
The CloudMdsQL Multistore System

Patrick Valduriez
Inria, Montpellier, France

2

Cloud & Big Data Landscape Cloud & Big Data Landscape

NoSQL Databases Data Processing Frameworks

3

Cloud & Big Data Landscape

Easy to get lost
No "one size fits all"

No standard
Keeps evolving

Cloud & Big Data Landscape

NoSQL Databases Data Processing Frameworks

4

General Problem We Address

User
Application

NoSQL
DS1

HDFS
DS2

Query
SQL
DS3 ?

Client
Application

(e.g. in Java)

•  Very complex, ad-hoc development
•  Querying different databases
•  Managing intermediate results
•  Delivering (e.g. sorting) the final results

•  Hard to extend
•  What if a new SQL DB appears?

5

Outline

•  The CoherentPaaS IP project
•  Related work and background
•  CloudMdsQL objectives
•  Query language
•  Query rewriting
•  Use case example
•  MFR statement
•  Experimental validation

6

CoherentPaaS
FP7 IP project
(2013-2016, 6 M€)

7

CoherentPaaS
FP7 IP project
(2013-2016, 6 M€)

8

Related Work

•  Multidatabase systems (or federated
database systems)
•  A few databases (e.g. less than 10)

•  Corporate DBs

•  Powerful queries (with updates and
transactions)

•  Web data integration systems
•  Many data sources (e.g. 1000’s)

•  DBs or files behind a web server

•  Simple queries (read-only)

•  Mediator/wrapper architecture

9

Related Work (cont.)

•  Multistore systems
•  Called Polystores by M. Stonebraker [The Case for

Polystores. Stonebraker's blog. July 2015]
•  Provide integrated access to multiple, heterogeneous

cloud data stores such as NoSQL, HDFS and RDBMS
•  E.g. BigDAWG, BigIntegrator, Estocada, Forward, HadoopDB,

Odyssey, Polybase, QoX, Spark SQL, etc.

•  Great for integrating structured (relational) data and big
data

•  But typically trade data store autonomy for performance
or work only for certain categories of data stores (e.g.
RDBMS and HDFS)

10

First Try: centralized query engine

Query engine

User
Application

JDBC
Client

Query
Mediator

Query
Processor

Execution
Engine

Wrapper
DS1

Wrapper
DS2

Table
Store

Connector

DS1

DS2

Table
Store

CloudMdsQL
Query

11

First Try: centralized query engine

Query engine

User
Application

JDBC
Client

Query
Mediator

Query
Processor

Execution
Engine

Wrapper
DS1

Wrapper
DS2

Table
Store

Connector

DS1

DS2

Table
Store

CloudMdsQL
Query

Straighforward M/W architecture
=>

High communication cost DS – QE
Little optimization opportunities

12

Second Try: distributed query engine

13

Second Try: distributed query engine

Fully distributed architecture
=>

Many optimization opportunities

14

CloudMdsQL Objectives

•  Design an SQL-like query language to query
multiple databases (SQL, NoSQL) in a cloud
•  While preserving the autonomy of the data stores

•  This is different from most multistore systems (no autonomy)

•  Design a query engine for that language
•  Query processor

•  To produce an efficient execution plan

•  Execution engine
•  To run the query, by calling the data stores and integrating the

results

•  Validate with a prototype
•  With multiple data stores: Derby, Sparksee, MongoDB,,

Hbase, MonetDB, Spark/HDFS, etc.

15

Issues

•  No standard in NoSQL
•  Many different systems

•  Key-value store, big table store, document DBs, graph DBs

•  Designing a new language is hard and takes time
•  We should not reinvent the wheel
•  Start simple and useful

•  We need to set precise requirements
•  In increasing order of functionality
•  Guided by the CoherentPaaS project uses cases

•  E.g. bibliography search

16

Schema Issue: on read vs on write

•  Schema on write
(RDBMS, DW)

•  Prescriptive data
modelling
•  Create schema S
•  Write data in S format
•  Query data in S format

•  Must change S before
adding new data

•  Efficient querying but
difficult evolution

•  Schema on read
(Hadoop, data lake)

•  Descriptive data
modelling
•  Write data in native format
•  Create schema S
•  Query data in native

format and transform to S
(ETL on the fly)

•  One can add new data at
anytime

•  Agility and flexibility, but
less efficient querying

17

Our Design Choices

•  Data model: schema on read, table-based
•  With rich data types

•  To allow computing on typed values
•  No global schema to define

•  Schema mapping within queries

•  Query language: functional-style SQL1,2

•  SQL widely accepted
•  Can represent all query building blocks as functions

•  A function can be expressed in one of the DB languages
•  Function results can be used as input to subsequent functions
•  Functions can transform types and do data-metadata

conversion

1 C. Binnig et al. FunSQL: it is time to make SQL functional. EDBT/ICDT, 2012.
2 P. Valduriez, S. Danforth. Functional SQL, an SQL Upward Compatible
Database Programming Language. Information Sciences, 1992.

18

CloudMdsQL Data Model

•  A kind of nested relational model
•  JSON flavor

•  Data types
•  Basic types: int, float, string, id, idref, timestamp, url,

xml, etc. with associated functions (+, concat, etc.)
•  Type constructors

•  Row (called object in JSON): an unordered collection of
(attribute : value) pairs, denoted by { }

•  Array: a sequence of values, denoted by []

•  Set-oriented
•  A table is a named collection of rows, denoted by

Table-name ()

19

Data Model – examples*

•  Key-value

•  Relational

•  Document

Scientists ({name:"Ricardo", affiliation:"UPM", country:"Spain"},
 {name:"Martin", affiliation:"CWI", country:"Netherlands"})

Pubs ({id:1, title:"Snapshot isolation", Author:"Ricardo", Year:2005})

Scientists ({key:"Ricardo", value:"UPM, Spain"},
 {key:"Martin", value:"CWI, Netherlands"})

Reviews ({PID: “1”, reviewer: “Martin”, date: “2012-11-18”,
 tags : ["implementation", "performance"],
 comments :
 [{ when : Date("2012-09-19"), comment : "I like it." },
 {when : Date("2012-09-20"), comment : "I agree with you." }] })

*Any resemblance to living persons is coincidental

20

Table Expressions

•  Named table expression
•  Expression that returns a table representing a nested

query [against a data store]
•  Name and signature (names and types of attributes)
•  Query is executed in the context of an ad-hoc schema

•  3 kinds of table expressions
•  Native named tables

•  Using a data store’s native query mechanism
•  SQL named tables

•  Regular SELECT statements, for SQL-friendly data stores

•  Python named tables
•  Embedded blocks of Python statements that produce tables

21

CloudMdsQL Example

•  A query that integrates data from:
•  DB1 – relational (MonetDB)
•  DB2 – document (MongoDB)

/* Integration query */
SELECT T1.x, T2.z
FROM T1 JOIN T2
 ON T1.x = T2.x

/* SQL sub-query */
T1(x int, y int)@DB1 =
(SELECT x, y FROM A)

/* Native sub-query */
T2(x int, z string)@DB2 =
{*
 db.B.find({$lt: {x, 10}}, {x:1, z:1, _id:0})
*}

N x,	z	

π x,	z	

A

π x,	y	

T1@DB1	
(MonetDB)	

T2@DB2	
(MongoDB)	

@CloudMdsQL	

22

CloudMdsQL Optimization

•  Query rewriting using
•  Select pushdown
•  Bindjoin
•  Join ordering

23

Select@ Pushdown Example
SELECT T1.x, T2.z
FROM T1, T2
WHERE T1.x = T2.x AND T1.y <= 3

T1(x int, y int)@DB1 = (SELECT x, y FROM A)

T2(x int, z string)@DB2 = {*
 db.B.find({$lt: {x, 10}}, {x:1, z:1, _id:0})
*}

σ y	<=	3	

N x,	z	

A

π x	

T1@DB1	
(MonetDB)	

T2@DB2	
(MongoDB)	

@CloudMdsQL	

SELECT x FROM A WHERE y <= 3

σ T1.y	<=	3	

N x,	z	

π x,	z	

A

π x,	y	

T1@DB1	
(MonetDB)	

T2@DB2	
(MongoDB)	

@CloudMdsQL	

24

Bindjoin (recall)

select ALL
from R, S
where R.J = S.J
and R.A=a
and S.B=b

select ALL
from R1, S1
where R.J = S.J

R1 =
select ALL
from R
where R.A=a

S1 =
select ALL
from S
where S.B=b

Select ALL
From R1, S1
Where R.J = S.J

R1 =
Select ALL
From R
Where R.A=a

S1 = /* semijoin */
Select ALL
From S
Where S.B=b
and S.J in

 (select J in R2)

R2 = select J from R1

σ
R S

σ
@1 @2

@M

25

Bindjoin Example

SELECT T1.x, T2.y
FROM T1 BIND JOIN T2 ON T1.id = T2.id

T1(id int, x string)@DB1 = (SELECT id, x)

T2(id int, y int)@DB2 = (SELECT id, y FROM R2)

π x,	y	

@CloudMdsQL	

A

π id,	x	

T1@DB1	
(Derby)	 B

π id,	y	

T2@DB2	
(MonetDB)	

id	

26

Bindjoin Example

π x,	y	

@CloudMdsQL	

A

π id,	x	

T1@DB1	
(Derby)	 B

π id,	y	

T2@DB2	
(MonetDB)	

SELECT id, x FROM A SELECT id, y FROM B WHERE id IN (1, 3)

id x

1 abc

3 xyz

id y

1 1

3 9

x y

abc 1

xyz 9

id	

27

Use Case Bibliographic App. Example

•  3 data stores
•  Relational
•  Document
•  Graph

•  A query that involves integrating data from the
three data stores

28

Example DBs

DB1: a relational DB

Table Scientists (Name char(20), Affiliation char(10), Country char(30))

 Scientists
Name Affiliation Country

Ricardo UPM Spain

Martin CWI Netherlands

Patrick INRIA France
Boyan INRIA France

Larri UPC Spain
Rui INESC Portugal

29

Example DBs (cont.)

DB2: a document DB (MongoDB with SQL interface)

Document collection: publications

Document collection: reviews

{id: 1, title: 'Snapshot Isolation', author: 'Ricardo', date: '2012-11-10'},
{id: 5, title: 'Principles of DDBS', author: 'Patrick', date: '2011-02-18'},
{id: 8, title: 'Fuzzy DBs', author: 'Boyan', date: '2012-06-29'},
{id: 9, title: 'Graph DBs', author: 'Larri', date: '2013-01-06'}

{pub_id: “1”, reviewer: “Martin”, date: “2012.11.18”, review: “… text …”},
{pub_id: “5”, reviewer: “Rui”, date: “2013.02.28”, review: “… text …”},
{pub_id: “5”, reviewer: “Ricardo”, date: “2013.02.24”, review: “…text…”},
{pub_id: “8”, reviewer: “Rui”, date: “2012.12.02”, review: “… text …”},
{pub_id: “9”, reviewer: “Patrick”, date: “2013.01.19”, review: “… text …”}

30

Example DBs (cont.)

DB3: a graph DB

Person (name string, …) is_friend_of Person (name string, …)

31

CloudMdsQL Query: goal

Find conflicts of interest for papers from INRIA reviewed in 2013

Retrieve papers by scientists from INRIA
that are reviewed in 2013
where the reviewer is a friend or friend-of-friend of the author

Retrieve	one-	or	two-level	
friendships	by	invoking	
BreadthFirstSearch()	

Retrieve	publicaGons	
reviewed	in	2013	

	and	their	reviewers	

Retrieve	scienGsts	from	
INRIA	

@DB1	
(MonetDB)	

@DB2	
(MongoDB)	

@DB3	
(Sparksee)	

32

CloudMdsQL Query: expression
scientists(name string, aff string)@DB1 = (
 SELECT name, affiliation FROM scientists
)

pubs_revs(p_id, title, author, reviewer, review_date)@DB2 = (
 SELECT p.id, p.title, p.author, r.reviewer, r.date
 FROM publications p, reviews r
 WHERE p.id = r.pub_id
)

friendships(person1 string, person2 string, friendship string
 JOINED ON person1, person2)@DB3 =
{*
 for (p1, p2) in CloudMdsQL.Outer:
 sp = graph.FindShortestPathByName(p1, p2, max_hops=2)
 if sp.exists():
 yield (p1, p2, 'friend' + '-of-friend' * sp.get_cost())
*}

SELECT pr.id, pr.author, pr.reviewer, f.friendship
FROM scientists s
 BIND JOIN pubs_revs pr ON s.name = pr.author
 JOIN friendships f ON pr.author = f.person1 AND pr.reviewer = f.person2
WHERE pr.review_date BETWEEN '2013-01-01' AND '2013-12-31' AND s.aff = 'INRIA';

33

Initial Query Plan

scienGsts	

π name	

publicaGons	

π id,	Gtle,	author	

name	=	author	

reviews	

σ year(review_date)=2013	AND	
affiliaGon=‘INRIA’	

π pub_id,	reviewer	

id=pub_id	 N

(author,	reviewer)=(person1,	person2)	

person1,	person2,	
friendship	

+bind	

id,	author,	reviewer,	friendship	

@DB1	
(MonetDB)	

@DB2	
(MongoDB)	

friendships@DB3	
(Sparksee)	

π

34

Rewritten Query Plan

scienGsts	

σ affiliaGon=‘INRIA’	

π name	

publicaGons	

π id,	Gtle,	author	

name	=	author	

reviews	

σ year(date)=2013	

π pub_id,	reviewer	

id=pub_id	

N

(author,	reviewer)=(person1,	person2)	

person1,	person2,	friendship	

+bind	

π id,	author,	reviewer,	friendship	

@DB1	
(MonetDB)	

@DB2	
(MongoDB)	

friendships@DB3	
(Sparksee)	

@CloudMdsQL	

SELECT name FROM scientists
WHERE affiliation = ‘INRIA’

db.publications.find({author:
{$in:[‘Patrick’, ‘Boyan’]} }) db.reviews.find({date: … })

Id Author Reviewer Friendship
5 Patrick Ricardo friend-of-friend

Name
Patrick
Boyan

Author Reviewer
Patrick Rui
Patrick Ricardo

@DB2	
(MongoDB)	

35

MFR Statement

•  Sequence of Map/Filter/Reduce operations on
datasets
•  Example: count the words that contain the string

‘cloud’

•  A dataset is an abstration for a set of tuples, a
Spark RDD
•  Consists of key-value tuples
•  Processed by MFR operations

Dataset
SCAN(TEXT,’words.txt’) .MAP(KEY,1) .FILTER(KEY LIKE ‘%cloud%’) .REDUCE (SUM)

36

MFR Example

/* Integration subquery*/
SELECT	title,	kw,	count	FROM	T1	JOIN	T2	ON	T1.kw	=	T2.word	
WHERE	T1.kw	LIKE	'%cloud%'		

/* SQL subquery */
T1(title	string,	kw	string)@rdbms	=	(SELECT	title,	kw	FROM	tbl)	

/* MFR subquery */
T2(word	string,	count	int)@hdfs	=	{* 		
							SCAN(TEXT,'words.txt’)		
							.MAP(KEY,1)	
							.REDUCE(SUM)	
							.PROJECT(KEY,VALUE)		*}	

•  Query: retrieve data from RDBMS and HDFS

37

Query Rewriting

•  Optimization techniques to reduce execution and
communication costs
•  Selection pushdown
•  Performing bind join
•  MFR operators reordering and rewriting

38

Experimental Validation

•  Goal: show the ability of the query engine to optimize
CloudMdsQL queries

•  Prototype
•  Compiler/optimizer implemented in C++ (using the Boost.Spirit

framework)
•  Operator engine (C++) based on the query operators of the

Derby query engine
•  Query processor (Java) interacts with the above two

components through the Java Native Interface (JNI)
•  The wrappers are Java classes implementing a common

interface used by the query processor to interact with them
•  Deployment on a GRID5000 cluster

•  Variations of the Bibliographic use case with 3 data
stores
•  Relational: Derby
•  Document: MongoDB
•  Graph: Sparksee

39

Experiments

•  Variations of the Bibliographic use case with 3 data
stores
•  Relational: Derby
•  Document: MongoDB
•  Graph: Sparksee

•  Catalog
•  Information collected through the Derby and MongoDB

wrappers
•  Cardinalities, selectivities, indexes

•  5 queries in increasing level of complexity
•  3 QEPs per query

40

Experimental Results

Query 1
QEP11: σ@QE(R) ⨝@3 P
QEP12: σ(R) ⨝@3 P
QEP13: σ(R) ⧒@3 P

Query 2
QEP21: (σ(S) ⨝@1 P) ⨝@1 σ(R)
QEP22: (σ(S) ⨝@2 P) ⨝@2 σ(R)
QEP23: (σ(S) ⨝@2 P) ⨝@3 σ(R)

Query 3
QEP31: ((σ(Sr) ⧒@3 R) ⧒@3 P) ⨝@3 σ(Sa)
QEP32: ((σ(Sa) ⧒@2 P) ⧒@3 R) ⨝@3 σ(Sr)
QEP33: (σ(Sa) ⧒@2 P) ⨝@3 (σ(Sr) ⧒@3 R)

41

Experiment Results (cont.)

Query 4
QEP41: (((σ(Sr) ⧒@3 R) ⧒@3 P) ⨝@3 F) ⨝@3 σ(Sa)
QEP42: (((σ(Sa) ⧒@2 P) ⧒@3 R) ⨝@3 F) ⨝@3 σ(Sr)
QEP43: ((σ(Sa) ⧒@2 P) ⨝@3 (σ(Sr) ⧒@3 R)) ⨝@3 F

Query 5
QEP51: (((σ(Sr) ⧒@3 R) ⧒@3 P) ⨝@3 F) ⨝@3 σ(Sa)
QEP52: (((σ(Sa) ⧒@2 P) ⧒@3 R) ⨝@3 F) ⨝@3 σ(Sr)
QEP53: ((σ(Sa) ⧒@2 P) ⨝@3 (σ(Sr) ⧒@3 R)) ⨝@3 F

42

CloudMdsQL Contributions

•  Advantage
•  Relieves users from building complex client/server

applications in order to access multiple data stores

•  Innovation
•  Adds value by allowing arbitrary code/native query to

be embedded
•  To preserve the expressivity of each data store’s query

mechanism

•  Provision for traditional distributed query optimization
with SQL and NoSQL data stores

43

References

1.  Carlyna Bondiombouy, Boyan Kolev, Oleksandra Levchenko, Patrick Valduriez. Integrating Big
Data and Relational Data with a Functional SQL-like Query Language. DEXA 2015 (extended
version SpringerTLDKS journal, 9940:48-74, 2016).

2.  Carlyna Bondiombouy, Patrick Valduriez. Query Processing in Cloud Multistore Systems: an
overview. Int. Journal of Cloud Computing, 5(4): 309-346, 2016.

3.  Boyan Kolev, Patrick Valduriez, Carlyna Bondiombouy, Ricardo Jiménez-Peris, Raquel Pau, José
Pereira. CloudMdsQL: Querying Heterogeneous Cloud Data Stores with a Common Language.
Distributed and Parallel Databases, 34(4): 463-503, 2016.

4.  Boyan Kolev, Carlyna Bondiombouy, Oleksandra Levchenko, Patrick Valduriez, Ricardo Jiménez-
Peris, Raquel Pau, José Pereira. Design and Implementation of the CloudMdsQL Multistore
System. CLOSER 2016.

5.  Boyan Kolev, Carlyna Bondiombouy, Patrick Valduriez, Ricardo Jiménez-Peris, Raquel Pau, José
Pereira. The CloudMdsQL Multistore System. SIGMOD 2016.

6.  B. Kolev, R. Pau, O. Levchenko, P. Valduriez, R. Jiménez-Peris, J. Pereira. Benchmarking
polystores: The CloudMdsQL experience. Workshop on Methods to Manage Heterogeneous Big
Data and Polystore Databases, IEEE BigData, 2574-2579, 2016.

7.  R. Jimenez-Peris, M. Patiño-Martinez. System and method for highly scalable decentralized and
low contention transactional processing. European Patent Number EP2780832, 2016.

44

BindJoin Optimization

•  Challenge: how to apply bind join to any pair of
data stores?

•  3 cases (for the right hand side, i.e., DS2)
1.  SQL support: easy!
2.  No SQL support but the datastore provides a powerful

set-oriented query mechanism
3.  No SQL support and the data store provides only

simple lookup

45

Case 2: set-oriented support

•  DS2 has a set-oriented query mechanism
(ActivePivot, Sparksee)

•  The native query needs to access intermediate join
keys from table storage

•  Solution: add to the signature of S1 a clause to
reference an intermediate table R1_keys
•  The join key values of R1 are provided in R1_keys and the

native query for DS2 can use the mechanism that its
wrapper provides to access these join keys

/* Native subquery @ DS2 */
S1(B int, J int, COMMENT string JOINED ON J REFERENCING
 OUTER AS R1_keys)@DS2 =
(* native code for DS2 to perform the equivalent of the IN
 operator using R1_keys*)

46

Case 3: simple lookup

•  DS2 provides only simple lookup (i.e. get (key) in
a key-value store)
•  Solution: scalar lookup

•  Allows a parameterized named table (S1) to be used as a scalar
function and evaluated for every value of a column from
another table (R1)

•  Then S1 is called in the SELECT list of the main SELECT

statement of the query, instead of being joined with R1

/* Native subquery @ DS2 */
S1(B int, J int, COMMENT string WITHPARAMS J)@DS2 =
{* get 'S_value', J *}

/* Integration query @ CloudMdsQL */
SELECT R1.A, S1(J).B
FROM R1

