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Review  
Document

Feature Vector <waste:1, like:2, disappoint:1, worse:1,...>

Classifier Logistic Regression, SVM

Prediction Positive, Negative

Bottleneck!

Sentiment Analysis with Binary Text 
Classification Pipeline
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• Unigram (bag of words)  
capture sentiment indicator 
terms 
could not capture negations 

• Add Bi-grams 
capture negation-polarity word 
pairs

<I:1, don't:1, like:1, I don't:1, don't like:1,...>
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• Unigram (bag of words)  
capture sentiment indicator 
terms 
could not capture negations 

• Add Bi-grams 
capture negation-polarity word 
pairs 
capture two-words sentiment 
phrases

<how:1, could:1, sit through:1, anyone sit:1,...>
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• Unigram (bag of words)  
capture sentiment indicator 
terms 
could not capture negations 

• Add Bi-grams 
capture negation-polarity word 
pairs 
capture two-words sentiment 
phrases

<waste time:2, waste:2, money:1,...>

Negative

Logistic Regression
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• Unigram (bag of words)  
capture sentiment indicator 
terms 
could not capture negations 

• Add Bi-grams 
capture negation-polarity word 
pairs 
capture two-words sentiment 
phrases 

• Add tri-grams,quad-grams...  
capture sentiment phrases 
with many words

Text Representation Issues in Sentiment 
Analysis
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• Many variations 
"  

 
 

 
 

 
           

increase the dimensionality

• rare cases 
" 676 times in IMDB 
" 6 times  
" 4 times 
 
           

insufficient data for parameter estimation

Difficulty with High Order n-grams



• n-gram templates matched loosely 

• Looseness parameterized by slop, the number of 
additional words  

• n-gram = skip-gram with slop 0  

Skip-grams



Skip-gram Examples



• Group infrequent n-grams into a frequent skip-gram 

• Allow n-grams to borrow strength from each other  

• Easier learning 

• Better generalization

Advantages of Skip-grams



• Huge number 

• Many are non-informative or noisy  
 
skip-gram " with slop 2 can match 
both "  and "  

Difficulties with Skip-grams



• Ask human assessors to pick informative skip-grams 

    limited by available domain knowledge 

  expensive 

• Build dense word vectors on top of skip-grams 

    information loss 

   less interpretable 
 

Existing Use of Skip-grams in Sentiment 
Analysis



• Test whether skip-grams are helpful when used 
directly as features in sentiment analysis 

• Test different automatic regularization/feature 
selection strategies  

• Compare against n-grams and word vectors

Goal of this Study



• Consider skip-grams with n<=5 and slop<=2  
(5-grams with 2 additional words in between) 

• Discard skip-grams with very low frequencies 
(<=5)

max n max slop # skip-grams on IMDB
1 0 2x10^4
2 0 1x10^5
3 0 2x10^5
5 0 4x10^5
2 1 3x10^5
3 1 9x10^5
5 1 1x10^6
2 2 6x10^5
3 2 2x10^6
5 2 3x10^6

Skip-gram Extraction



Skip-gram features: huge number, correlated 
• L1:  
✓ shrink weights 
✓ select a subset of features 

  select one out of several correlated features 

• L2: 
✓ shrink weights 

   use all features 

✓ spread weight among correlated features 

compact model

robust model

L1 vs L2 regularization



• L1+L2: 

✓ shrink weights 

✓ select a subset of features 

✓ spread weight among correlated features 

compact model

robust model

L1 vs L2 regularization



• L2-regularized linear SVM 

• L1-regularized linear SVM 

• L2-regularized Logistic Regression  

• L1-regularized Logistic Regression  

• L1+L2-regularized Logistic Regression  

Learning and Regularization



dataset positive negative

IMDB 25,000 reviews 
with ratings 7-10

25,000 reviews 
with ratings 1-4

Amazon Baby 
Product

136,461 reviews 
with ratings 4-5

32,950 reviews 
with ratings 1-2

Amazon Phone 
Product

47,970 reviews 
with ratings 4-5

22,241 reviews 
with ratings 1-2

Binary classification with neutral reviews ignored

Datasets
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Features
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• Blue line: moving from unigrams to bigrams gives substantial improvement

• Blue line: using high-order n-grams gives marginal improvement

• Green and red lines: increasing slop from 0 to 1 and 2 gives further improvement

• max # features selected: L2: 10^6, L1: 10^4, L1+L2: 10^5

L2 LR L1 LR L1+L2 LR

Classification Accuracy with Skip-gram 
Features



# Features Used vs Accuracy



• L2: achieves better overall accuracy 

- Large training sets facilitate parameter estimation  

- Effective handling of correlated features 

• L1: produces much smaller models 

• L1+L2: good compromise

Observations on L1 vs L2



all features selected features weighted features

Skip-gram Feature Contribution



• Comparing left with middle: the fraction of unigrams increases;the fraction of 
slop 2 trigrams decreases. Many slop 2 trigrams are eliminated by L1.
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• Comparing left with middle: the fraction of unigrams increases;the fraction of 
slop 2 trigrams decreases. Many slop 2 trigrams are eliminated by L1.

• In right: The standard n-grams with slop=0 only contribute to 20% of the total 
weight, and the remaining 80% is due to skip-grams with non-zero slops.

all features selected features weighted features

Skip-gram Feature Contribution



skip-gram word vector

AMAZON BABY 96.85 88.84

AMAZON PHONE 92.58 85.38

IMDB 91.26 92.58 / 85.0

- Word vectors work extremely well on the given test set 
(92.58%), but poorly on random test sets (85%). 

Comparison with Word Vectors



•  

- Among the methods which only use labeled 
data, skip-grams achieved the highest accuracy

Other Results on IMDB



• Skip-grams group similar n-grams together, 
facilitating learning and generalization 

• Using skip-grams achieves good sentiment analysis 
performance 

• L1+L2 regularization reduces the number of features 
significantly while maintaining good accuracy 

• Our code is available at: 
https://github.com/cheng-li/pyramid

Conclusion

https://github.com/cheng-li/pyramid


Conditional Bernoulli Mixtures for 
Multi-label Classification 



Task: Multi-label Classification

I binary classification: 1 out of 2

I multi-class classification: 1 out of many

I
multi-label classification: many out of many



Multi-label Classification: Example

News Article Categorization

Internet 3, crime 7, NFL 3, government 7, Asia 7,
sports 3, politics 7, sports business 3, Twitter 3



Multi-label Classification: Example

Image Tagging

airport 7, animal 7, clouds 3, book 7, lake 3,

sunset 3, sky 3, cars 7, water 3, reflection 3



Multi-label Classification: Mathematical Formulation

x

h�! y = [

length Lz }| {
1, 0, 0, 1, 0, ..., 1]

L: # candidate labels
x: instance
y: label subset, written as binary vector of length L
y` = 1 if label ` occurs



Naive Approach: Predict Each Label Independently

Binary Relevance: not always effective

I
water: easy to predict directly

I
reflection: hard to predict directly (based on the given
feature representation)



Better Solution: Exploit Label Dependencies

let easy labels help difficult labels

I
water: easy to predict directly

I
reflection: often co-occurs with water



How to Model Label Dependencies?

Existing approaches

I Power-Set: treat each subset as a class + multi-class
� 2L ) poor scalability; cannot predict unseen subsets
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How to Model Label Dependencies?

Existing approaches

I Power-Set: treat each subset as a class + multi-class
� 2L ) poor scalability; cannot predict unseen subsets

I Conditional Random Field: manually specify label
dependencies with a graphical model
� only model specified (e.g., all pair-wise) dependencies

I Classifier Chain: h(x, y1, y2, ..., y`�1) ! y`
� hard to predict the jointly most probable subset
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Proposed Model: Conditional Bernoulli Mixtures

Idea: approximate p(y|x) by a Conditional Bernoulli Mixture
(CBM) with fully factorized mixture components

I Step 1. write p(y) as a mixture

Mixture: p(y) =
KX

k=1

⇡kp(y;�k )

I Step 2: factorize component density

Bernoulli Mixture: p(y) =
KX

k=1

⇡k
LY

`=1

b(y`;�k
` )

I Step 3: condition on x

CBM: p(y|x) =
KX

k=1

⇡(z = k |x;↵)
LY

`=1

b(y`|x;�k
` )



Proposed Model: Conditional Bernoulli Mixtures

CBM: p(y|x) =
KX

k=1

⇡(z = k |x;↵)
LY

`=1

b(y`|x;�k
` )

⇡(z = k |x;↵): probability of assigning x to component k ;
instantiated with a multi-class classifier
e.g., multinomial logistic regression with weight ↵

b(y`|x;�k
` ): probability of x having label y` in component k ;

instantiated with a binary classifier
e.g., binary logistic regression with weight �k

` .

Prediction: argmax
y

p(y|x)
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number of components K
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Proposed Model: Conditional Bernoulli Mixtures

CBM: p(y|x) =
KX

k=1

⇡(z = k |x;↵)
LY

`=1

b(y`|x;�k
` )

Property 1: automatically capture label dependencies

p(y|x) 6=
LY

`=1

p(y`|x)

analogy: Gaussian mixture with fully factorized components
can represent a complex joint



Proposed Model: Conditional Bernoulli Mixtures

Property 1: capture label dependencies – illustration

I p(y|x) estimation provided by CBM
I showing only top 4 components; row = component;

bar = individual label probability; ⇡ = mixture coefficient



Proposed Model: Conditional Bernoulli Mixtures

Property 1: capture label dependencies – illustration

I marginal probability = averaging bars weighted by ⇡

I p(water|x) = 0.69, p(lake|x) = 0.56, p(sunset|x) = 0.66
I p(reflection|x) = 0.32

) missed by independent prediction �



Proposed Model: Conditional Bernoulli Mixtures

Property 1: capture label dependencies – illustration

I
reflection is positively correlated with lake, water, and
sunset;
p(y|x) ) ⇢

reflection,lake

= 0.5, ⇢
reflection,water

= 0.4,
⇢
reflection,sunset

= 0.17



Proposed Model: Conditional Bernoulli Mixtures

Property 1: capture label dependencies – illustration

p({clouds, lake, sky, sunset, water, reflection}|x) = 0.09
p({clouds, lake, sky, sunset, water}|x) = 0.06

) predicting the most probable subset includes reflection �



Proposed Model: Conditional Bernoulli Mixtures

CBM: p(y|x) =
KX

k=1

⇡(z = k |x;↵)
LY

`=1

b(y`|x;�k
` )

Property 2: a flexible reduction method

I multi-label ) multi-class + binary
I instantiated by many binary/multi-class classifiers

e.g., logistic regressions, gradient boosted trees, neural
networks
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CBM: p(y|x) =
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Property 3: easily adjust the complexity by changing the
number of components K



Proposed Model: Conditional Bernoulli Mixtures

CBM: p(y|x) =
KX

k=1

⇡(z = k |x;↵)
LY

`=1

b(y`|x;�k
` )

Property 4: Simple Training with EM
Idea:

I maximum likelihood
I hidden variables ) EM
I update parameters ) binary and multi-class classifier

learning
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Proposed Model: Conditional Bernoulli Mixtures

CBM: p(y|x) =
KX

k=1

⇡(z = k |x;↵)
LY

`=1

b(y`|x;�k
` )

Property 5: Fast Prediction by Dynamic Programming
A common difficulty in prediction:

I how to find argmax
y

p(y|x) without enumerating 2L

possibilities of y?

Existing solutions used in Power-Set, CRF, and Classifier
Chain:
� restrict to y in training set ) will not predict unseen y

� approximate inference ) suboptimal
CBM:
� efficiently find the exact argmax

y

p(y|x) by DP



Proposed Model: Conditional Bernoulli Mixtures

CBM: p(y|x) =
KX

k=1

⇡(z = k |x;↵)
LY

`=1

b(y`|x;�k
` )

Summary

� Property 1: automatically capture label dependencies
� Property 2: a flexible reduction method
� Property 3: easily adjust the complexity by changing the

number of components K
� Property 4: simple training with EM
� Property 5: fast prediction by dynamic programming



Experimental Results on Benchmark Datasets

I 5 Datasets of different types

dataset SCENE RCV1 TMC2007 MEDIAMILL NUS-WIDE
domain image text text video image

#labels / #label subsets 6 / 15 103 / 799 22 / 1341 101 / 6555 81 / 18K
#features / #datapoints 294 / 2407 47K / 6000 49K / 29K 120 / 44K 128 / 270K



Experimental Results on Benchmark Datasets

I 5 Datasets of different types

dataset SCENE RCV1 TMC2007 MEDIAMILL NUS-WIDE
domain image text text video image

#labels / #label subsets 6 / 15 103 / 799 22 / 1341 101 / 6555 81 / 18K
#features / #datapoints 294 / 2407 47K / 6000 49K / 29K 120 / 44K 128 / 270K

I 2 instantiations of CBM: LR and GB



Experimental Results on Benchmark Datasets

I 5 Datasets of different types

dataset SCENE RCV1 TMC2007 MEDIAMILL NUS-WIDE
domain image text text video image

#labels / #label subsets 6 / 15 103 / 799 22 / 1341 101 / 6555 81 / 18K
#features / #datapoints 294 / 2407 47K / 6000 49K / 29K 120 / 44K 128 / 270K

I 2 instantiations of CBM: LR and GB
I 8 baselines: BinRel, PowSet, CC, PCC, ECC-label,

ECC-subset, CDN, pairCRF



Experimental Results on Benchmark Datasets
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#labels / #label subsets 6 / 15 103 / 799 22 / 1341 101 / 6555 81 / 18K
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I 2 instantiations of CBM: LR and GB
I 8 baselines: BinRel, PowSet, CC, PCC, ECC-label,

ECC-subset, CDN, pairCRF
I evaluation measure: subset accuracy



Experimental Results on Benchmark Datasets

dataset SCENE RCV1 TMC2007 MEDIAMILL NUS-WIDE
domain image text text video image

#labels / #label subsets 6 / 15 103 / 799 22 / 1341 101 / 6555 81 / 18K
#features / #datapoints 294 / 2407 47K / 6000 49K / 29K 120 / 44K 128 / 270K

Method Learner
BinRel LR 51.5 40.4 25.3 9.6 24.7
PowSet LR 68.1 50.2 28.2 9.0 26.6

CC LR 62.9 48.2 26.2 10.9 26.0
PCC LR 64.8 48.3 26.8 10.9 26.3

ECC-label LR 60.6 46.5 26.0 11.3 26.0
ECC-subset LR 63.1 49.2 25.9 11.5 26.0

CDN LR 59.9 12.6 16.8 5.4 17.1
pairCRF linear 68.8 46.4 28.1 10.3 26.4

CBM LR 69.7 49.9 28.7 13.5 27.3

I with LR learner, CBM is the best on 4 out of 5 datasets



Experimental Results on Benchmark Datasets
dataset SCENE RCV1 TMC2007 MEDIAMILL NUS-WIDE
domain image text text video image

#labels / #label subsets 6 / 15 103 / 799 22 / 1341 101 / 6555 81 / 18K
#features / #datapoints 294 / 2407 47K / 6000 49K / 29K 120 / 44K 128 / 270K

Method Learner
BinRel LR 51.5 40.4 25.3 9.6 24.7
PowSet LR 68.1 50.2 28.2 9.0 26.6

CC LR 62.9 48.2 26.2 10.9 26.0
PCC LR 64.8 48.3 26.8 10.9 26.3

ECC-label LR 60.6 46.5 26.0 11.3 26.0
ECC-subset LR 63.1 49.2 25.9 11.5 26.0

CDN LR 59.9 12.6 16.8 5.4 17.1
pairCRF linear 68.8 46.4 28.1 10.3 26.4

CBM LR 69.7 49.9 28.7 13.5 27.3
BinRel GB 59.3 30.1 25.4 11.2 24.4
PowSet GB 70.5 38.2 23.1 10.1 23.6

CBM GB 70.5 43.0 27.5 14.1 26.5

I replace LR with GB ) further improvements on 2 datasets
SCENE: 69.7!70.5; MEDIAMILL: 13.5!14.1

I use different learners for different applications



Conclusion

I proposed a new multi-label model CBM
I enjoys many nice properties
I performs well on real data
I code available at

https://github.com/cheng-li/pyramid



Thank You



Proposed Model: Conditional Bernoulli Mixtures

CBM: p(y|x) =
KX

k=1

⇡(z = k |x;↵)
LY

`=1

b(y`|x;�k
` )

Property 4: Simple Training with EM
Denote the posterior membership distribution p(zn|xn, yn) as
�(zn) = (�1

n , �
2
n , ..., �

K
n ).

E step: Re-estimate posterior membership probabilities:

�k
n =

⇡(zn = k |xn;↵)
QL

`=1 b(yn`|xn;�k
` )PK

k=1 ⇡(zn = k |xn;↵)
QL

`=1 b(yn`|xn;�k
` )



Proposed Model: Conditional Bernoulli Mixtures

CBM: p(y|x) =
KX

k=1

⇡(z = k |x;↵)
LY

`=1

b(y`|x;�k
` )

Property 4: Simple Training with EM
M step: Update model parameters. Decompose into simple
classification problems:

↵new = argmin
↵

NX

n=1

KL(�(zn)||⇡(zn|xn;↵))

(multi-class classification with soft target labels)

�k
` new = argmin

�k
`

NX

n=1

�k
nKL(Ber(Yn`; yn`)||b(Yn`|xn;�

k
` ))

(weighted binary classification)


