Scaling database systems to high-performance computers

Spyros Blanas

- Warehouse-scale computers
	- Scientific supercomputers
	- Cloud

Focus: Run one query as fast as possible on entire datacenter

Why not a database system?

Compute-intensive programs Team Scalability & efficiency 1 2

Supernovae detection

Disaster response

Massive I/O concurrency

3D-stacked DRAM

Plasma physics Computational neuroscience

RDMA-capable networking

Unique network topologies

Systems

Algorithms

Hardware-conscious implementations

Take aways

ArrayBridge: database processing over TB-sized HDF5 datasets

1

GRASP: a network-aware **gr**eedy **a**ggregation **1998** Scheduling **protocol based on dataset similarity**

An RDMA-based data shuffling operator exchanges data at line rate, 4x faster than MPI

Supernovae detection pipeline

Image credit: PTF @ LBNL and ASAS-SN @ Ohio State

Supernovae detection: Palomar Transient Factory (PTF)

- Supernova caught 11 hours after explosion
	- 1 million times too dim to see with naked eye
- The 5th brightest supernova in 100 years

The HDF5 scientific file format

- Container for diverse scientific datasets
- Advantages vs. text files
	- Convenience
	- Compactness
	- Metadata support
	- Interoperability

HDF5 is mature and widely supported

netCDF-4 uses HDF5

The PTF data processing pipeline

Status quo

Status quo

Data management without database systems

Users **write code** to run a simple analysis on massive data

Myth #1

"Our data is so big that writing code is faster than using a DBMS"

Contribution [ICDE'18]

ArrayBridge: database processing directly on HDF5 data

- Keep identical API for backwards compatibility
- Discover applicationspecific I/O patterns
- Inject optimizations into I/O path

SciDB meets scientific computing

Current state: two silos

ArrayBridge overview

Problem 1: Loading is slow in SciDB

Loading 1TB in SciDB takes 7.5 hours, 4TB of space

Reading in ArrayBridge

Reading in ArrayBridge

Problem 2: Saving doesn't scale

Problem 2: Saving doesn't scale

Parallel writing in ArrayBridge

- ArrayBridge uses *virtual datasets* in HDF5
	- Recent (2016) feature, introduced in HDF5 1.10
	- Virtual dataset = a non-materialized view

Parallel writing in ArrayBridge

Experimental evaluation

- High-performance computer, Cray XC40
	- 52,160 CPU cores
	- 204 TB memory
	- 10,168 HDDs
	- 30 PB cold storage
- Shared resource
	- Reporting variance when significant

Read performance on 1.5 TB array

Time to insight

- 1 TiB Data
- 100 consecutive

Writing performance

Real dataset: VPIC

- Particle-in-cell simulation
- One 43TB array in HDF5
	- Per step of the simulation!
- Dataset:
	- Particle ID (1D)
	- Particle position (3D)
	- Particle velocity (3D)
- Query: Filter & Group By
	- Find high energy regions

Plasma physics

Real dataset: VPIC

ArrayBridge

Contribution [ICDE'18]

ArrayBridge: database processing on HDF5 files

http://code.osu.edu/arraybridge

Opportunity ahead

Transparent I/O management, cost-based optimization from imperative applications

Smarter I/O for **L**arge **A**rray **P**rocessing

- 1. What are the I/O patterns of large-scale applications with complex data structures?
- 2. How to arrange complex objects in disk blocks?
- 3. How do we automate I/O optimization?

Capture I/O patterns at scale

- Diverse analytical core
	- Ad-hoc reuse of older codes
	- Problem-specific optimizations
- Homogenous periphery, common tools for:
	- Parallelism & task management
	- Communication & data transfer
	- I/O to cold storage

Small array challenge

- A file per array
	- $-$ I/O takes 200 \times to 700 \times longer than compute

Small array challenge

Too many small I/O requests!

Software stack

Throughput

Redis **HadoopFS**

Goals

- Store arrays on heterogeneous data stores – Without modifying applications
- Accelerate I/O
	- Improve the performance of each request
	- Reduce the number of requests
- Automatically decide the array storage layout
	- Which data store should an array be placed in?
	- How do we store small arrays in chunks?

System architecture

Henosis observes access pattern

Access pattern

Storage plan

I/O acceleration techniques

• Placement • Consolidation

Chunk 1 Chunk 2

Experimental evaluation

- How effective is consolidation?
	- Compare with reading small arrays directly
- What is the performance gain from optimization?
	- Compare with consolidation only
	- Compare with consolidating and placing independently
		- Consolidate-then-place
		- Place-then-consolidate

Experiment setup

- Supernova detection
	- Dataset
		- 11,889 astronomy images
		- 21 \times 21 pixels per image
	- Configuration
		- 9 nodes
- Vortices prediction
	- Dataset
		- 2000 timestamps
		- 160,000 vortices
		- 8KB/vortex
	- Configuration
		- 9 nodes

