	Positive

An IMDB Movie Review

6 out of 9 people found the following review useful:

Author: from NC, USA 15 April 2015

A complete waste of time and a total let down after Transformers Prime. I died a little inside after watching episode 1, which was a struggle to complete. I have no plans to watch any of the other episodes as even watching this one episode was just too painful. My 9-year-old even hates it. He loved Prime, but he is totally disappointed in this one. I tried to like it, but it just isn't happening. Unless you want to be disappointed like us, I recommend you stay far away. Hopefully the creators will realize what they have done and bring back Prime. Bad CGI, horrible plot, and even worse character voice-overs. Total Disappointment. :(

Was the above review useful to you? Yes No

An IMDB Movie Review

6 out of 9 people found the following review useful:

Author: from NC, USA

A complete waste of time and a total let down after Transformers Prime. I died a little inside after watching episode 1, which was a struggle to complete. I have no plans to watch any of the other episodes as even watching this one episode was just too painful. My 9-year-old even hates it. He loved Prime, but he is totally disappointed in this one. I tried to like it, but it just isn't happening. Unless you want to be disappointed like us, I recommend you stay far away. Hopefully the creators will realize what they have done and bring back Prime. Bad CGI, horrible plot, and even worse character voice-overs. Total Disappointment. :(

Was the above review useful to you? Yes No

Review Document

Was the above review useful to you? Yes No

 Unigram (bag of words) capture sentiment indicator terms

 Unigram (bag of words) capture sentiment indicator terms could not capture negations

 Unigram (bag of words) I don't like this movie. capture sentiment indicator terms could not capture negations <I:1, don't:1, like:1, I don't:1, **don't like:1**,...> Add Bi-grams capture negation-polarity word pairs Logistic Regression Negative

- Unigram (bag of words) capture sentiment indicator terms could not capture negations
- Add Bi-grams capture negation-polarity word pairs capture two-words sentiment phrases

Why does anyone waste time or m why did I waste time watching it?

- Unigram (bag of words) capture sentiment indicator terms could not capture negations
- Add Bi-grams

 capture negation-polarity word
 pairs
 capture two-words sentiment
 phrases
- Add tri-grams,quad-grams... capture sentiment phrases with many words

Don't waste your time on this movie.

So annoying and such a waste

of my time.

A complete waste of time.

I wasted a lot of time on it.

I wasted too much time on it.

Many variations

"waste your time"
"waste of my time"
"waste of time"
"wasted a lot of time"
"wasted too much time"

- Many variations
 - "waste your time"
 - "waste of my time"
 - "waste of time"
 - "wasted a lot of time"
 - "wasted too much time"
 - increase the dimensionality

- Many variations
 - "waste your time"
 - "waste of my time"
 - "waste of time"
 - "wasted a lot of time"
 - "wasted too much time"
 - increase the dimensionality
- rare cases
 - "waste of time": 676 times in IMDB
 - "waste more time": 6 times
 - "waste your time": 4 times

- Many variations
 - "waste your time"
 - "waste of my time"
 - "waste of time"
 - "wasted a lot of time"
 - "wasted too much time"
 - increase the dimensionality
- rare cases
 - "waste of time": 676 times in IMDB
 - "waste more time": 6 times
 - "waste your time": 4 times

insufficient data for parameter estimation

- n-gram templates matched loosely
- Looseness parameterized by *slop*, the number of additional words
- n-gram = skip-gram with *slop* 0

skipgram and count		matched ngrams and count			
skip movie (slop 2)	42	skip this movie	28	skip this pointless movie	1
		skip the movie	8	skipping all the movies (of this sort)	1
		skip watching this movie	1		
it fail (slop 1)	358	it fails	279	it completely fails	5
		it even fails	5	it simply fails	3
whole thing (slop 1)	729	whole thing	682	whole horrific thing	1
		whole damn thing	5		
waste time (slop 1)	1562	waste time	109	waste of time	676
		waste your time	4	waste more time	6
only problem (slop 1)	1481	only problem	1378	only tiny problem	4
		only minor problem	11		
never leak (slop 2)	1053	never leak	545	never a urine leak (problem)	1
		never have leak	86	never have any leak	77
no smell (slop 1)	445	no smell	340	no medicine-like smell	1
		no bad smell	13	no annoying smell	5
it easy to clean and (slop 2)	314	it is easy to wipe clean and	3	it is easy to keep clean and	3
		it is so easy to clean and	16		
I have to return (slop 2)	216	I have to return	151	I finally have to return	1
		I have never had to return	1	I do not have to return	4
good service (slop 2)	209	good service	131	good price and service	1
		good and fast service	2		

- Group infrequent n-grams into a frequent skip-gram
- Allow n-grams to borrow strength from each other
- Easier learning
- Better generalization

- Huge number
- Many are non-informative or noisy

skip-gram "I recommend" with *slop* 2 can match both "I highly recommend" and "I do not recommend"

Existing Use of Skip-grams in Sentiment Analysis

- Ask human assessors to pick informative skip-grams
 - x limited by available domain knowledge
 - x expensive
- Build dense word vectors on top of skip-grams
 - **x** information loss
 - **x** less interpretable

- Test whether skip-grams are helpful when used directly as features in sentiment analysis
- Test different automatic regularization/feature selection strategies
- Compare against n-grams and word vectors

Skip-gram Extraction

- Consider skip-grams with *n*<=5 and *slop*<=2 (5-grams with 2 additional words in between)
- Discard skip-grams with very low frequencies (<=5)

max n	max <i>slop</i>	# skip-grams on IMDB
1	0	2x10^4
2	0	1x10^5
3	0	2x10^5
5	0	4x10^5
2	1	3x10^5
3	1	9x10^5
5	1	1x10^6
2	2	6x10^5
3	2	2x10^6
5	2	3x10^6

L1 vs L2 regularization

Skip-gram features: huge number, correlated

- •L1: $\min_{w} \log + \lambda ||w||_1$
 - ✓ shrink weights
 - ✓ select a subset of features
 - x select one out of several correlated features
- •L2: $\min_{w} \log + \lambda ||w||_2^2$
 - ✓ shrink weights
 - x use all features
 - spread weight among correlated features

compact model

• L1+L2: $\min_{w} \log + \lambda \alpha ||w||_1 + \lambda (1-\alpha) ||w||_2^2$

✓ shrink weights

✓ select a subset of features

compact model

spread weight among correlated features ------> robust model

Learning and Regularization

L2-regularized linear SVM

 $\min_{w} \sum_{i=1}^{N} (\max(0, 1 - y_i w^T x_i))^2 + \frac{\lambda_2^1}{2} ||w||_2^2$

- L1-regularized linear SVM $\min_{w} \sum_{i=1}^{N} (\max(0, 1 - y_i w^T x_i))^2 + \frac{\lambda ||w||_1}{|w||_1}$
- L2-regularized Logistic Regression $\min_{w} -\frac{1}{N} \sum_{i=1}^{N} y_{i} w^{T} x_{i} + \log(1 + e^{w^{T} x_{i}}) + \lambda \frac{1}{2} ||w||_{2}^{2}$
- L1-regularized Logistic Regression $\min_{w} -\frac{1}{N} \sum_{i=1}^{N} y_{i} w^{T} x_{i} + \log(1 + e^{w^{T} x_{i}}) + \frac{\lambda ||w||_{1}}{|w||_{1}}$
- L1+L2-regularized Logistic Regression $\min_{w} -\frac{1}{N} \sum_{i=1}^{N} y_i w^T x_i + \log(1 + e^{w^T x_i}) + \lambda \alpha ||w||_1 + \lambda (1 - \alpha) \frac{1}{2} ||w||_2^2$

Binary classification with neutral reviews ignored

dataset	positive	negative
IMDB	25,000 reviews with ratings 7-10	25,000 reviews with ratings 1-4
Amazon Baby	136,461 reviews	32,950 reviews
Product	with ratings 4-5	with ratings 1-2
Amazon Phone	47,970 reviews	22,241 reviews
Product	with ratings 4-5	with ratings 1-2

• Blue line: moving from unigrams to bigrams gives substantial improvement

- Blue line: moving from unigrams to bigrams gives substantial improvement
- Blue line: using high-order n-grams gives marginal improvement

- Blue line: moving from unigrams to bigrams gives substantial improvement
- Blue line: using high-order n-grams gives marginal improvement
- Green and red lines: increasing *slop* from 0 to 1 and 2 gives further improvement
Classification Accuracy with Skip-gram Features

- Blue line: moving from unigrams to bigrams gives substantial improvement
- Blue line: using high-order n-grams gives marginal improvement
- Green and red lines: increasing *slop* from 0 to 1 and 2 gives further improvement
- max # features selected: L2: 10^6, L1: 10^4, L1+L2: 10^5

Features Used vs Accuracy

Observations on L1 vs L2

- L2: achieves better overall accuracy
 - Large training sets facilitate parameter estimation
 - Effective handling of correlated features
- L1: produces much smaller models
- L1+L2: good compromise

Skip-gram Feature Contribution

Skip-gram Feature Contribution

 Comparing left with middle: the fraction of unigrams increases; the fraction of slop 2 trigrams decreases. Many slop 2 trigrams are eliminated by L1.

Skip-gram Feature Contribution

- Comparing left with middle: the fraction of unigrams increases; the fraction of slop 2 trigrams decreases. Many slop 2 trigrams are eliminated by L1.
- In right: The standard n-grams with *slop*=0 only contribute to 20% of the total weight, and the remaining 80% is due to skip-grams with non-zero *slops*.

Comparison with Word Vectors

	skip-gram	word vector
AMAZON BABY	96.85	88.84
AMAZON PHONE	92.58	85.38
IMDB	91.26	92.58 / 85.0

- Word vectors work extremely well on the given test set (92.58%), but poorly on random test sets (85%).

Other Results on IMDB

classifier	features	training documents	accuracy
LR with dropout regularization [21]	bigrams	25,000 labeled	91.31
NBSVM [23]	bigrams	25,000 labeled	91.22
SVM with L2 regularization	structural parse tree features + unigrams [16]	25,000 labeled	82.8
LR L1+L2 regularization	5-grams selected by compressive feature learning [20]	25,000 labeled	90.4
SVM	word vectors trained by WRRBM [6]	25,000 labeled	89.23
SVM	word vectors [15]	25,000 labeled + 50,000 unlabeled	88.89
LR with dropout regularization [21]	bigrams	25,000 labeled + 50,000 unlabeled	91.98
LR	paragraph vectors [14]	25,000 labeled + 50,000 unlabeled	92.58
LR with L2 regularization	skip-grams	25,000 labeled	91.63
SVM with L2 regularization	skip-grams	25,000 labeled	91.71
LR with L1+L2 regularization	skip-grams	25,000 labeled	91.26

 Among the methods which only use labeled data, skip-grams achieved the highest accuracy

Conclusion

- Skip-grams group similar n-grams together, facilitating learning and generalization
- Using skip-grams achieves good sentiment analysis performance
- L1+L2 regularization reduces the number of features significantly while maintaining good accuracy
- Our code is available at: <u>https://github.com/cheng-li/pyramid</u>

Conditional Bernoulli Mixtures for Multi-label Classification

- binary classification: 1 out of 2
- multi-class classification: 1 out of many
- multi-label classification: many out of many

News Article Categorization

Breakingviews

Twitter may score big with football digital rights

By Jennifer Saba | April 5, 2016

The author is a Reuters Breakingviews columnist. The opinions expressed are her own.

Twitter may finally be gaining some ground. Chief Executive Jack Dorsey's social-media company has won the rights to stream National Football League games on 10 Thursday nights for roughly \$10 million, according to technology site Re/code. That's about the price of a one-minute Super Bowl commercial. After fumbling with stalled growth in the number of users, Twitter may have found a cheap way to stay on the field with rivals like Facebook.

Internet 🗸, crime 🗡, NFL 🗸, government 🗡, Asia 🗡, sports 🗸, politics 🗡, sports business 🗸, Twitter 🗸

Multi-label Classification: Example

Image Tagging

airport X, animal X, clouds V, book X, lake V, sunset V, sky V, cars X, water V, reflection V

Multi-label Classification: Mathematical Formulation

$$\mathbf{x} \xrightarrow{h} \mathbf{y} = [1, 0, 0, 1, 0, ..., 1]$$

- L: # candidate labels
- **x**: instance
- **y**: label subset, written as binary vector of length L
- $y_\ell = 1 \text{ if label } \ell \text{ occurs}$

Naive Approach: Predict Each Label Independently

Binary Relevance: not always effective

- water: easy to predict directly
- reflection: hard to predict directly (based on the given feature representation)

Better Solution: Exploit Label Dependencies

let easy labels help difficult labels

- water: easy to predict directly
- reflection: often co-occurs with water

Existing approaches

Power-Set: treat each subset as a class + multi-class
 ⊗ 2^L ⇒ poor scalability; cannot predict unseen subsets

Existing approaches

- Power-Set: treat each subset as a class + multi-class

 ^L ⇒ poor scalability; cannot predict unseen subsets
- Conditional Random Field: manually specify label dependencies with a graphical model
 Only model specified (e.g., all pair-wise) dependencies

Existing approaches

- Power-Set: treat each subset as a class + multi-class
 ⊗ 2^L ⇒ poor scalability; cannot predict unseen subsets
- Conditional Random Field: manually specify label dependencies with a graphical model
 Only model specified (e.g., all pair-wise) dependencies
- Classifier Chain: h(x, y₁, y₂, ..., yℓ−1) → yℓ
 B hard to predict the jointly most probable subset

Idea: approximate $p(\mathbf{y}|\mathbf{x})$ by a Conditional Bernoulli Mixture (CBM) with fully factorized mixture components

Idea: approximate $p(\mathbf{y}|\mathbf{x})$ by a Conditional Bernoulli Mixture (CBM) with fully factorized mixture components

Step 1. write $p(\mathbf{y})$ as a mixture

Mixture:
$$p(\mathbf{y}) = \sum_{k=1}^{K} \pi^{k} p(\mathbf{y}; \boldsymbol{\beta}^{k})$$

Idea: approximate $p(\mathbf{y}|\mathbf{x})$ by a Conditional Bernoulli Mixture (CBM) with fully factorized mixture components

Step 1. write $p(\mathbf{y})$ as a mixture

Mixture:
$$p(\mathbf{y}) = \sum_{k=1}^{K} \pi^{k} p(\mathbf{y}; \boldsymbol{\beta}^{k})$$

Step 2: factorize component density

Bernoulli Mixture:
$$p(\mathbf{y}) = \sum_{k=1}^{K} \pi^k \prod_{\ell=1}^{L} b(\mathbf{y}_{\ell}; \boldsymbol{\beta}_{\ell}^k)$$

Idea: approximate $p(\mathbf{y}|\mathbf{x})$ by a Conditional Bernoulli Mixture (CBM) with fully factorized mixture components

Step 1. write $p(\mathbf{y})$ as a mixture

Mixture:
$$p(\mathbf{y}) = \sum_{k=1}^{K} \pi^{k} p(\mathbf{y}; \boldsymbol{\beta}^{k})$$

Step 2: factorize component density

Bernoulli Mixture:
$$p(\mathbf{y}) = \sum_{k=1}^{K} \pi^{k} \prod_{\ell=1}^{L} b(y_{\ell}; \boldsymbol{\beta}_{\ell}^{k})$$

Step 3: condition on x

CBM:
$$p(\mathbf{y}|\mathbf{x}) = \sum_{k=1}^{K} \pi(z = k|\mathbf{x}; \alpha) \prod_{\ell=1}^{L} b(y_{\ell}|\mathbf{x}; \beta_{\ell}^{k})$$

CBM:
$$p(\mathbf{y}|\mathbf{x}) = \sum_{k=1}^{K} \pi(z = k|\mathbf{x}; \alpha) \prod_{\ell=1}^{L} b(y_{\ell}|\mathbf{x}; \beta_{\ell}^{k})$$

 $\pi(z = k | \mathbf{x}; \alpha): \text{ probability of assigning } \mathbf{x} \text{ to component } k;$ instantiated with a multi-class classifier e.g., multinomial logistic regression with weight α $b(y_{\ell} | \mathbf{x}; \beta_{\ell}^{k}): \text{ probability of } \mathbf{x} \text{ having label } y_{\ell} \text{ in component } k;$ instantiated with a binary classifier e.g., binary logistic regression with weight β_{ℓ}^{k} .

CBM:
$$p(\mathbf{y}|\mathbf{x}) = \sum_{k=1}^{K} \pi(z = k|\mathbf{x}; \alpha) \prod_{\ell=1}^{L} b(y_{\ell}|\mathbf{x}; \beta_{\ell}^{k})$$

- C Property 1: automatically capture label dependencies
- Property 2: a flexible reduction method
- Property 3: easily adjust the complexity by changing the number of components K
- Property 4: simple training with EM
- C Property 5: fast prediction by dynamic programming

CBM:
$$p(\mathbf{y}|\mathbf{x}) = \sum_{k=1}^{K} \pi(z = k|\mathbf{x}; \alpha) \prod_{\ell=1}^{L} b(y_{\ell}|\mathbf{x}; \beta_{\ell}^{k})$$

Property 1: automatically capture label dependencies

$$p(\mathbf{y}|\mathbf{x}) \neq \prod_{\ell=1}^{L} p(y_{\ell}|\mathbf{x})$$

analogy: Gaussian mixture with fully factorized components can represent a complex joint

Property 1: capture label dependencies – illustration

- *p*(**y**|**x**) estimation provided by CBM
- showing only top 4 components; row = component;
 bar = individual label probability; π = mixture coefficient

Property 1: capture label dependencies – illustration

- marginal probability = averaging bars weighted by π
- $p(water|\mathbf{X}) = 0.69, p(lake|\mathbf{X}) = 0.56, p(sunset|\mathbf{X}) = 0.66$
- $p(reflection|\mathbf{x}) = 0.32$

 \Rightarrow missed by independent prediction \otimes

Property 1: capture label dependencies – illustration

► reflection is positively correlated with lake, water, and sunset; $p(\mathbf{y}|\mathbf{x}) \Rightarrow \rho_{\text{reflection,lake}} = 0.5, \rho_{\text{reflection,water}} = 0.4,$ $\rho_{\text{reflection,sunset}} = 0.17$

Property 1: capture label dependencies – illustration

 $p(\{\text{clouds, lake, sky, sunset, water, reflection}\}|\mathbf{x}) = 0.09$ $p(\{\text{clouds, lake, sky, sunset, water}\}|\mathbf{x}) = 0.06$

 \Rightarrow predicting the most probable subset includes reflection \bigcirc

CBM:
$$p(\mathbf{y}|\mathbf{x}) = \sum_{k=1}^{K} \pi(z = k|\mathbf{x}; \alpha) \prod_{\ell=1}^{L} b(y_{\ell}|\mathbf{x}; \beta_{\ell}^{k})$$

Property 2: a flexible reduction method

- multi-label \Rightarrow multi-class + binary
- instantiated by many binary/multi-class classifiers
 e.g., logistic regressions, gradient boosted trees, neural networks

CBM:
$$p(\mathbf{y}|\mathbf{x}) = \sum_{k=1}^{K} \pi(z = k|\mathbf{x}; \alpha) \prod_{\ell=1}^{L} b(y_{\ell}|\mathbf{x}; \beta_{\ell}^{k})$$

Property 3: easily adjust the complexity by changing the number of components *K*

CBM:
$$p(\mathbf{y}|\mathbf{x}) = \sum_{k=1}^{K} \pi(z = k|\mathbf{x}; \alpha) \prod_{\ell=1}^{L} b(y_{\ell}|\mathbf{x}; \beta_{\ell}^{k})$$

Property 4: Simple Training with EM Idea:

- maximum likelihood
- hidden variables \Rightarrow EM
- ► update parameters ⇒ binary and multi-class classifier learning

CBM:
$$p(\mathbf{y}|\mathbf{x}) = \sum_{k=1}^{K} \pi(z = k|\mathbf{x}; \alpha) \prod_{\ell=1}^{L} b(y_{\ell}|\mathbf{x}; \beta_{\ell}^{k})$$

Property 5: Fast Prediction by Dynamic Programming A common difficulty in prediction:

how to find argmax_y p(y|x) without enumerating 2^L possibilities of y?

CBM:
$$p(\mathbf{y}|\mathbf{x}) = \sum_{k=1}^{K} \pi(z = k|\mathbf{x}; \alpha) \prod_{\ell=1}^{L} b(y_{\ell}|\mathbf{x}; \beta_{\ell}^{k})$$

Property 5: Fast Prediction by Dynamic Programming A common difficulty in prediction:

how to find argmax_y p(y|x) without enumerating 2^L possibilities of y?

Existing solutions used in Power-Set, CRF, and Classifier Chain:

- \bigcirc restrict to **y** in training set \Rightarrow will not predict unseen **y**
- \bigcirc approximate inference \Rightarrow suboptimal

CBM:
$$p(\mathbf{y}|\mathbf{x}) = \sum_{k=1}^{K} \pi(z = k|\mathbf{x}; \alpha) \prod_{\ell=1}^{L} b(y_{\ell}|\mathbf{x}; \beta_{\ell}^{k})$$

Property 5: Fast Prediction by Dynamic Programming A common difficulty in prediction:

how to find argmax_y p(y|x) without enumerating 2^L possibilities of y?

Existing solutions used in Power-Set, CRF, and Classifier Chain:

- \bigcirc restrict to **y** in training set \Rightarrow will not predict unseen **y**
- \bigcirc approximate inference \Rightarrow suboptimal

CBM:

 \bigcirc efficiently find the exact argmax_v $p(\mathbf{y}|\mathbf{x})$ by DP
Proposed Model: Conditional Bernoulli Mixtures

CBM:
$$p(\mathbf{y}|\mathbf{x}) = \sum_{k=1}^{K} \pi(z = k|\mathbf{x}; \alpha) \prod_{\ell=1}^{L} b(y_{\ell}|\mathbf{x}; \beta_{\ell}^{k})$$

Summary

- C Property 1: automatically capture label dependencies
- Property 2: a flexible reduction method
- Property 3: easily adjust the complexity by changing the number of components K
- Property 4: simple training with EM
- C Property 5: fast prediction by dynamic programming

5 Datasets of different types

dataset	SCENE		RCV1		TMC2007		MEDIAMILL		NUS-WIDE	
domain	image		text		text		video		image	
#labels / #label subsets	6 /	15	103 /	799	22 /	1341	101 /	6555	81 /	18K
#features / #datapoints	294 /	2407	47K /	6000	49K /	29K	120 /	44K	128 /	270K

5 Datasets of different types

dataset	SCENE		SCENE RCV		TMC2007		MEDIAMILL		NUS-WIDE	
domain	image		text		text		video		image	
#labels / #label subsets	6 /	15	103 /	799	22 /	1341	101 /	6555	81 /	18K
#features / #datapoints	294 /	2407	47K /	6000	49K /	29K	120 /	44K	128 /	270K

2 instantiations of CBM: LR and GB

5 Datasets of different types

dataset	SCENE		SCENE RCV1		TMC2007		MEDIAMILL		NUS-WIDE	
domain	image		text		text		video		image	
#labels / #label subsets	6 /	15	103 /	799	22 /	1341	101 /	6555	81 /	18K
#features / #datapoints	294 /	2407	47K /	6000	49K /	29K	120 /	44K	128 /	270K

- 2 instantiations of CBM: LR and GB
- 8 baselines: BinRel, PowSet, CC, PCC, ECC-label, ECC-subset, CDN, pairCRF

5 Datasets of different types

dataset	SCENE		RCV1		TMC2007		MEDIAMILL		NUS-WIDE	
domain	image		text		text		video		image	
#labels / #label subsets	6 /	15	103 /	799	22 /	1341	101 /	6555	81 /	18K
#features / #datapoints	294 /	2407	47K /	6000	49K /	29K	120 /	44K	128 /	270K

- 2 instantiations of CBM: LR and GB
- 8 baselines: BinRel, PowSet, CC, PCC, ECC-label, ECC-subset, CDN, pairCRF
- evaluation measure: subset accuracy

dataset		SCENE		RCV1		TMC2007		MEDIAMILL		NUS-WIDE		
domain		image		text		text		video		image		
#labels / #label subsets		6 /	15	103 /	799	22 /	1341	101 /	6555	81 /	18K	
#features / #datapoints		294 /	2407	47K /	6000	49K /	29K	120 /	44K	128 /	270K	
Method	Learner											
BinRel	LR	51.5		40.4		25.3		9.6		24.7		
PowSet	LR	68	68.1		50.2		28.2		9.0		26.6	
CC	LR	62	.9	48.2		26.2		10.9		26.0		
PCC	LR	64	.8	48.3		26.8		10.9		26.3		
ECC-label	LR	60.6		46.5		26.0		11.3		26.0		
ECC-subset	LR	63.1		49.2		25.9		11.5		26.0		
CDN	LR	59.9		12.6		16.8		5.4		17.1		
pairCRF	linear	68.8		46.4		28.1		10.3		26.4		
CBM	LR	69	69.7		49.9		28.7		13.5		27.3	

with LR learner, CBM is the best on 4 out of 5 datasets

dataset		SCENE	RCV1	TMC2007	MEDIAMILL	NUS-WIDE	
domain		image	text	text	video	image	
#labels / #label subsets		6/ 15	103 / 799	22 / 1341	101 / 6555	81 / 18K	
#features / #datapoints		294 / 2407	47K / 6000	49K / 29K	120 / 44K	128 / 270K	
Method	Learner						
BinRel	LR	51.5	40.4	25.3	9.6	24.7	
PowSet	LR	68.1	50.2	28.2	9.0	26.6	
CC	LR	62.9	48.2	26.2	10.9	26.0	
PCC	LR	64.8	48.3	26.8	10.9	26.3	
ECC-label	LR	60.6	46.5	26.0	11.3	26.0	
ECC-subset	LR	63.1	49.2	25.9	11.5	26.0	
CDN	LR	59.9	12.6	16.8	5.4	17.1	
pairCRF	linear	68.8	46.4	28.1	10.3	26.4	
CBM	LR	69.7	49.9	28.7	13.5	27.3	
BinRel	GB	59.3	30.1	25.4	11.2	24.4	
PowSet	GB	70.5	38.2	23.1	10.1	23.6	
CBM	GB	70.5	43.0	27.5	14.1	26.5	

- ▶ replace LR with GB \Rightarrow further improvements on 2 datasets SCENE: 69.7 \rightarrow 70.5; MEDIAMILL: 13.5 \rightarrow 14.1
- use different learners for different applications

- proposed a new multi-label model CBM
- enjoys many nice properties
- performs well on real data
- code available at https://github.com/cheng-li/pyramid

Thank You

Proposed Model: Conditional Bernoulli Mixtures

CBM:
$$p(\mathbf{y}|\mathbf{x}) = \sum_{k=1}^{K} \pi(z = k|\mathbf{x}; \alpha) \prod_{\ell=1}^{L} b(y_{\ell}|\mathbf{x}; \beta_{\ell}^{k})$$

Property 4: Simple Training with EM

Denote the posterior membership distribution $p(z_n | \mathbf{x}_n, \mathbf{y}_n)$ as $\Gamma(z_n) = (\gamma_n^1, \gamma_n^2, \dots, \gamma_n^K).$

E step: Re-estimate posterior membership probabilities:

$$\gamma_n^k = \frac{\pi(z_n = k | \mathbf{x}_n; \alpha) \prod_{\ell=1}^L b(y_{n\ell} | \mathbf{x}_n; \beta_\ell^k)}{\sum_{k=1}^K \pi(z_n = k | \mathbf{x}_n; \alpha) \prod_{\ell=1}^L b(y_{n\ell} | \mathbf{x}_n; \beta_\ell^k)}$$

Proposed Model: Conditional Bernoulli Mixtures

CBM:
$$p(\mathbf{y}|\mathbf{x}) = \sum_{k=1}^{K} \pi(z = k|\mathbf{x}; \alpha) \prod_{\ell=1}^{L} b(y_{\ell}|\mathbf{x}; \beta_{\ell}^{k})$$

Property 4: Simple Training with EM

M step: Update model parameters. Decompose into simple classification problems:

$$\begin{split} \boldsymbol{\alpha}_{new} &= \operatorname*{argmin}_{\boldsymbol{\alpha}} \sum_{n=1}^{N} \mathbb{KL}(\boldsymbol{\Gamma}(\boldsymbol{z}_{n}) || \boldsymbol{\pi}(\boldsymbol{z}_{n} | \mathbf{x}_{n}; \boldsymbol{\alpha})) \\ & (\text{multi-class classification with soft target labels}) \\ \boldsymbol{\beta}_{\ell \ new}^{k} &= \operatorname*{argmin}_{\boldsymbol{\beta}_{\ell}^{k}} \sum_{n=1}^{N} \gamma_{n}^{k} \mathbb{KL}(\operatorname{Ber}(\boldsymbol{Y}_{n\ell}; \boldsymbol{y}_{n\ell}) || \boldsymbol{b}(\boldsymbol{Y}_{n\ell} | \mathbf{x}_{n}; \boldsymbol{\beta}_{\ell}^{k})) \\ & (\text{weighted binary classification}) \end{split}$$