
Scaling database systems to
high-performance computers

Spyros Blanas

Data processing at scale

2

Xeon CPU core count

Traditional DBMS

?How does one manage data at this scale?

Data processing at scale

• Warehouse-scale computers
– Scientific supercomputers
– Cloud

3

4

Focus: Run one query as fast as possible on entire datacenter

Data processing at scale

Supernovae
detection

Disaster
response

Plasma physics Computational
neuroscience

Why not a database system?

Compute-intensive programs Scalability & efficiency

5

Massive I/O
concurrency 3D-stacked DRAM

RDMA-capable
networking

Unique network
topologies

1 2

Data processing at scale

6

Algorithms

Systems

Hardware-conscious
implementations

Take aways

ArrayBridge: database processing
over TB-sized HDF5 datasets

7

1

GRASP: a network-aware greedy aggregation
scheduling protocol based on dataset similarity2

An RDMA-based data shuffling operator
exchanges data at line rate, 4× faster than MPI3

Supernovae detection pipeline

8

Image processing

Image subtraction

Classification

Telescope
Real or bogus?

Classification

Image subtraction

Image processing

Telescope
Raw imageAlign, normalize, segment

Before After Diff

Image credit: PTF @ LBNL and ASAS-SN @ Ohio State

Supernovae detection:
Palomar Transient Factory (PTF)

• Supernova caught 11
hours after explosion
– 1 million times too dim

to see with naked eye

• The 5th brightest
supernova in 100 years

9

10

The HDF5 scientific file format

• Container for diverse
scientific datasets

• Advantages vs. text files
– Convenience
– Compactness
– Metadata support
– Interoperability

11

HDF5 is mature
and widely supported

netCDF-4 uses HDF5

The PTF data processing pipeline

12

PARALLEL FILE SYSTEM

Raw image
capture

Announce
finding

Convert to
HDF5 format

Segmentation

HDF5 library

Subtraction

HDF5 library

Classification

HDF5 library

COMPUTE NODES

Status quo

13

Data in the DBMS

Status quo

14

Data outside the DBMS

Data in the DBMS

Status quo

15

Data management without database systems

Users write code to run a simple analysis on massive data

Mind the gap

16

User writes code to
manipulate files with data

Established data model

Declarative query language

Query optimization Data in DBMS

Data outside DBMS

ArrayBridge

17

Myth #1

“Our data is so big that writing code is
faster than using a DBMS”

ArrayBridge: database processing
directly on HDF5 data

Contribution [ICDE’18]

ArrayBridge

• Keep identical API for
backwards compatibility

• Discover application-
specific I/O patterns

• Inject optimizations
into I/O path

18

File format library

Parallel file system

Data management
runtime

Application

ArrayBridge

ArrayBridge

19

File format library

Parallel file system

ArrayBridge

Application

SciDB

TensorFlow

TileDB

ArrayBridge

20

File format library

Parallel file system

ArrayBridge

Application

SciDB

TensorFlow

TileDB

SciDB meets scientific computing

21

File format library

Parallel file system

ArrayBridge

Application

SciDB

SciDB meets scientific computing

22

SciDB HDF5

Load

Save

SciDB worker
SciDB worker

Current state: two silos

23

SciDB coordinator

Declarative
(AQL, AFL)

SciDB worker

SciDB executor

SciDB storage mgr

Metadata
store

Imperative
(C, Fortran)

HDF5 library

MPI

SciDB worker
SciDB worker

ArrayBridge overview

24

SciDB coordinator

Declarative
(AQL, AFL)

SciDB worker

SciDB storage mgr

Metadata
store

Imperative
(C, Fortran)

MPI

HDF5 library

SciDB executor

ArrayBridge
ReadOp WriteOp

Problem 1: Loading is slow in SciDB

0
1
2
3
4
5
6
7
8

SciDB, 8 nodes, 1 TB

Ti
m

e
(h

ou
rs

)

Ingest Redimension Query

0

1

2

3

4

5

SciDB, 8 nodes, 1 TB

Sp
ac

e
(T

Bs
)

Raw data Temp files SciDB data

26

Loading 1TB in SciDB takes 7.5 hours, 4TB of space

Reading in ArrayBridge

29

HDF5 file

SciDB
instance 0

ArrayBridge
ReadOp

0

SciDB
instance 1

SciDB
instance 2

μ

1 2

Reading in ArrayBridge

30

HDF5 file

SciDB
instance 0

HDF5-based
program

ArrayBridge
ReadOp

0

SciDB
instance 1

SciDB
instance 2

μ

1 2

Compute

Switching fabric

Cold Storage

Problem 2: Saving doesn’t scale

31

High-end computer

SWMR limitation
(Single Writer, Many Readers)

write concurrency ≈ 1

Fundamental problem:
write concurrency

Problem 2: Saving doesn’t scale

32

0

5

10

15

20

25

30

1
(8GB)

2
(16GB)

4
(32GB)

8
(64GB)

16
(128GB)

32
(256GB)

Ti
m

e
to

 sa
ve

 (m
in

ut
es

)

Nodes (data volume)

SciDB + HDF5

Parallel writing in ArrayBridge

• ArrayBridge uses virtual datasets in HDF5
– Recent (2016) feature, introduced in HDF5 1.10
– Virtual dataset = a non-materialized view

33

HDF5 file

A B C

A
C

B Virtual dataset

V

HDF5 file

SciDB
instance 0

Parallel writing in ArrayBridge

SciDB
instance 1

SciDB
instance 2

HDF5-based
program

ArrayBridge
WriteOp

Experimental evaluation

• High-performance computer, Cray XC40
– 52,160 CPU cores
– 204 TB memory
– 10,168 HDDs
– 30 PB cold storage

• Shared resource
– Reporting variance when significant

36

Read performance on 1.5 TB array

37

0.5

1

2

4

8

16

Q
ue

ry
 re

sp
on

se
 ti

m
e

(m
in

s)

1 2 4 8 16 32 64 128
Nodes

SciDB + ArrayBridge
Native SciDB

Same read performance as SciDB

28 GiB/s

Time to insight

38

0

2

4

6

8

10

12

0 20 40 60 80 100Cu
m

ul
at

iv
e

re
sp

on
se

 ti
m

e
(h

rs
)

Total queries

SciDB + ArrayBridge
Native SciDB

• 1 TiB Data
• 100 consecutive

aggregationsFirst answer:
1 minute vs. 8 hours

Writing performance

39

0
5

10
15
20
25
30
35

1
(96G)

2
(192G)

4
(384G)

8
(768G)

16
(1.5T)

32
(3T)

Sa
ve

 ti
m

e
(m

in
ut

es
)

Nodes (Data volume)

SciDB to HDF5 ArrayBridge + SciDB
54 112

Real dataset: VPIC

• Particle-in-cell simulation
• One 43TB array in HDF5

– Per step of the simulation!

• Dataset:
– Particle ID (1D)
– Particle position (3D)
– Particle velocity (3D)

• Query: Filter & Group By
– Find high energy regions

40

Plasma physics

Real dataset: VPIC

41

0.5
1
2
4
8

16
32
64

128

1 2 4 8 16 32 64 128

Sp
ee

du
p

Nodes

ArrayBridge + SciDB
Ideal Speedup

ArrayBridge + SciDB
processes 43TB
in 15 minutes

Loading 43TB in
SciDB takes 10 days!

ArrayBridge

44

ArrayBridge: database processing on HDF5 files

Contribution [ICDE’18]

Transparent I/O management, cost-based
optimization from imperative applications

Opportunity ahead

http://code.osu.edu/arraybridge

Smarter I/O for Large Array Processing

1. What are the I/O patterns of large-scale applications
with complex data structures?

2. How to arrange complex objects in disk blocks?
3. How do we automate I/O optimization?

4545

Capture I/O patterns at scale

46

• Diverse analytical core
– Ad-hoc reuse of older codes
– Problem-specific

optimizations

• Homogenous periphery,
common tools for:
– Parallelism & task

management
– Communication & data transfer
– I/O to cold storage

Analytical
core

Small array challenge
• A file per array

– I/O takes 200⨉ to 700⨉ longer than compute

48

Array library

Application

File system

One I/O request
per array

2 2

1413

394

1

10

100

1000

10000

HadoopFS Lustre

Ti
m

e
(s

)

File system

Compute I/O

Small array challenge

49

Too many small I/O requests!

Software stack

50

HDF5
Application

Data stores

TileDB

HadoopFS

Redis

Main memory storage

File system
Henosis

Fast locally attached
storage, e.g. SSD, NVMe

Throughput

51

1

10

100

1000

10000

100000

1.7KB 1.7MB

Re
ad

 th
ro

ug
hp

ut
 (K

B/
s)

Array Size

Redis HadoopFS

Goals

• Store arrays on heterogeneous data stores
– Without modifying applications

• Accelerate I/O
– Improve the performance of each request
– Reduce the number of requests

• Automatically decide the array storage layout
– Which data store should an array be placed in?
– How do we store small arrays in chunks?

52

System architecture

54

HDF5

I/O Interceptor

Redis Driver TileDB Driver

TileDB
HadoopFS

Redis

Storage Tuner

Henosis

Application

Virtual Object Layer
File system

read

get

Optimization workflow

55

Henosis observes access pattern

Optimization

Tune array storage
Access pattern

Storage plan

Optimization

I/O acceleration techniques

• Placement • Consolidation

56

a1 a2 a3 a4 a6a5

Process 1 Process 2

a3 a4

Redis

a1 a2 a5 a6

TileDB

Process 1 Process 2

Chunk 1 Chunk 2

Experimental evaluation

• How effective is consolidation?
– Compare with reading small arrays directly

• What is the performance gain from optimization?
– Compare with consolidation only
– Compare with consolidating and placing

independently
• Consolidate-then-place
• Place-then-consolidate

57

Experiment setup

• Supernova detection
– Dataset

• 11,889 astronomy images
• 21 × 21 pixels per image

– Configuration
• 9 nodes

• Vortices prediction
– Dataset

• 2000 timestamps
• 160,000 vortices
• 8KB/vortex

– Configuration
• 9 nodes

58

1

100

10000

Baseline Henosis

Th
ro

ug
hp

ut
 (i

m
ag

es
/s

)

Supernova detection

0

200

400

600

800

1000

1200

Baseline Henosis

Th
ro

ug
hp

ut
 (v

or
tic

es
/s

)

Vortices prediction

Consolidation impact

59

300⨉

135⨉

0
5

10
15
20
25
30
35

Ti
m

e
(s

)

Vortices prediction

Optimization impact

60

Consolidate-then-place
tends to store

unfrequently accessed
small arrays in Redis

Place-then-consolidate
tends to spread frequently
co-accessed small arrays

into two data stores

2.8⨉

Data processing at scale

61

Algorithms

Systems

Hardware-conscious
implementations

High-cardinality aggregation

62

Problem

Aggregation based on repartitioning (1) does not use the
network efficiently and (2) often transfers redundant data

GRASP, a GReedy Aggregation Scheduling Protocol:
network-aware scheduling based on dataset similarity

Contribution [VLDB’19]

Aggregation in MODIS

63

Aggregation in MODIS

64

Aggregation in MODIS

65

Aggregation in MODIS

67

Aggregation in MODIS

68

Aggregation in MODIS

70

Aggregation in MODIS

72

Aggregation in MODIS

73

Aggregation in MODIS

74

Aggregation in MODIS

75

Lat. Lon.

… …

-83.0 39.9

-83.0 40.0

-83.0 40.1

-83.0 40.2

… …

Aggregation in MODIS

76

Lat. Lon.

… …

-83.0 39.9

-83.0 40.0

-83.0 40.1

-83.0 40.2

… …

Aggregation in MODIS

77

Lat. Lon.

… …

-83.0 39.9

-83.0 40.0

-83.0 40.1

-83.0 40.2

… …

Aggregation in MODIS

78

Key

…

A

B

C

D

…

Aggregation in MODIS

79

A few values per group

Millions of groups

Key

…

A

B

C

D

…

N4N1 N2 N3

Repartitioning during aggregation

80

N1
N2
N3
N4

Key

…

A

B

C

D

…

N4N1 N2 N3

Repartitioning during aggregation

81

N1
N2
N3

N4N1 N2 N3

N4

Problems with repartitioning

1. All-to-all does not scale 2. Destination is overwhelmed

82

0

1

2

3

4

 512 8,192 131,072Th
ro

ug
hp

ut
 p

er
 n

od
e

(G
B/

s)

CPU cores

2

3 4
{B, C, A}

1 {D, F, E}

{C, A, B}

Communication Time
2 -> 1; 3 -> 1; 4 -> 1 9

GRASP: a GReedy Aggregation
Scheduling Protocol
1. Communicates in pairs 2. Leverages similarity

83

0

1

2

3

4

 512 8,192 131,072Th
ro

ug
hp

ut
 p

er
 n

od
e

(G
B/

s)

CPU cores

2

3 4
{B, C, A}

1 {D, F, E}

{C, A, B}

Phase Communication Time
1 2 -> 1; 4 -> 3

6
2 3 -> 1

1

1

2

GRASP

• SSE-hard to approximate optimal aggregation
– At least as hard as Small Set Expansion problem
– Hard to approximate within any constant factor, assuming

SSE is hard to approximate

• GRASP is a heuristic that builds an aggregation tree
based on data similarity
– Prior work (LOOM, Orchestra) focuses on the network, not

the data distribution

84

GRASP

0

1

2

3

4

MODIS datasetSp
ee

du
p

ov
er

 R
ep

ar
tit

io
ni

ng

Repartition
Preagg + Repartition
LOOM
GRASP

85

Compute minhash
on local partition

Estimate size
of every pair

Compute minhash
on local partition
Compute minhash
on local partition
Compute minhash
on local partition
Compute minhash
on local partition
Compute minhash
on local partition
Compute minhash
on local partition
Compute minhash
on local partition

Estimate future
communication

savings

Select pairs
for this phaseDone?

Next phase

Generate plan
fragments

Execute plan
locally

Execute plan
locally

Execute plan
locally

Execute plan
locally

Execute plan
locally

Execute plan
locally

Yes

2×
3×

Data processing at scale

86

Algorithms

Systems

Hardware-conscious
implementations

How to use a fast NIC?

87

Sockets
TCP, UDP

IB Verbs
InfiniBand, RoCE, iWARP

Vendor-specific interface

GNI
Cray

PSM2
OmniPath

MPI-compliant library

...

+ Acceptable performance
+ Standardized API
- Opaque memory management
- Brittle performance (“user error”)

+ Ubiquitous
- Poor performance

+ Good performance
+ Standardized interface
- Limited application surface

+ Best performance
+ Rich feature set
- Engineering effort vs. benefit
- Vendor lock-in concerns

Data shuffling with RDMA

88

RDMA-based exchange
operator, 4× faster than MPI

0
2
4
6
8

10
12

Repartition BroadcastTh
ro

ug
hp

ut
 p

er
 n

od
e

(G
B/

se
c)

Communication Pattern

Directly use RDMA
Use MPI with RDMA support

4×

“MPI already uses RDMA,
one can’t go much faster”

Myth #2

Contribution [EuroSys’17]

Communication abstractions
for data-intensive computing

Opportunity ahead

Scaling the network is expensive

89

0

50

100

150

200

Local memory Remote memory

Ba
nd

w
id

th
 (G

B/
s)

15×

• The bottleneck is often
network throughput

• Goal: Transfer data
at line rate

RDMA background

90

Memory

Node 0

Node 1

Memory

Send
Queue

WRITE

Node 1
is passive

Memory

Node 0

Node 1

Memory

Send
Queue

SEND

Receive
Queue

RECV

Shared memory primitive Message passing primitive

Both nodes
are active

Key questions from prior work
• Chen et al. [EuroSys’16]

• Kalia et al. [OSDI’16]

• Barthels et al.
[SIGMOD’15, VLDB’17]

• Rodiger et al. [VLDB’16]

• Can one-sided primitives help?

• Is unreliable delivery tolerable?

• Is MPI good enough?
• How to accelerate all queries, and

not just joins?

• How to avoid contention for the
communication multiplexer?

91

Challenges

• Isolate the complexity for RDMA
– Manage memory registration
– Anticipate packets may arrive out of order
– Support different implementations: RDMA, MPI, IPoIB, …

• Identify promising design choices
– Compare both two-sided and one-sided primitives
– Consider both UD and RC transport

• Balance between number of Queue Pairs and thread contention

92

The endpoint abstraction

• The endpoint hides the complexity of synchronization and
memory management in RDMA communication
– A uniform abstraction for communication

• One shuffle operator can have one or multiple endpoints
• All functions are thread-safe

94

GetFree()

Send()
endpoint

GetData()

Release()
NetworkSend endpoint

Buffer
5
8

A
F

Receive
Buffer
5
8

A
F

Buffer
5
8

A
F

Design choices

• RDMA transport service type
– Unreliable Datagram (UD)
– Reliable Connection (RC)

• RDMA primitive
– RDMA Send/Receive (SR)
– RDMA Read (RD)

• How many endpoints in the
shuffling operator
– Single Endpoint (SE)
– Multiple Endpoints (ME)

95

RDMA
Primitive

RDMA
transport

Endpoints

Read

Send/Receive

Unreliable
Datagram

Reliable
Connection

Single
Endpoint

Multiple
Endpoints

Design choices

97

RDMA Primitive

Endpoints

Read

Send/Receive

Unreliable
Datagram

Reliable
Connection

Single
Endpoint

Multiple
Endpoints

RDMA transport

Not availableNot available

Algorithms

98

RDMA Primitive

RDMA transport

Endpoints
MESQ/SR MEMQ/SR

SEMQ/SRSESQ/SR

MEMQ/RD

SEMQ/RD

0

1

2

3

4

5

6

Repartition Broadcast

Communication Pattern

FDR InfiniBand

Throughput comparison (16 nodes)

99

MEMQ/SR MEMQ/RD MESQ/SR SEMQ/SR
SEMQ/RD SESQ/SR MPI IPoIB

Re
ce

iv
e

th
ro

ug
hp

ut
 p

er
 n

od
e

(G
B/

s)

0

2

4

6

8

10

12

Repartition Broadcast

Communication Pattern

EDR InfiniBand

Re
ce

iv
e

th
ro

ug
hp

ut
 p

er
 n

od
e

(G
B/

s)

4×

RDMA is 4×
faster than MPI

0

1

2

3

4

5

6

Repartition Broadcast

Communication Pattern

FDR InfiniBand

Throughput comparison (16 nodes)

100

Re
ce

iv
e

th
ro

ug
hp

ut
 p

er
 n

od
e

(G
B/

s)

0

2

4

6

8

10

12

Repartition Broadcast

Communication Pattern

EDR InfiniBand

Re
ce

iv
e

th
ro

ug
hp

ut
 p

er
 n

od
e

(G
B/

s)

Send/Receive
works wellMEMQ/SR MEMQ/RD MESQ/SR SEMQ/SR

SEMQ/RD SESQ/SR MPI IPoIB

0

2

4

6

8

10

12

1 10 100Re
ce

iv
e

th
ro

ug
hp

ut
 p

er
 n

od
e

(G
B/

s)

Number of Queue Pairs per operator

Reliable Connection Unreliable Datagram

Resources needed (16 nodes)

101

Constant

MESQ/SR

SESQ/SR

MEMQ/SR
SEMQ/SR

Unreliable Datagram scales better

2 7 14 161 32 112 224

Proportional to cluster size

Evaluation using TPC-H queries

• Evaluate with TPC-H Q3, Q4
and Q10

• Every node stores 100 GB of
data in memory

102

Agg

Network
Receive

Send

Shuffle 1

Join

Network
Receive

Send

Shuffle 2

Network
Receive

Send

Shuffle 3

Network
Receive

Send

Shuffle 4

Network
Receive

Send

Shuffle 5

Join

Join

Scan

Scan

Scan

Scan

Evaluation using TPC-H queries

104

0

1

2

3

4

5

6

2 4 8 16

Re
sp

on
se

 ti
m

e
(s

ec
on

ds
)

Cluster size

Q4

0

2

4

6

8

10

12

2 4 8 16

Re
sp

on
se

 ti
m

e
(s

ec
on

ds
)

Cluster size

Q3

0

10

20

30

40

50

2 4 8 16

Re
sp

on
se

 ti
m

e
(s

ec
on

ds
)

Cluster size

Q10

MPI MESQ/SR

2x2×

RDMA-aware shuffling
improves performance by 2×

What’s wrong with MPI?
Data-intensive computing
• Thread-centric, heterogeneous
• Data-driven communication

• Transactional consistency
on objects

• QoS: message priority, ordering
• Tolerate failures
• Elasticity, high availability

MPI
• Process-centric, homogeneous
• Collective operations within

static communication group
• Consistency based on

epochs and window locks
• Undefined by standard
• Error out
• Unsupported, very hard for

general applications

107

Need new communication abstractions
for data-intensive computing

108

A proposal: RDMO

NICCPU CPUNIC

Example: append to slotted page

if (page I’m looking for) {
try to allocate space;
if (allocation successful) {

write data
} else {

reset free pointer
}

}

METADATA FREE

TUP 1TUP 23

TUP

• Remote
Direct
Memory
Operations

• Perform short
sequences of read,
write and atomics in a
single round-trip

109

A proposal: RDMO

NICCPU CPUNIC

Example: append to slotted page

if (page I’m looking for) {
try to allocate space;
if (allocation successful) {

write data
} else {

reset free pointer
}

}

METADATA FREE

TUP 1TUP 23

TUP

RDMA
Read

• Remote
Direct
Memory
Operations

• Perform short
sequences of read,
write and atomics in a
single round-trip

110

A proposal: RDMO

NICCPU CPUNIC

Example: append to slotted page

if (page I’m looking for) {
try to allocate space;
if (allocation successful) {

write data
} else {

reset free pointer
}

}

METADATA FREE

TUP 1TUP 23

TUP

RDMA
Fetch-and-Add

• Remote
Direct
Memory
Operations

• Perform short
sequences of read,
write and atomics in a
single round-trip

111

A proposal: RDMO

NICCPU CPUNIC

Example: append to slotted page

if (page I’m looking for) {
try to allocate space;
if (allocation successful) {

write data
} else {

reset free pointer
}

}

METADATA FREE

TUP 1TUP 23

TUP

• Remote
Direct
Memory
Operations

• Perform short
sequences of read,
write and atomics in a
single round-trip

112

A proposal: RDMO

NICCPU CPUNIC

Example: append to slotted page

if (page I’m looking for) {
try to allocate space;
if (allocation successful) {

write data
} else {

reset free pointer
}

}

METADATA FREE

TUP 1TUP 23

TUP

RDMA
Write

TUP 4

• Remote
Direct
Memory
Operations

• Perform short
sequences of read,
write and atomics in a
single round-trip

113

A proposal: RDMO

NICCPU CPUNIC

Example: append to slotted page

RDMA Read1

RDMA Fetch-and-Add2

RDMA Write3

• Remote
Direct
Memory
Operations

• Perform short
sequences of read,
write and atomics in a
single round-trip

114

A proposal: RDMO

NICCPU

RDMO

CPUNIC

Example: append to slotted page

if (page I’m looking for) {
try to allocate space;
if (allocation successful) {

write data
} else {

reset free pointer
}

}

METADATA FREE

TUP 1TUP 23

TUP

install
RDMO

• Remote
Direct
Memory
Operations

• Perform short
sequences of read,
write and atomics in a
single round-trip

115

A proposal: RDMO

NICCPU CPUNIC

Example: append to slotted page

METADATA FREE

TUP 1TUP 23

TUP

RDMO
invocation

TUP 4

RDMO

• Remote
Direct
Memory
Operations

• Perform short
sequences of read,
write and atomics in a
single round-trip

Data processing meets massive scale

116

Run one query as fast as possible
using a warehouse-scale computer

GOAL

Data processing meets massive scale

118

Algorithms

Systems

Hardware-conscious
implementations

Take aways

ArrayBridge: database processing
over TB-sized HDF5 datasets

119

1

GRASP: a network-aware greedy aggregation
scheduling protocol based on dataset similarity2

An RDMA-based data shuffling operator
exchanges data at line rate, 4× faster than MPI3

Acknowledgments

120

Current and former students:

Collaborators, colleagues:

Funding, resources:

	Scaling database systems to �high-performance computers
	Data processing at scale
	Data processing at scale
	Data processing at scale
	Why not a database system?
	Data processing at scale
	Take aways
	Supernovae detection pipeline
	Supernovae detection:�Palomar Transient Factory (PTF)
	Slide Number 10
	The HDF5 scientific file format
	The PTF data processing pipeline
	Status quo
	Status quo
	Status quo
	Mind the gap
	ArrayBridge
	ArrayBridge
	ArrayBridge
	ArrayBridge
	SciDB meets scientific computing
	SciDB meets scientific computing
	Current state: two silos
	ArrayBridge overview
	Problem 1: Loading is slow in SciDB
	Reading in ArrayBridge
	Reading in ArrayBridge
	Problem 2: Saving doesn’t scale
	Problem 2: Saving doesn’t scale
	Parallel writing in ArrayBridge
	Parallel writing in ArrayBridge
	Experimental evaluation
	Read performance on 1.5 TB array
	Time to insight
	Writing performance
	Real dataset: VPIC
	Real dataset: VPIC
	ArrayBridge
	Smarter I/O for Large Array Processing
	Capture I/O patterns at scale
	Small array challenge
	Small array challenge
	Software stack
	Throughput
	Goals
	System architecture
	Optimization workflow
	I/O acceleration techniques
	Experimental evaluation
	Experiment setup
	Consolidation impact
	Optimization impact
	Data processing at scale
	High-cardinality aggregation
	Aggregation in MODIS
	Aggregation in MODIS
	Aggregation in MODIS
	Aggregation in MODIS
	Aggregation in MODIS
	Aggregation in MODIS
	Aggregation in MODIS
	Aggregation in MODIS
	Aggregation in MODIS
	Aggregation in MODIS
	Aggregation in MODIS
	Aggregation in MODIS
	Aggregation in MODIS
	Aggregation in MODIS
	Repartitioning during aggregation
	Repartitioning during aggregation
	Problems with repartitioning
	GRASP: a GReedy Aggregation Scheduling Protocol
	GRASP
	GRASP
	Data processing at scale
	How to use a fast NIC?
	Data shuffling with RDMA
	Scaling the network is expensive
	RDMA background
	Key questions from prior work
	Challenges
	The endpoint abstraction
	Design choices
	Design choices
	Algorithms
	Throughput comparison (16 nodes)
	Throughput comparison (16 nodes)
	Resources needed (16 nodes)
	Evaluation using TPC-H queries
	Evaluation using TPC-H queries
	What’s wrong with MPI?
	A proposal: RDMO
	A proposal: RDMO
	A proposal: RDMO
	A proposal: RDMO
	A proposal: RDMO
	A proposal: RDMO
	A proposal: RDMO
	A proposal: RDMO
	Data processing meets massive scale
	Data processing meets massive scale
	Take aways
	Acknowledgments