Consolidation impact

Supernova detection

Vortices prediction

Optimization impact

Vortices prediction

Data processing at scale

Systems

Algorithms

Hardware-conscious implementations

High-cardinality aggregation

Problem

Aggregation based on repartitioning (1) does not use the network efficiently and (2) often transfers redundant data

Contribution [VLDB'19]

GRASP, a **GR**eedy **A**ggregation **S**cheduling **P**rotocol: network-aware scheduling based on dataset similarity

$\overline{}$

 $\overline{}$

Repartitioning during aggregation

Repartitioning during aggregation

Problems with repartitioning

GRASP: a GReedy Aggregation Scheduling Protocol

GRASP

- SSE-hard to approximate optimal aggregation
	- At least as hard as Small Set Expansion problem
	- Hard to approximate within any constant factor, assuming SSE is hard to approximate
- GRASP is a heuristic that builds an aggregation tree based on data similarity
	- Prior work (LOOM, Orchestra) focuses on the network, not the data distribution

GRASP

Data processing at scale

Systems

Algorithms

Hardware-conscious implementations

How to use a fast NIC?

- + Acceptable performance
- + Standardized API
- Opaque memory management
- Brittle performance ("user error")
- + Ubiquitous
- Poor performance
- + Good performance
- + Standardized interface
- Limited application surface
- + Best performance
- + Rich feature set
- Engineering effort vs. benefit
- Vendor lock-in concerns

Data shuffling with RDMA

Myth #2

"MPI already uses RDMA, one can't go much faster"

Contribution [EuroSys'17]

RDMA-based exchange operator, 4× faster than MPI

Opportunity ahead

Communication abstractions for data-intensive computing

Scaling the network is expensive

- The bottleneck is often network throughput
- Goal: Transfer data at line rate

RDMA background

Key questions from prior work

- Chen et al. [EuroSys'16]
-
- Kalia et al. [OSDI'16]
- Barthels et al. [SIGMOD'15, VLDB'17]

- Can one-sided primitives help?
- Is unreliable delivery tolerable?
- Is MPI good enough?
- How to accelerate all queries, and not just joins?

• Rodiger et al. [VLDB'16]

• How to avoid contention for the communication multiplexer?

Challenges

- Isolate the complexity for RDMA
	- Manage memory registration
	- Anticipate packets may arrive out of order
	- Support different implementations: RDMA, MPI, IPoIB, …
- Identify promising design choices
	- Compare both two-sided and one-sided primitives
	- Consider both UD and RC transport
		- Balance between number of Queue Pairs and thread contention

The endpoint abstraction

- The endpoint hides the complexity of synchronization and memory management in RDMA communication
	- A uniform abstraction for communication
- One shuffle operator can have one or multiple endpoints
- All functions are thread-safe

Design choices

Throughput comparison (16 nodes)

Throughput comparison (16 nodes)

Resources needed (16 nodes)

Number of Queue Pairs per operator

Evaluation using TPC-H queries

- Evaluate with TPC-H Q3, Q4 and Q10
- Every node stores 100 GB of data in memory

Evaluation using TPC-H queries

What's wrong with MPI?

Data-intensive computing

- Thread-centric, heterogeneous
- Data-driven communication
- Transactional consistency on objects
- QoS: message priority, ordering
- Tolerate failures
- Elasticity, high availability

MPI

- Process-centric, homogeneous
- Collective operations within static communication group
- Consistency based on epochs and window locks
- Undefined by standard
- Error out
- Unsupported, very hard for general applications

Need new communication abstractions for data-intensive computing

- **R**emote **D**irect **M**emory **O**perations
- Perform short sequences of read, write and atomics in a single round-trip

- **R**emote **D**irect **M**emory **O**perations
- Perform short sequences of read, write and atomics in a single round-trip

- **R**emote **D**irect **M**emory **O**perations
- Perform short sequences of read, write and atomics in a single round-trip

- **R**emote **D**irect **M**emory **O**perations
- Perform short sequences of read, write and atomics in a single round-trip

- **R**emote **D**irect **M**emory **O**perations
- Perform short sequences of read, write and atomics in a single round-trip

- **R**emote **D**irect **M**emory **O**perations
- Perform short sequences of read, write and atomics in a single round-trip

- **R**emote **D**irect **M**emory **O**perations
- Perform short sequences of read, write and atomics in a single round-trip

- **R**emote **D**irect **M**emory **O**perations
- Perform short sequences of read, write and atomics in a single round-trip

Data processing meets massive scale

GOAL

Run **one query** as fast as possible using a warehouse-scale computer

Data processing meets massive scale

Systems

Algorithms

Hardware-conscious implementations

Take aways

ArrayBridge: database processing over TB-sized HDF5 datasets

1

GRASP: a network-aware **gr**eedy **a**ggregation **1998** Scheduling **protocol based on dataset similarity**

An RDMA-based data shuffling operator exchanges data at line rate, 4x faster than MPI

Acknowledgments

Current and former students:

Collaborators, colleagues:

Funding, resources:

