# Scaling database systems to high-performance computers

#### Spyros Blanas





- Warehouse-scale computers
  - Scientific supercomputers
  - Cloud



Focus: Run one query as fast as possible on entire datacenter



### Why not a database system?

**Compute-intensive programs** 

Supernovae detection



Disaster response

#### Scalability & efficiency



Massive I/O concurrency



3D-stacked DRAM



**Plasma physics** 



Computational neuroscience



RDMA-capable networking



Unique network topologies

**Systems** 

#### Algorithms

### Hardware-conscious implementations

### Take aways

ArrayBridge: database processing over TB-sized HDF5 datasets

2

GRASP: a network-aware **<u>gr</u>eedy** <u>aggregation</u> <u>scheduling</u> <u>protocol</u> based on dataset similarity

3

An RDMA-based data shuffling operator exchanges data at line rate, 4× faster than MPI

### Supernovae detection pipeline





Image credit: PTF @ LBNL and ASAS-SN @ Ohio State

### Supernovae detection: Palomar Transient Factory (PTF)



- Supernova caught 11 hours after explosion
  - 1 million times too dim to see with naked eye
- The 5<sup>th</sup> brightest supernova in 100 years



### The HDF5 scientific file format

- Container for diverse scientific datasets
- Advantages vs. text files
  - Convenience
  - Compactness
  - Metadata support
  - Interoperability



## **HDF5** is mature and widely supported

#### netCDF-4 uses HDF5

### The PTF data processing pipeline



### Status quo



# Status quo Data in the DBMS Data outside the DBMS

### Status quo

#### **Data management without database systems**

Users write code to run a simple analysis on massive data



#### Myth #1

"Our data is so big that writing code is faster than using a DBMS"

#### **Contribution** [ICDE'18]

ArrayBridge: database processing directly on HDF5 data



- Keep identical API for backwards compatibility
- Discover applicationspecific I/O patterns
- Inject optimizations into I/O path





### SciDB meets scientific computing





### Current state: two silos



### ArrayBridge overview



### Problem 1: Loading is slow in SciDB

#### Loading 1TB in SciDB takes 7.5 hours, 4TB of space



### Reading in ArrayBridge



### Reading in ArrayBridge



### Problem 2: Saving doesn't scale



### Problem 2: Saving doesn't scale



### Parallel writing in ArrayBridge

- ArrayBridge uses virtual datasets in HDF5
  - Recent (2016) feature, introduced in HDF5 1.10
  - Virtual dataset = a non-materialized view



### Parallel writing in ArrayBridge



### Experimental evaluation

- High-performance computer, Cray XC40
  - 52,160 CPU cores
  - 204 TB memory
  - 10,168 HDDs
  - 30 PB cold storage
- Shared resource
  - Reporting variance when significant



### Read performance on 1.5 TB array



### Time to insight



- 1 TiB Data
- 100 consecutive aggregations

### Writing performance



### Real dataset: VPIC

- Particle-in-cell simulation
- One 43TB array in HDF5
  - Per step of the simulation!
- Dataset:
  - Particle ID (1D)
  - Particle position (3D)
  - Particle velocity (3D)
- Query: Filter & Group By
  - Find high energy regions

#### **Plasma physics**


## Real dataset: VPIC



#### ArrayBridge

#### **Contribution** [ICDE'18]

ArrayBridge: database processing on HDF5 files

#### http://code.osu.edu/arraybridge

#### **Opportunity** ahead

Transparent I/O management, cost-based optimization from imperative applications

#### <u>S</u>marter I/O for <u>Large</u> <u>Array</u> <u>P</u>rocessing

- 1. What are the I/O patterns of large-scale applications with complex data structures?
- 2. How to arrange complex objects in disk blocks?
- 3. How do we automate I/O optimization?

