Rumi Chunara, PhD
Assistant Professor
NYU Computer Science & Engineering
NYU Global Public Health

- Public health intro and data overview
- Crowdsourcing and knowledge generation in public health
- Learning spatio-temporal features
- Other data opportunities

- Public health intro and data overview
- Crowdsourcing and knowledge generation in public health
- Learning spatio-temporal features
- Other data opportunities

Emerging and Re-emerging Infections, 1996-2010

Cryptosporidiosis

Human Monkeypox

E.Coli O157

Venezuelan Equine Encephalitis

Dengue Haemorrhagic Fever

Ebola Haemorrhagic Fever

Marburg Haemorrhagic Fever

Ross River Virus

Hendra Virus

Reston Virus

West Nile Virus

Legionnaire's Disease

Severe Acute Respiratory

Syndrome (SARS)

Malaria

Typhoid

Cholera

BSE

Lassa Fever

Yellow Fever

Lyme Borreliosis

Echinococcosis

Diphtheria

Influenza A (H5N1)

Nipah Virus

RVF/VHF

O'Nyong-Nyong Fever

Buruli Ulcer

Multidrug Resistant Salmonella

nvCJD

4

Worldwide Obesity Prevalence

Current Public Health Surveillance

Whole population +

Specificity

Doctor/Nurse + tinvolvement

Speed -

Sensitivity -

Cost -

Public engagement -

Current Public Health Surveillance

Crowdsourced Data

Whole population

Specificity

-

Doctor/Nurse involvement

+

-

Speed

_

+

Cost

Sensitivity

_

+

Public engagement

-

+

- Public health intro and data overview
- Crowdsourcing and knowledge generation in public health
- Learning spatio-temporal features
- Other data opportunities

Types of Crowdsourcing

Types of Crowdsourcing

80% of citizen projects only harness participation in a limited form, such as for completion of tasks

Quarooni et al. CHI 2016

Crowdsourcing in Public Health

Goff et al. AMIA 2014, Plos Current 2015 Chunara (under submission) 2017

Findings from Our Efforts Generating Public Health Knowledge via Crowdsourcing

- Unique incentives in public health: collective and intrinsic motivations are the most salient (aligns with Nov et al. 2011, Law et al. 2016)
- Offline recruitment: important to improve external validity (Chunara et al. AJPM 2016)
- 3. Uniqueness of data generated: Spatio-temporal data Opportunities (Salathé et al. 2011, Relia et al., Rehman et al. 2017)

Data Challenges

Observations, MAR or CAR, depends on PAR (denominator)

Value of interest, y

$$y \sim \mathcal{N}(\phi(t) + f(t), \sigma^2)$$

- Public health intro and data overview
- Crowdsourcing and knowledge generation in public health
- Learning spatio-temporal features
- Other data opportunities

Learning Features — Twitter, alcohol behavior example

- Social media (e.g. Twitter) recognized as useful source to learn about incidence and behaviors related to infectious and non-communicable diseases
- Much work relates to time-series, mapping and prediction
- We developed an NLP pipeline to specifically isolate individuals engaged in a behavior, and then examines relevant temporal representations (features) (Liu et al CSCW 2017, Huang et al CSCW 2018)

NLP Hierarchical Pipeline

High-resolution Temporal Representations

Spatial Representations

Problem:

- Social attitudes like racism/homophobia can be predictors for health outcomes
- ZIP codes are defined to optimize mail delivery, need way to define exposure from a place based on the context

Approach:

- Develop a method for spatial representations based on SOMs and social media classification
- Use mobility data from a cohort of MSM to show that spatial representations matter

Learning Features – Twitter, social attitude example

- Use SOM's a common neural network approach to learn embedded structure in the spatial distribution of classified Tweets
- Provides an interpretable output that can be mapped geographically

i-1,j-1	i-1,j	i-1,j+1
k	k	S
i,j-1	i,j	i,j+1
k	k	S
i+1,j-1	i+1,j	i+1,j+1
k	S	S

Illustration depicting grid cell (i,j) and its neighbors at threshold = 1 for formation of boundary between grid cells with different weights (value in second row)

Learning Features – Twitter, social attitude example

Distribution of Racism Exposure by ZIP

Distribution of Racism Exposure by SOM

Relia et al. (under review) 2017

How Good Are These Representations?

- Evaluate using common cluster evaluation techniques:
 - ✓ Robustness to missing data
 - ✓ Lower mean variance
 - ✓ Entropy

Overall SOM provide a more consistent geographical compartmentalization of each attitude

What Difference Does This Make?

Mean racism exposure difference using SOM versus Zip Codes was 40.3% (SD: 18.8%).

- Public health intro and data overview
- Crowdsourcing and knowledge generation in public health
- Learning spatio-temporal features
- Other data opportunities

Data Opportunities

- Predicting individual-level mobility a growing problem of importance
- Existing data (CDRs, GPS trackers)
 temporally rich, though expensive

- High-resolution, and availability of social media
- Sparse nature brings challenges

Intermediate Location Computing: Pre-processing

- 6 months of Twitter data from the API
- Pre-processed data by mapping to grids (0.1, 0.5 and 1 mi resolution)
- Inferred stay and home location
- Removed non-personal accounts
- Included users must have at least 1 location value present for each h during daytime hours (irrespective of day and week)
- 29,491, 4,947 and 1,119 users (r_i = 1 hour) and 45,710, 8,083 and 2,395 users (r_i = 2 hours) included from NYC, DC and SF

Intermediate Location Computing: Algorithm

Inter($P_{l,a}^{WS}(\mathbf{x}_{k-1}=j \mid \mathbf{x}_{k-2}=73), P_{l,c}^{WS}(\mathbf{x}_{k-1}=j)$)

... 73 73 18 32 25 ...

 x_k location at position k

 $P_{I,a}$ Next location probability

 $P_{I,b}$ Previous location probability

 $P_{I,c}$ Community location probability

WS Week and hour specific

$$Inter(F1, F2) = \begin{cases} \max_{loc}(F1) & if \max_{loc}(F1) ! = NULL \\ \max_{loc}(F2) & otherwise \end{cases}$$

Rehman et al. 2017

ILC: Accuracy versus baseline models

City	r_i	Top 1	Top 3	Home-Work	Markov O(0)	Markov O(1)	POI	NextPlace
New York City	$r_i=1$	72.69	82.35	65.54	64.65	26.39	15.59	0.17
	$r_i=2$	64.78	77.38	59.28	57.98	32.56	19.11	0.21
Washington, DC	$r_i=1$	75.08	83.61	66.91	65.76	27.75	31.27	0.11
	$r_i=2$	68.85	79.57	62.35	60.64	34.13	34.56	0.19
San Francisco	$r_i=1$	77.20	86.28	67.74	67.21	16.78	35.49	0.15
	$r_i=2$	70.78	82.06	63.66	62.91	19.52	32.69	0.22

Transfer Learning to Improve Specificity

- Point value specificity challenging in crowdsourced data
- Manifests in public health through syndromic data

When Google Got Flu Wrong

SOURCES: GOOGLE FLU TRENDS (WWW.GOOGLE.ORG/FLUTRENDS); CDC; FLU NEAR YOU

FEVER PEAKS

A comparison of three different methods of measuring the proportion of the US population with an influenza-like illness.

Types of Healthcare-facilitated Data Collection

From the Crowd to the Clinic

Study	Location	Num. Observa- tions (positive)	Symptoms Recorded	Design
NYUMC	New York	278 (23)	cough, diarrhea, fatigue, fever, headache, muscle, nausea, sorethroat, vomit	Clinical (emergency room)
GoViral	New York	899 (201)	body aches, chills, cough, diarrhea, fatigue, fever, leg pain, nausea, runnynose, shortness of breath, sorethroat, vomit	Citizen science
Nigeria	Ilorin, Nigeria	98 (23)	body ache, chills, cough, fever, nausea, runnynose, shortness of breath, sorethroat, vomit	Health-worker facilitated
Flu Watch	United King- dom	2759 (844)	fever, cough, sorethropat, runnynose, blockednose, sneeze, diarrhea, muscle, headache, rash, earache, wheezy, chills, joint aches, loss of appetite, fatigue, vomit, nausea	Health-worker facilitated
Hong Kong	Hong Kong	4379 (917)	cough, fever, headache, muscle, phlegm, run- nynose, sorethroat	Secondary infections recorded by a health worker
Hutterite	Canada	1897 (628)	blockednose, chills, cough, earache, fatigue, fever, headache, muscle, runnynose, sorethroat	Health-worker facilitated

Transfer Learning Paradigm

$$\mathcal{D} = \{ (\mathbf{x_{j_i}}, y_{j_i}) \mid \mathbf{x_{j_i}} \in \mathcal{X}_j, y_j \}_{i=1}^{n_j}$$

$$y(\mathbf{x_i}) = (1 + \exp -(b_0 + \mathbf{wx_i}))^{-1}$$

Blind transfer

$$\mathbf{y} = y_v, \mathcal{X} = \mathcal{X}_v$$

2. Additive transfer

$$\mathbf{y} = [y_u; y_v], \mathcal{X} = [\mathcal{X}_u; \mathcal{X}_v]$$

3. Projection on latent space (tbd)

Performance so far...

Study	Nigeria	Hong Kong	Hutterite	GoViral	FluWatch	NYUMC
Nigeria	0.56, 0.56	0.59*, 0.65	0.50, 0.56*	0.59, 0.65	0.50*, 0.56	0.50*, 0.50†
Hong Kong	$0.68\dagger, 0.81$	0.82, 0.82	0.55, 0.67	$0.79*, 0.77\dagger$	0.55, 0.61	0.50, 0.68
Hutterite	0.53*, 0.50†	$0.54*, 0.52\dagger$	0.55, 0.55	0.53*, 0.47	0.51*, 0.51†	$0.50*, 0.50\dagger$
GoViral	0.68, 0.75†	0.79*, 0.78†	0.53, 0.55	0.79, 0.79	0.53, 0.57	0.50, 0.57
Flu Watch	0.52*, 0.43	0.54*, 0.53†	0.51*, 0.56†	0.53*, 0.55†	0.56, 0.56	0.51*, 0.52†
NYUMC	0.50, 0.81†	0.68, 0.67	0.68, 0.68	0.57, 0.85†	0.63, 0.85†	0.86, 0.86

Aliapoulios et al. (in prep) 2017

- Public health intro and data overview
- Crowdsourcing and knowledge generation in public health
- Learning spatio-temporal features
- Other data opportunities

Acknowledgements

- Jason Liu
- Tom Huang
- Nabeel Rehman
- Kunal Relia
- Anas Elghafari
- Vishwali Mhasawade
- Mohammad Akbari, PhD

- Public health intro and data overview
- Crowdsourcing and knowledge generation in public health
- Learning spatio-temporal features
- Other data opportunities

Questions?

rumi.chunara@nyu.edu