
Scaling database systems to 
high-performance computers 

Spyros Blanas



Data processing at scale
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Xeon CPU core count

Traditional DBMS

?How does one manage data at this scale?



Data processing at scale

• Warehouse-scale computers
– Scientific supercomputers
– Cloud
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Focus: Run one query as fast as possible on entire datacenter

Data processing at scale



Supernovae 
detection

Disaster 
response

Plasma physics Computational 
neuroscience

Why not a database system?

Compute-intensive programs Scalability & efficiency
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Massive I/O 
concurrency 3D-stacked DRAM

RDMA-capable 
networking

Unique network 
topologies

1 2



Data processing at scale
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Algorithms

Systems

Hardware-conscious 
implementations



Take aways

ArrayBridge: database processing 
over TB-sized HDF5 datasets
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1

GRASP: a network-aware greedy aggregation 
scheduling protocol based on dataset similarity2

An RDMA-based data shuffling operator 
exchanges data at line rate, 4× faster than MPI3



Supernovae detection pipeline
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Image processing

Image subtraction

Classification

Telescope
Real or bogus?

Classification

Image subtraction

Image processing

Telescope
Raw imageAlign, normalize, segment

Before After Diff

Image credit: PTF @ LBNL and ASAS-SN @ Ohio State



Supernovae detection:
Palomar Transient Factory (PTF)

• Supernova caught 11 
hours after explosion
– 1 million times too dim 

to see with naked eye

• The 5th brightest 
supernova in 100 years
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The HDF5 scientific file format

• Container for diverse 
scientific datasets

• Advantages vs. text files
– Convenience
– Compactness
– Metadata support
– Interoperability
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HDF5 is mature
and widely supported

netCDF-4 uses HDF5



The PTF data processing pipeline
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PARALLEL FILE SYSTEM

Raw image 
capture

Announce 
finding

Convert to 
HDF5 format

Segmentation

HDF5 library

Subtraction

HDF5 library

Classification

HDF5 library

COMPUTE NODES



Status quo

13

Data in the DBMS



Status quo
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Data outside the DBMS

Data in the DBMS



Status quo
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Data management without database systems

Users write code to run a simple analysis on massive data



Mind the gap
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User writes code to 
manipulate files with data

Established data model

Declarative query language

Query optimization Data in DBMS

Data outside DBMS



ArrayBridge
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Myth #1

“Our data is so big that writing code is 
faster than using a DBMS”

ArrayBridge: database processing 
directly on HDF5 data

Contribution [ICDE’18]



ArrayBridge

• Keep identical API for 
backwards compatibility

• Discover application-
specific I/O patterns

• Inject optimizations 
into I/O path
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File format library

Parallel file system

Data management 
runtime

Application

ArrayBridge



ArrayBridge
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File format library

Parallel file system

ArrayBridge

Application

SciDB

TensorFlow

TileDB



ArrayBridge
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File format library

Parallel file system

ArrayBridge

Application

SciDB

TensorFlow

TileDB



SciDB meets scientific computing

21

File format library

Parallel file system

ArrayBridge

Application

SciDB



SciDB meets scientific computing
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SciDB HDF5

Load

Save



SciDB worker
SciDB worker

Current state: two silos
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SciDB coordinator

Declarative
(AQL, AFL)

SciDB worker

SciDB executor

SciDB storage mgr

Metadata 
store

Imperative
(C, Fortran)

HDF5 library

MPI



SciDB worker
SciDB worker

ArrayBridge overview
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SciDB coordinator

Declarative
(AQL, AFL)

SciDB worker

SciDB storage mgr

Metadata 
store

Imperative
(C, Fortran)

MPI

HDF5 library

SciDB executor

ArrayBridge
ReadOp WriteOp



Problem 1: Loading is slow in SciDB
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Loading 1TB in SciDB takes 7.5 hours, 4TB of space



Reading in ArrayBridge
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HDF5 file

SciDB
instance 0

ArrayBridge
ReadOp

0

SciDB
instance 1

SciDB
instance 2

μ

1 2



Reading in ArrayBridge
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HDF5 file

SciDB
instance 0

HDF5-based 
program

ArrayBridge
ReadOp

0

SciDB
instance 1

SciDB
instance 2

μ

1 2



Compute

Switching fabric

Cold Storage

Problem 2: Saving doesn’t scale
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High-end computer

SWMR limitation
(Single Writer, Many Readers)

write concurrency ≈ 1

Fundamental problem: 
write concurrency



Problem 2: Saving doesn’t scale
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Parallel writing in ArrayBridge

• ArrayBridge uses virtual datasets in HDF5
– Recent (2016) feature, introduced in HDF5 1.10
– Virtual dataset = a non-materialized view
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HDF5 file

A B C

A
C

B Virtual dataset

V



HDF5 file

SciDB
instance 0

Parallel writing in ArrayBridge

SciDB
instance 1

SciDB
instance 2

HDF5-based 
program

ArrayBridge
WriteOp



Experimental evaluation

• High-performance computer, Cray XC40
– 52,160 CPU cores
– 204 TB memory
– 10,168 HDDs
– 30 PB cold storage

• Shared resource
– Reporting variance when significant

36



Read performance on 1.5 TB array
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Time to insight
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Writing performance
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Real dataset: VPIC

• Particle-in-cell simulation
• One 43TB array in HDF5

– Per step of the simulation!

• Dataset:
– Particle ID (1D)
– Particle position (3D)
– Particle velocity (3D)

• Query: Filter & Group By
– Find high energy regions

40

Plasma physics



Real dataset: VPIC
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ArrayBridge
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ArrayBridge: database processing on HDF5 files

Contribution [ICDE’18]

Transparent I/O management, cost-based 
optimization from imperative applications

Opportunity ahead

http://code.osu.edu/arraybridge



Smarter I/O for Large Array Processing

1. What are the I/O patterns of large-scale applications 
with complex data structures?

2. How to arrange complex objects in disk blocks?
3. How do we automate I/O optimization?
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Capture I/O patterns at scale

46

• Diverse analytical core
– Ad-hoc reuse of older codes
– Problem-specific 

optimizations

• Homogenous periphery, 
common tools for:
– Parallelism & task 

management
– Communication & data transfer
– I/O to cold storage

Analytical
core



Small array challenge
• A file per array

– I/O takes 200⨉ to 700⨉ longer than compute
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Small array challenge
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Too many small I/O requests!



Software stack
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HDF5
Application

Data stores

TileDB

HadoopFS

Redis

Main memory storage

File system
Henosis

Fast locally attached 
storage, e.g. SSD, NVMe



Throughput
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Goals

• Store arrays on heterogeneous data stores
– Without modifying applications

• Accelerate I/O
– Improve the performance of each request
– Reduce the number of requests

• Automatically decide the array storage layout
– Which data store should an array be placed in?
– How do we store small arrays in chunks?
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System architecture
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HDF5

I/O Interceptor

Redis Driver TileDB Driver

TileDB
HadoopFS

Redis

Storage Tuner

Henosis

Application

Virtual Object Layer
File system

read

get



Optimization workflow
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Henosis observes access pattern

Optimization

Tune array storage
Access pattern

Storage plan

Optimization



I/O acceleration techniques

• Placement • Consolidation

56

a1 a2 a3 a4 a6a5

Process 1 Process 2

a3 a4

Redis

a1 a2 a5 a6

TileDB

Process 1 Process 2

Chunk 1 Chunk 2



Experimental evaluation

• How effective is consolidation?
– Compare with reading small arrays directly

• What is the performance gain from optimization?
– Compare with consolidation only
– Compare with consolidating and placing 

independently
• Consolidate-then-place
• Place-then-consolidate

57



Experiment setup

• Supernova detection
– Dataset

• 11,889 astronomy images
• 21 × 21 pixels per image

– Configuration
• 9 nodes

• Vortices prediction
– Dataset

• 2000 timestamps
• 160,000 vortices 
• 8KB/vortex

– Configuration
• 9 nodes

58
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Consolidate-then-place 
tends to store 

unfrequently accessed 
small arrays in Redis

Place-then-consolidate 
tends to spread frequently 
co-accessed small arrays 

into two data stores

2.8⨉



Data processing at scale

61

Algorithms

Systems

Hardware-conscious 
implementations



High-cardinality aggregation

62

Problem

Aggregation based on repartitioning (1) does not use the 
network efficiently and (2) often transfers redundant data

GRASP, a GReedy Aggregation Scheduling Protocol:
network-aware scheduling based on dataset similarity

Contribution [VLDB’19]



Aggregation in MODIS
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Aggregation in MODIS
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Aggregation in MODIS
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Aggregation in MODIS
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Aggregation in MODIS
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Aggregation in MODIS
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Aggregation in MODIS
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Aggregation in MODIS

73



Aggregation in MODIS
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Aggregation in MODIS
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Aggregation in MODIS
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A few values per group

Millions of groups
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Repartitioning during aggregation
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Repartitioning during aggregation
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Problems with repartitioning

1. All-to-all does not scale 2. Destination is overwhelmed
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GRASP: a GReedy Aggregation 
Scheduling Protocol
1. Communicates in pairs 2. Leverages similarity
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GRASP

• SSE-hard to approximate optimal aggregation
– At least as hard as Small Set Expansion problem
– Hard to approximate within any constant factor, assuming 

SSE is hard to approximate

• GRASP is a heuristic that builds an aggregation tree 
based on data similarity
– Prior work (LOOM, Orchestra) focuses on the network, not 

the data distribution

84



GRASP
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Data processing at scale
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Algorithms

Systems

Hardware-conscious 
implementations



How to use a fast NIC?
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Sockets
TCP, UDP

IB Verbs
InfiniBand, RoCE, iWARP

Vendor-specific interface

GNI
Cray

PSM2
OmniPath

MPI-compliant library

...

+ Acceptable performance
+ Standardized API
- Opaque memory management
- Brittle performance (“user error”)

+ Ubiquitous
- Poor performance

+ Good performance
+ Standardized interface
- Limited application surface

+ Best performance
+ Rich feature set
- Engineering effort vs. benefit
- Vendor lock-in concerns



Data shuffling with RDMA
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RDMA-based exchange 
operator, 4× faster than MPI
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Myth #2

Contribution [EuroSys’17]

Communication abstractions 
for data-intensive computing

Opportunity ahead



Scaling the network is expensive
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• The bottleneck is often 
network throughput

• Goal: Transfer data 
at line rate



RDMA background
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Memory

Node 0

Node 1

Memory

Send 
Queue

WRITE

Node 1 
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Memory
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Memory

Send 
Queue

SEND
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Shared memory primitive Message passing primitive

Both nodes 
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Key questions from prior work
• Chen et al. [EuroSys’16]

• Kalia et al. [OSDI’16]

• Barthels et al. 
[SIGMOD’15, VLDB’17]

• Rodiger et al. [VLDB’16]

• Can one-sided primitives help?

• Is unreliable delivery tolerable?

• Is MPI good enough?
• How to accelerate all queries, and 

not just joins?

• How to avoid contention for the 
communication multiplexer?
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Challenges

• Isolate the complexity for RDMA
– Manage memory registration
– Anticipate packets may arrive out of order
– Support different implementations: RDMA, MPI, IPoIB, …

• Identify promising design choices
– Compare both two-sided and one-sided primitives
– Consider both UD and RC transport

• Balance between number of Queue Pairs and thread contention

92



The endpoint abstraction

• The endpoint hides the complexity of synchronization and 
memory management in RDMA communication
– A uniform abstraction for communication

• One shuffle operator can have one or multiple endpoints
• All functions are thread-safe
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Design choices

• RDMA transport service type
– Unreliable Datagram (UD)
– Reliable Connection (RC)

• RDMA primitive
– RDMA Send/Receive (SR)
– RDMA Read (RD)

• How many endpoints in the 
shuffling operator
– Single Endpoint (SE)
– Multiple Endpoints (ME)
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RDMA 
transport

Endpoints
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Unreliable 
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Multiple 
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Design choices

97

RDMA Primitive
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RDMA transport

Not availableNot available



Algorithms
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RDMA Primitive

RDMA transport

Endpoints
MESQ/SR MEMQ/SR

SEMQ/SRSESQ/SR

MEMQ/RD

SEMQ/RD
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Constant

MESQ/SR
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MEMQ/SR
SEMQ/SR

Unreliable Datagram scales better

2 7 14 161 32 112 224

Proportional to cluster size



Evaluation using TPC-H queries

• Evaluate with TPC-H Q3, Q4 
and Q10

• Every node stores 100 GB of 
data in memory
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Evaluation using TPC-H queries
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What’s wrong with MPI?
Data-intensive computing
• Thread-centric, heterogeneous
• Data-driven communication

• Transactional consistency 
on objects

• QoS: message priority, ordering
• Tolerate failures
• Elasticity, high availability

MPI
• Process-centric, homogeneous
• Collective operations within 

static communication group
• Consistency based on 

epochs and window locks
• Undefined by standard
• Error out
• Unsupported, very hard for 

general applications
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Need new communication abstractions 
for data-intensive computing
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A proposal: RDMO

NICCPU CPUNIC

Example: append to slotted page

if (page I’m looking for) {
try to allocate space;
if (allocation successful)  {

write data
} else {

reset free pointer
}

}

METADATA FREE

TUP 1TUP 23

TUP

• Remote 
Direct 
Memory 
Operations

• Perform short 
sequences of read, 
write and atomics in a 
single round-trip
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A proposal: RDMO

NICCPU CPUNIC

Example: append to slotted page

if (page I’m looking for) {
try to allocate space;
if (allocation successful)  {

write data
} else {

reset free pointer
}

}

METADATA FREE

TUP 1TUP 23

TUP

RDMA
Read

• Remote 
Direct 
Memory 
Operations

• Perform short 
sequences of read, 
write and atomics in a 
single round-trip
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A proposal: RDMO

NICCPU CPUNIC

Example: append to slotted page

if (page I’m looking for) {
try to allocate space;
if (allocation successful)  {

write data
} else {

reset free pointer
}

}

METADATA FREE

TUP 1TUP 23

TUP

RDMA
Fetch-and-Add

• Remote 
Direct 
Memory 
Operations

• Perform short 
sequences of read, 
write and atomics in a 
single round-trip
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A proposal: RDMO

NICCPU CPUNIC

Example: append to slotted page

if (page I’m looking for) {
try to allocate space;
if (allocation successful)  {

write data
} else {

reset free pointer
}

}

METADATA FREE

TUP 1TUP 23

TUP

• Remote 
Direct 
Memory 
Operations

• Perform short 
sequences of read, 
write and atomics in a 
single round-trip
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A proposal: RDMO

NICCPU CPUNIC

Example: append to slotted page

if (page I’m looking for) {
try to allocate space;
if (allocation successful)  {

write data
} else {

reset free pointer
}

}

METADATA FREE

TUP 1TUP 23

TUP

RDMA
Write

TUP 4

• Remote 
Direct 
Memory 
Operations

• Perform short 
sequences of read, 
write and atomics in a 
single round-trip
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A proposal: RDMO

NICCPU CPUNIC

Example: append to slotted page

RDMA Read1

RDMA Fetch-and-Add2

RDMA Write3

• Remote 
Direct 
Memory 
Operations

• Perform short 
sequences of read, 
write and atomics in a 
single round-trip
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A proposal: RDMO

NICCPU

RDMO

CPUNIC

Example: append to slotted page

if (page I’m looking for) {
try to allocate space;
if (allocation successful)  {

write data
} else {

reset free pointer
}

}

METADATA FREE

TUP 1TUP 23

TUP

install
RDMO

• Remote 
Direct 
Memory 
Operations

• Perform short 
sequences of read, 
write and atomics in a 
single round-trip
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A proposal: RDMO

NICCPU CPUNIC

Example: append to slotted page

METADATA FREE

TUP 1TUP 23

TUP

RDMO
invocation

TUP 4

RDMO

• Remote 
Direct 
Memory 
Operations

• Perform short 
sequences of read, 
write and atomics in a 
single round-trip



Data processing meets massive scale
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Run one query as fast as possible 
using a warehouse-scale computer

GOAL



Data processing meets massive scale
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Algorithms

Systems

Hardware-conscious 
implementations



Take aways

ArrayBridge: database processing 
over TB-sized HDF5 datasets
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1

GRASP: a network-aware greedy aggregation 
scheduling protocol based on dataset similarity2

An RDMA-based data shuffling operator 
exchanges data at line rate, 4× faster than MPI3



Acknowledgments

120

Current and former students:

Collaborators, colleagues:

Funding, resources:


	Scaling database systems to �high-performance computers 
	Data processing at scale
	Data processing at scale
	Data processing at scale
	Why not a database system?
	Data processing at scale
	Take aways
	Supernovae detection pipeline
	Supernovae detection:�Palomar Transient Factory (PTF)
	Slide Number 10
	The HDF5 scientific file format
	The PTF data processing pipeline
	Status quo
	Status quo
	Status quo
	Mind the gap
	ArrayBridge
	ArrayBridge
	ArrayBridge
	ArrayBridge
	SciDB meets scientific computing
	SciDB meets scientific computing
	Current state: two silos
	ArrayBridge overview
	Problem 1: Loading is slow in SciDB
	Reading in ArrayBridge
	Reading in ArrayBridge
	Problem 2: Saving doesn’t scale
	Problem 2: Saving doesn’t scale
	Parallel writing in ArrayBridge
	Parallel writing in ArrayBridge
	Experimental evaluation
	Read performance on 1.5 TB array
	Time to insight
	Writing performance
	Real dataset: VPIC
	Real dataset: VPIC
	ArrayBridge
	Smarter I/O for Large Array Processing
	Capture I/O patterns at scale
	Small array challenge
	Small array challenge
	Software stack
	Throughput
	Goals
	System architecture
	Optimization workflow
	I/O acceleration techniques
	Experimental evaluation
	Experiment setup
	Consolidation impact
	Optimization impact
	Data processing at scale
	High-cardinality aggregation
	Aggregation in MODIS
	Aggregation in MODIS
	Aggregation in MODIS
	Aggregation in MODIS
	Aggregation in MODIS
	Aggregation in MODIS
	Aggregation in MODIS
	Aggregation in MODIS
	Aggregation in MODIS
	Aggregation in MODIS
	Aggregation in MODIS
	Aggregation in MODIS
	Aggregation in MODIS
	Aggregation in MODIS
	Repartitioning during aggregation
	Repartitioning during aggregation
	Problems with repartitioning
	GRASP: a GReedy Aggregation Scheduling Protocol
	GRASP
	GRASP
	Data processing at scale
	How to use a fast NIC?
	Data shuffling with RDMA
	Scaling the network is expensive
	RDMA background
	Key questions from prior work
	Challenges
	The endpoint abstraction
	Design choices
	Design choices
	Algorithms
	Throughput comparison (16 nodes)
	Throughput comparison (16 nodes)
	Resources needed (16 nodes)
	Evaluation using TPC-H queries
	Evaluation using TPC-H queries
	What’s wrong with MPI?
	A proposal: RDMO
	A proposal: RDMO
	A proposal: RDMO
	A proposal: RDMO
	A proposal: RDMO
	A proposal: RDMO
	A proposal: RDMO
	A proposal: RDMO
	Data processing meets massive scale
	Data processing meets massive scale
	Take aways
	Acknowledgments