# Capture I/O patterns at scale

- Diverse analytical core
  - Ad-hoc reuse of older codes
  - Problem-specific optimizations
- Homogenous periphery, common tools for:
  - Parallelism & task management
  - Communication & data transfer
  - I/O to cold storage



# Small array challenge

- A file per array
  - I/O takes 200× to 700× longer than compute



# Small array challenge

#### Too many small I/O requests!

#### Software stack



## Throughput

■ Redis ■ HadoopFS



#### Goals

- Store arrays on heterogeneous data stores

   Without modifying applications
- Accelerate I/O
  - Improve the performance of each request
  - Reduce the number of requests
- Automatically decide the array storage layout
  - Which data store should an array be placed in?
  - How do we store small arrays in chunks?

#### System architecture





Henosis observes access pattern



Access pattern



Storage plan

# I/O acceleration techniques

• Placement



Consolidation







Chunk 1 Chunk 2

### **Experimental evaluation**

- How effective is consolidation?
  - Compare with reading small arrays directly
- What is the performance gain from optimization?
  - Compare with consolidation only
  - Compare with consolidating and placing independently
    - Consolidate-then-place
    - Place-then-consolidate

### Experiment setup

- Supernova detection
  - Dataset
    - 11,889 astronomy images
    - $21 \times 21$  pixels per image
  - Configuration
    - 9 nodes

- Vortices prediction
  - Dataset
    - 2000 timestamps
    - 160,000 vortices
    - 8KB/vortex
  - Configuration
    - 9 nodes

#### **Consolidation** impact

**Supernova detection** 

#### **Vortices prediction**



# **Optimization** impact

#### **Vortices prediction**



#### Data processing at scale

**Systems** 

#### Algorithms

# Hardware-conscious implementations

# High-cardinality aggregation

#### Problem

Aggregation based on repartitioning (1) does not use the network efficiently and (2) often transfers redundant data

#### **Contribution** [VLDB'19]

GRASP, a <u>**GR**</u>eedy <u>Aggregation</u> <u>Scheduling</u> <u>Protocol</u>: network-aware scheduling based on dataset similarity



#### 



#### 



| Lat.  | Lon. |  |
|-------|------|--|
|       |      |  |
| -83.0 | 39.9 |  |
| -83.0 | 40.0 |  |
| -83.0 | 40.1 |  |
| -83.0 | 40.2 |  |
|       |      |  |



| Lat.  | Lon. |  |
|-------|------|--|
|       |      |  |
| -83.0 | 39.9 |  |
| -83.0 | 40.0 |  |
| -83.0 | 40.1 |  |
| -83.0 | 40.2 |  |
|       |      |  |



| Lat.  | Lon. |  |
|-------|------|--|
|       |      |  |
| -83.0 | 39.9 |  |
| -83.0 | 40.0 |  |
| -83.0 | 40.1 |  |
| -83.0 | 40.2 |  |
|       | •••  |  |





#### Repartitioning during aggregation

| Кеу |            |    |
|-----|------------|----|
|     |            |    |
| А   |            | N1 |
| В   |            | N2 |
| С   |            | N3 |
| D   | $\bigcirc$ | N4 |
|     |            |    |



#### Repartitioning during aggregation





# Problems with repartitioning





2. Destination is overwhelmed

#### GRASP: a GReedy Aggregation Scheduling Protocol


### GRASP

- SSE-hard to approximate optimal aggregation
  - At least as hard as Small Set Expansion problem
  - Hard to approximate within any constant factor, assuming SSE is hard to approximate
- GRASP is a heuristic that builds an aggregation tree based on data similarity
  - Prior work (LOOM, Orchestra) focuses on the network, not the data distribution

### GRASP



### Data processing at scale

**Systems** 

#### Algorithms

# Hardware-conscious implementations

### How to use a fast NIC?



- + Acceptable performance
- + Standardized API
- Opaque memory management
- Brittle performance ("user error")
- + Ubiquitous
- Poor performance
- + Good performance
- + Standardized interface
- Limited application surface
- + Best performance
- + Rich feature set
- Engineering effort vs. benefit
- Vendor lock-in concerns

# Data shuffling with RDMA

#### Myth #2

"MPI already uses RDMA, one can't go much faster"

#### **Contribution [EuroSys'17]**

RDMA-based exchange operator, 4× faster than MPI

#### **Opportunity** ahead

Communication abstractions for data-intensive computing



### Scaling the network is expensive



- The bottleneck is often network throughput
- Goal: Transfer data at line rate

# RDMA background



### Key questions from prior work

• Chen et al. [EuroSys'16]

ullet

- Kalia et al. [OSDI'16]
- Barthels et al. [SIGMOD'15, VLDB'17]



- Can one-sided primitives help?
- Is unreliable delivery tolerable?
- Is MPI good enough?
- How to accelerate all queries, and not just joins?

• Rodiger et al. [VLDB'16]



• How to avoid contention for the communication multiplexer?

# Challenges

- Isolate the complexity for RDMA
  - Manage memory registration
  - Anticipate packets may arrive out of order
  - Support different implementations: RDMA, MPI, IPoIB, ...
- Identify promising design choices
  - Compare both two-sided and one-sided primitives
  - Consider both UD and RC transport
    - Balance between number of Queue Pairs and thread contention

### The endpoint abstraction

- The endpoint hides the complexity of synchronization and memory management in RDMA communication
  - A uniform abstraction for communication
- One shuffle operator can have one or multiple endpoints
- All functions are thread-safe



### Design choices





## Algorithms



### Throughput comparison (16 nodes)



### Throughput comparison (16 nodes)



### Resources needed (16 nodes)



Number of Queue Pairs per operator

### **Evaluation using TPC-H queries**

- Evaluate with TPC-H Q3, Q4 and Q10
- Every node stores 100 GB of data in memory



### **Evaluation using TPC-H queries**



# What's wrong with MPI?

#### **Data-intensive computing**

- Thread-centric, heterogeneous
- Data-driven communication
- Transactional consistency on objects
- QoS: message priority, ordering
- Tolerate failures
- Elasticity, high availability

#### MPI

- Process-centric, homogeneous
- Collective operations within static communication group
- Consistency based on epochs and window locks
- Undefined by standard
- Error out
- Unsupported, very hard for general applications

#### Need new communication abstractions for data-intensive computing

- <u>R</u>emote
  <u>D</u>irect
  <u>M</u>emory
  <u>O</u>perations
- Perform short sequences of read, write and atomics in a single round-trip



- <u>R</u>emote
  <u>D</u>irect
  <u>M</u>emory
  <u>O</u>perations
- Perform short sequences of read, write and atomics in a single round-trip



- <u>R</u>emote
  <u>D</u>irect
  <u>M</u>emory
  <u>O</u>perations
- Perform short sequences of read, write and atomics in a single round-trip



- <u>R</u>emote
  <u>D</u>irect
  <u>M</u>emory
  <u>O</u>perations
- Perform short sequences of read, write and atomics in a single round-trip



- <u>R</u>emote
  <u>D</u>irect
  <u>M</u>emory
  <u>O</u>perations
- Perform short sequences of read, write and atomics in a single round-trip



- <u>R</u>emote
  <u>D</u>irect
  <u>M</u>emory
  <u>O</u>perations
- Perform short sequences of read, write and atomics in a single round-trip



- <u>R</u>emote
  <u>D</u>irect
  <u>M</u>emory
  <u>O</u>perations
- Perform short sequences of read, write and atomics in a single round-trip



- <u>R</u>emote
  <u>D</u>irect
  <u>M</u>emory
  <u>O</u>perations
- Perform short sequences of read, write and atomics in a single round-trip



### Data processing meets massive scale

#### GOAL

Run **one query** as fast as possible using a warehouse-scale computer



### Data processing meets massive scale

#### **Systems**

#### Algorithms

# Hardware-conscious implementations

### Take aways

ArrayBridge: database processing over TB-sized HDF5 datasets

2

GRASP: a network-aware **gr**eedy **a**ggregation **s**cheduling **p**rotocol based on dataset similarity

3

An RDMA-based data shuffling operator exchanges data at line rate, 4× faster than MPI

### Acknowledgments

#### **Current and former students:**



#### **Collaborators**, colleagues:



#### Funding, resources:









