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Research Agenda

Efficient, Scalable Algorithm Design
1 Create new algorithms and data representations to support

efficient query processing (verbose queries).
2 Extend and refine in-memory indexing algorithms to support

parallel, distributed, and dynamic indexing of massive data sets
more efficiently.

3 Explore efficiency and effectiveness trade-offs in large scale
search algorithms.

4 Investigate new approaches to combining structured and
unstructured search.

5 Develop and understand IR evaluation best practices.
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Interesting Facts

1 Energy costs can now exceed hardware costs in many “big data”
applications.

2 Every 100 ms boost in search speed increases revenue by 0.6%
at Bing.†

3 Commodity computer systems can now support over 1 TB RAM
and 40+ CPU cores in a single machine, but trends in practical
algorithmic design have not mirrored these advances.

† R. Kohavi, A. Deng, B. Frasca, T. Walker, Y. Xu, and N. Pohlmann: “Online controlled experiments at large scale.” In Proc. KDD,
pages 1168–1176, 2013.
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State-of-the-Art in GOV2
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Data from the RIGOR Workshop at SIGIR 2015. All systems are ran on a
single EC2 instance using the TREC GOV2 collection with queries 701-850.

More at http://github.com/lintool/IR-Reproducibility.

Shane Culpepper (RMIT) Efficient Location-aware Web Search November 9th, 2015 4 / 32

http://github.com/lintool/IR-Reproducibility


Multi-Stage Retrieval

L0/L1 Matching/Ranking (1010 Documents)

L2 Reranking (105 Documents)

L3 (103 Docs)

L4 (101 Docs)

Bing – Sequence of select,
rank, prune steps

• L0 Boolean Logic
• L1 BOW IR Scoring
• L2/L3/L4 Learning to

Rank

1. Burges et al. “Learning to Rank Using Gradient
Descent.” In ICML 2005.
2. Jan Pedersen: “Query Understanding at Bing.” SI-
GIR Industry Keynote, 2010.
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The Inverted Index
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Processing Regimes for Inverted Lists

• Score-safe processing guarantees that an identical top-k
ordering will occur for a given set ranking metric.

• MAXSCORE
• WAND
• BLOCK-MAX

• Heuristic processing approximates the true top-k list.
• STOP and CONTINUE
• SCORE-AT-A-TIME / impact ordered indexing
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The WAND operator

Weak AND, or Weighted AND – WAND

Given a list of Boolean variables X, X, . . . , Xt and a list of associated
positive weights, w, w, . . . , wt and a threshold θ,
WAND(X, w, . . . , Xt, wt, θ) is true iff∑

1≤i≤t
xiwi ≥ θ,

where xi is the indicator variable for Xi, that is

xi =

{
1 if Xi is true
0 otherwise.

A. Z. Broder, D. Carmel, H. Herscovici, A. Soffer, and J. Zien: “Efficient query evaluation using a two-level retrieval process.” In
Proc. CIKM, pages 426–434, 2003.
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The WAND operator

∑
1≤i≤t

Ui > θ

• Assume the Ut is the maximum score a term t ∈ q can contribute
in an additive scoring regime.

• If we set θ to the current score of the k·th smallest item in a heap
of k items, only items that might be able to enter the heap will ever
be scored.

• If we set θ =∞, then only the first k items evaluated can ever
enter the heap.

• By varying the threshold, WAND can move from being close to an
OR operation to being close to an AND operation.
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How to use WAND (Sketch)
Index Time:

1 Pick an additive ranking metric and build a document ordered inverted index.

2 For each inverted list, pre-calculate a value Ut which represents the maximum
contribution term t can have for that scoring metric.

Query Time:

1 Perform a standard document-at-a-time traversal with one twist.

2 Set a finger pointing to the first unevaluated document in each list.

3 Set the term processing order of the lists using the document id – smallest to
largest.

4 While the sum of the Ut values are less than θ step to the next list.

5 As soon as we exceed θ, the document ID in the current list is selected as the
pivot.

6 A finger search is initiated for all lists evaluated before the pivot, and the current
pivot document ID is scored if all of the previous list document IDs match the
pivot.

7 If the real document score exceeds the minimum value in a k heap, it is added to
the heap, and θ is set to the new minimum heap score.
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WAND in action
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BM-WAND in action
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2. S. Ding and T. Suel: “Faster top-k retrieval using block-max indexes.” In Proc. SIGIR, pages 993–1002, 2011.
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Motivation for this Work

• Recent talks at SIGIR and CIKM have highlighted the fact that the
number of mobile searches have surpassed the number of
desktop searches in all of the major search engines.

• For mobile searches, more than 50% of all queries have local
intent.

• Leveraging GPS data for search is now a key feature in mobile
applications.

• We know that the interaction between 10s or even 100s of
features improves effectiveness. There is value in studying
important features in isolation to better understand when and
where they work best.
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Spatial-Textual Queries

Two common spatial queries:
• Range query – Given a location p and a maximum travel

distance, a range query returns all items whose location fall within
that distance from p. An example of a spatial range query is when
a user wants to find all of the petrol stations within 5 km of their
current location.

• KNN query – Given a specific location p, the query returns the k
items closest to p.

Two common textual queries:
• Conjunctive Boolean (AND) query – Given a set of query terms

t1 . . . tq , return all documents containing all terms.
• Disjunctive Boolean (OR) query – Given a set of query terms

t1 . . . tq , return all documents containing any of the terms.
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Research Questions

Research Question 1: Which indexing approaches provide the best
efficiency trade-offs for bag-of-words, top-k knn search in large
document collections?

Research Question 2: What are the efficiency and effectiveness
trade-offs for the two most common spatially constrained query types
when applied to bag-of-words, location-aware search?
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Approach Overview

• Filter-based Methods – Apply a spatial filter (KNN or MBR) to
identify a subset of candidate documents. Reorder the documents
using a textual similarity function to get the final top-k document
list.

• Use an R-Tree to do efficient range filtering.
• Use a KD-Tree or an R*-Tree to do efficient KNN filtering.
• Score the filter set using BM25 or any TF·IDF ranking metric.

• Top-k KNN Methods – Score the top-k documents in a single
pass using both components to prune to search space.

• Use a hybrid index such as an IR-Tree.
• Use an augmented inverted index.
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IR Tree

although KR*-tree, IR2-Tree and our IR-tree proposed in this
paper are built on top of R-tree, they are very different in
terms of structures, functionalities, and extensibility to
searches with various relevance requirements.

3 IR-TREE

In this section, we present IR-tree, an efficient index that
provides the following required functions for geographic
document search and ranking: 1) spatial filtering: all the
spatially irrelevant documents have to be filtered out as
early as possible to shrink the search space; 2) textual
filtering: all the textually irrelevant documents have to be
discarded as early as possible to cut down the search cost;
and 3) relevance computation and ranking: since only the
top-k documents are returned and k is expected to be much
smaller than the total number of relevant documents, it is
desirable to have an incremental search process that
integrates the computation of the joint relevance and
document ranking seamlessly so that the search process
can stop as soon as the top-k documents are identified.

In addition, IR-tree is designed by taking into account the
storage and access overheads since a document set is very
large in terms of numbers of documents and their words. In
the following, we first detail the design of IR-tree indexing
structure. Then, we discuss the notion of document summaries
(and several variants) that facilitate search space exploration
and pruning as well as ranking. Thereafter, we discuss the
storage schemes and index manipulation methods.

3.1 IR-Tree Structure
In order to support efficient geographic document search, the
IR-tree clusters a set of documents into disjointed subsets of
documents and abstracts them in various granularities. By
doing so, it enables the pruning of those (textually or
spatially) irrelevant subsets. The efficiency of IR-tree
depends on its pruning power, which, in turn, is highly
related to the effectiveness of document clustering and the
search algorithms. Our IR-tree clusters spatially close
documents together and carries textual information in its
nodes. These designs distinguish our IR-tree from other
hybrid indexes (as reviewed in Section 2.3). IR-tree associates
each leaf entry with an inverted file and associates a
document summary that provides textual information of
documents with each node so that the tf and idf values of the
document words can be estimated at nodes without
examining individual documents. Fig. 3 depicts an IR-tree
indexing structure. An inverted file consists of a list of words,
with each corresponding to a wordw and pointing to a list of
documents that contain w. Then, for each node i, a document

summary about a set of documents Di indexed beneath i is
captured as a three-element tuple:

hAi; jDij;[w2Wifdfw;Di ; TFw;Digi:

In the tuple, the first element Ai is the minimal bounding
box covering all of the locations Ld of documents d in Di

(i.e., Ai ¼MBBð[d2DiLd)). Next, jDij refers to the cardin-
ality of the document set Di. The third element is a set of
(dfw;Di ; TFw;Di ) pairs. For each word w that appears in at
least one document in Di (i.e., Wi), dfw;Di represents the
number of documents in Di that contain w and TFw;Di is the
aggregated information about the tf values of w in Di. We
investigate two different representations of TFw;Di , and they
will be discussed in the next section. Notice that the
document summary of a nonroot node i is stored with i’s
parent node h. Then, given a query that reaches i’s parent
node h, it can decide whether i contains potential result
documents (i.e., whether the examination of i is necessary)
based on the document summary.

To facilitate our discussion, we use Example 2 to
illustrate an IR-tree based on our running example.

Example 2. Fig. 4a shows an IR-tree for the example
document set, with the minimum and maximum node
fan-outs set to 3 and 4, respectively, and Fig. 4b shows
the distributions of MBBs. Documents d1; d5, and d6 that
are spatially close to each other are grouped into node
Nb. Similarly, d7; d9, and d10 form the node Na and
d2; d3; d4 and d8 form the node Nc. These three nodes are
further grouped together to form the root node.

As defined in Section 2.2, the textual relevance between a
document and a query is dependent on both the tf values
and the idf values of documents with respect to query
keywords. To facilitate the discussion, let Di represent the
set of documents indexed beneath node i and Wi represent
the set of words appearing in at least one document d (2 Di)
(i.e., Wi ¼ [d2DiWd). Since Ai; jDij, and dfw;Di values are
maintained in document summaries, the candidate docu-
ment set DS (i.e., # D) can be formed as early as the search
reaches a set of nodes NS such that Ai in a document
summary for any node i 2 NS is fully bounded by the query
spatial scope S, i.e., 8i#NSAi # S. Then, the idf value for a
given query keyword w can be determined over those
identified nodes NS without scanning the documents
indexed beneath them as

idfw;D;S ¼ log

P
8i2NS

ðjDijÞP
8i2NS

ðdfw;DiÞ
: ð4Þ

LI ET AL.: IR-TREE: AN EFFICIENT INDEX FOR GEOGRAPHIC DOCUMENT SEARCH 589

Fig. 3. IR-tree indexing structure.

Fig. 4. An example IR-tree. (a) IR-tree content. (b) Node MBBs.

G. Cong, C. S. Jensen, and D. Wu: “Efficient retrieval of the top-k most relevant spatial web objects.” PVLDB, 2(1):337348, Aug.
2009.
Z. Li, K. C. K. Lee, B. Zheng, W.-C. Lee, D. Lee, and X. Wang: “IR-tree: An efficient index for geographic document search.”
TKDE, 23(4):585599, Apr. 2011.
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Combining Text and Spatial Similarity

Spatial-Textual Ranking
Given a spatial-textual query q and a document d , the spatial-textual
similarity can be computed as:

S(q, c) = α · β(`q, `d) + (1− α) ·
∑
t∈q

γt

where β(`q, `d) is the spatial similarity, γt is the textual similarity, and
α ∈ (0,1) is a parameter that can be used to add weight the
importance of the two components.

• β(`q, `d) = (1− Euclidean(`q ,`d )
dmax

) ·
∑

t∈q U(γt)

• In this work, γt is the BM25 ranking function. However, any TF·IDF

scoring function could be used.
• This is referred to as a top-k knn query.
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GEOWAND Algorithm

Cascaded Filtering. Our baseline approach is a heuristic filter
based on knn. Our approach differs from previous loosely coupled
scoring methods [9, 10, 32] by guaranteeing that the initial k0 doc-
uments derived from the spatial index are the k0 nearest document
neighbors for each query. Previous work used a fixed sized MBR to
identify all documents within a pre-defined range, and considered
only Boolean conjunctive queries between terms. Our approach
is more pragmatic, and aligned with current cascaded web-based
ranking approaches which employ a filter to identify a subset of
candidate documents that can then be rearranged into a final order-
ing based on textual relevance using LTR or higher order depen-
dency models [3, 4, 21, 22]. In this approach, a spatial tree is used
to find the k0 nearest neighbours to the query location `q , along
with the distance of each candidate from the query point, which
yields a candidate set C, where |C| = k0. Next, the candidate set
C is passed to a modified DAAT query processor which runs as
follows: For each candidate c 2 C, the combined spatial and tex-
tual score for query q is computed as s(q, c). This process can be
seen as a reordering of C. Finally, the top-k items can be simply
taken from the reordering and returned. There are two versions of
this approach which we refer to as W-R* and W-kd. W-R* uses a
bulk loaded R*-tree for knn queries, whereas W-kd uses a kd-tree
for the knn filtering.

We also compare and contrast this approach with the more com-
mon filter-based approach which uses a range query to define the
subset of documents that must be scored in the final text ranking
stage. While not explicitly explored in previous work [9, 10, 32], it
is relatively easy to support disjunctive, top-k, bag-of-words search
queries using MBR constraints. Firstly, an R*-tree is used to issue
a range query, in which all documents within the given range are
returned as a set of candidates, C. Next, C is passed to a DAAT
processor. This processor then evaluates all candidate documents
and returns the top-k documents based on the textual score, �. For
example, given an MBR of 10 km covering a query centroid, it is
assumed that a user is willing to travel anywhere within this MBR,
so the distance to the centroid is not relevant. Three different MBR
sizes were tested, namely MBR-1, MBR-10 and MBR-100, which
uses MBRs sized at 1 km, 10 km and 100 km respectively, each
centered over the query location.

GEOWAND. A major limitation of the filtering techniques is that
the approaches rely on a heuristic method to filter candidate doc-
uments before a final ranking is computed. Consequentially, these
approaches are not guaranteed to return a rank-safe top-k ranking.
However, a carefully modified WAND traversal can guarantee score
safety. The GEOWAND algorithm proposed here provides this desir-
able property.

Algorithm 2 shows the key steps involved in upper bounding the
weighted spatial scoring estimate as documents are considered for
final scoring, and a second score refinement stage once a candidate
document is selected. Given a query q, with terms t 2 q and a
location `q , the processing is as follows. In the initial candidate se-
lection phase two contributions must be tracked, the spatial_limit
and the textual_limit. The upper bound for the spatial_limit occurs
when `q = `d. Each term pivot in document cpivot has a global max-
imum textual score added to textual_limit. To keep the two scores
normalized with respect to ↵, this upper bound is also added to
spatial_limit in Line 2.4. In each iteration of the loop, the com-
bined and normalized upper-bound textual and spatial scores are
checked against the score of the lowest scoring document in a top-k
min-heap, tracked with ✓. If the potential total score for the current
document exceeds ✓, then the candidate document must be scored.

Algorithm 2: WAND processing with geospatial weights, re-
placing steps 10–21 in Algorithm 1 of Petri et al. [23].

2.1 text_limit 0; spatial_limit 0; pivot 0
2.2 while pivot < |q| � 1 do
2.3 text_limit text_limit + (1� ↵) · U [pivot]
2.4 spatial_limit spatial_limit + ↵ · U [pivot]
2.5 if text_limit + spatial_limit > ✓ then
2.6 s text_limit + spatial_limit
2.7 break, and continue from Step 2.9.
2.8 pivot pivot + 1

2.9 if c0 = cpivot then
2.10 t 0
2.11 s s� spatial_limit + ↵ · �(`q , `pivot)
2.12 while t < |q| � 1 and c0 = cpivot do
2.13 s s� (1� ↵) · U [t] + (1� ↵) · �t

2.14 if s < ✓ then
2.15 break, and reset all pointers to cpivot + 1.
2.16 . Update heap and ✓ . . . remaining computation similar to the

approach described in Algorithm 1 of of Petri et al. [23].

Otherwise, the loop continues until the postings lists are exhausted,
or when no more documents can score above ✓.

When a candidate document is selected for scoring, the true score
of the candidate document can be incrementally refined1. First,
the true spatial score contribution is updated for cpivot. In the sim-
plest implementation of �, dmax is set as the maximum Euclidean
distance between any two documents in the collection (GEOWAND-
global). However, early termination in the scoring phase can be
improved by finding the distance from the furthermost point in the
geospatial dataset to current query location `q , and using this dis-
tance as dmax (GEOWAND-local). The smaller dmax is, the quicker �
will converge to 0.

Next, the textual contribution for each term in cpivot is refined.
The upper bound U [t] for each term is iteratively substituted for
the true textual score �t of the term in Lines 2.12 � 2.15. If the
refined score of the candidate document is less than ✓ at any stage
of this iteration, the document cannot make it into the heap, and
execution is returned to the candidate generation loop.

The primary difference between WAND and GEOWAND is that GE-
OWAND must also compute the spatial relevance dynamically. The
scoring operation that occurs for each candidate document is also
slightly more complex. WAND must only score the textual relevancy,
whereas GEOWAND must compute the normalized sum of both the
textual and spatial scores before determining if the candidate docu-
ment can be added to the top-k heap. As ↵ approaches 0, GEOWAND
reduces to WAND. To facilitate spatial scoring, a simple vector of
coordinates indexed by document id can be used to store location
data. Then, the coordinates are used to compute the normalized
distance score for each candidate document that must be scored.

4. EXPERIMENTS
Experimental Setup. All experiments were executed on a 24-
core Intel Xeon E5-2630 with 256 GB of RAM hosting RedHat
RHEL-v6.3. Postings lists were generated using Indri, stopping,
and Krovetz stemming. Each posting list was then extracted, com-
pressed, and stored in blocks of 128 entries using the FastPFOR
library [19] to support skipping. For ranking, a WAND-based vari-
ant of BM25 was used with with k1 = 0.9 and b = 0.4. 2 All

1The observation that text scoring can be incrementally refined was
originally made by Gog and Petri [17]. Here we extend this idea to
improve pruning for non-textual features.
2The values for b and k1 are different than the defaults reported
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Spatial datasets

• WIKIGEO – 1 Million Geotagged Documents (9 GB Uncompressed)

• CW09BGEO – 24 Million Geotagged Documents (230 GB Uncompressed)
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Collection Creation

• Used a combination of the GeoNames gazetteer and the Freebase
annotations for the ClueWeb Corpora.

• We also used the TREC Freebase parse of the Million query track.
• If multiple locations were found in a document, we used the first

one.
• If multiple locations were in a query, we replicated the query, once

for each location.
• For documents, many were clustered on one exact location (New

York). So, we also did location fuzzing where we randomly added
a very small epsilon to the Latitude / Longitude coordinates.

• This produced 24 million unique, geotagged documents, and
5,315 geotagged queries.

• A subset of the main collection was created by taking the first
million documents that were ordered by spam score, many of
which turned out to be Wikipedia documents.
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Systems Evaluated

System Abbreviation

Standard WAND (text only) W
GeoWAND G-W
IR-Tree IR
R*-Tree (knn queries) W-R*
kd-Tree (knn queries) W-kd
R*-Tree (1km MBR queries) MBR-1
R*-Tree (10km MBR queries) MBR-10
R*-Tree (100km MBR queries) MBR-100

Table: System configurations in all experiments. The W-R*, W-kd, and MBR-k
methods all use WAND over an inverted index to rank queries once the spatial
filtering has finished. The W-R* and W-kd methods retrieve the 2.5× k
closest documents before reording.
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Experiment - WIKIGEO Performance
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Figure 3: A comparison of the space usage for a GEOWAND inverted
index, a loosely coupled WAND inverted index combined with an
R-Tree and k-d-Tree, and IR-Tree of varying fanouts. The space
difference between the different WAND and GEOWAND indexes is
negligible.
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Figure 4: The mean running time per query as a function of k for all
query type and index combinations on the WIKIGEO dataset, with
↵ = 0.5.

the total size of the original uncompressed document collection
is around 9 GB. So the space overhead for the IR-Tree is signifi-
cant, approaching 2x the size of the original collection. In fact, the
space overhead for the IR-Tree is so substantial, we were unable to
construct the index for the full CW09BGEO collection. It is clear
that more focus should be placed on using well known methods
for text indexing and compression in future hybrid indexing exper-
imental comparisons, as the current methods are neither scalable
nor friendly to in-memory traversal.

Figure 4 shows the average processing time per query for k =
10, 100, and 1,000. Note that the MBR and knn filtering meth-
ods MBR-1, MBR-10, MBR-100, W-R*, and W-kd are not rank-safe.
So, despite the clear efficiency advantages, some loss of effective-
ness does occur. Effectiveness will be explored further in the next
section. The IR-Tree (IR) and GEOWAND (G-W) methods are both
safe-to-k. We can see that the efficiency gap between GEOWAND
and IR-Tree grows as k increases. At k = 1,000, there is an or-
der of magnitude difference between the running time of the two
algorithms.

As we saw in Figure 4, the hybrid IR-Tree index is less efficient
than all of other approaches we tested, and the performance gap
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Figure 5: The cumulative number of branches evaluated for the IR-
Tree traversal for ↵ = 0.5 on the WIKIGEO collection. The greedy
search must search many more nodes as k increases, which results
in a significant increase in the number of cache misses incurred
when walking the tree.

grows with respect to k. To better understand why the algorithm
performed so poorly, we computed the number of branches in the
IR-Tree that must be evaluated to determine the final top-k list. Fig-
ure 5 shows the number of branches as a function of k and queries
processed. We can see that the number of branches traversed is
significant for values of k greater than 1,000, which are commonly
used in multi-stage retrieval scenarios.

So, despite several previous papers reporting that IR-Tree is an at-
tractive time and space trade-off for top-k knn queries, our exper-
iments do not reach the same conclusion. The IR-Tree does not ap-
pear to be a competitive search algorithm for in-memory location-
aware search in large text databases. It should be re-iterated that
prior experimental studies of the IR-Tree reported times that were
disk-based and not memory resident, and the textual objects were
considerably smaller than the documents in our collection. So, the
poor performance we have observed could be an artifact of the
problem we are trying to solve, which may not match the origi-
nal intent. Since we are unable to construct the IR-Tree index on
larger datasets, and the performance is not competitive, we do not
consider it further in the following sections.

Filter Effectiveness. We now turn our attention to RQ2, and the
effectiveness of the filter-based queries. Recall that two major types
of queries dominate the literature for location-aware search – range
and knn spatial-textual queries. Both of these query types can be
processed conjunctively or disjunctively. Here we focus on only
bag-of-words disjunctive top-k querying.

As shown in Figure 4, filtered range queries are efficient, but
there is inevitably some loss in effectiveness. This is due to the
diversity in queries that are observed in large query streams. Some
queries cover very densely populated areas, while other query lo-
cations may originate in sparsely populated areas. However, many
potential documents close to the query origin do not guarantee that
these documents also match the keywords in the query. The high-
est scoring documents for the combined textual-spatial score could
be just outside of the MBR range which is fixed at query time.
This makes automatically bounding the size of the MBR difficult
in practice.

Table 3 shows the Maximum Expected Difference (MED) for
two common utility-based effectiveness metrics, ERR and RBP.
For both metrics, we see that the effectiveness loss for all of the
filtering methods is substantial when compared to a rank-safe knn
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Experiment - WIKIGEO Index Size
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Figure 3: A comparison of the space usage for a GEOWAND inverted
index, a loosely coupled WAND inverted index combined with an
R-Tree and k-d-Tree, and IR-Tree of varying fanouts. The space
difference between the different WAND and GEOWAND indexes is
negligible.
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Figure 4: The mean running time per query as a function of k for all
query type and index combinations on the WIKIGEO dataset, with
↵ = 0.5.

the total size of the original uncompressed document collection
is around 9 GB. So the space overhead for the IR-Tree is signifi-
cant, approaching 2x the size of the original collection. In fact, the
space overhead for the IR-Tree is so substantial, we were unable to
construct the index for the full CW09BGEO collection. It is clear
that more focus should be placed on using well known methods
for text indexing and compression in future hybrid indexing exper-
imental comparisons, as the current methods are neither scalable
nor friendly to in-memory traversal.

Figure 4 shows the average processing time per query for k =
10, 100, and 1,000. Note that the MBR and knn filtering meth-
ods MBR-1, MBR-10, MBR-100, W-R*, and W-kd are not rank-safe.
So, despite the clear efficiency advantages, some loss of effective-
ness does occur. Effectiveness will be explored further in the next
section. The IR-Tree (IR) and GEOWAND (G-W) methods are both
safe-to-k. We can see that the efficiency gap between GEOWAND
and IR-Tree grows as k increases. At k = 1,000, there is an or-
der of magnitude difference between the running time of the two
algorithms.

As we saw in Figure 4, the hybrid IR-Tree index is less efficient
than all of other approaches we tested, and the performance gap
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Figure 5: The cumulative number of branches evaluated for the IR-
Tree traversal for ↵ = 0.5 on the WIKIGEO collection. The greedy
search must search many more nodes as k increases, which results
in a significant increase in the number of cache misses incurred
when walking the tree.

grows with respect to k. To better understand why the algorithm
performed so poorly, we computed the number of branches in the
IR-Tree that must be evaluated to determine the final top-k list. Fig-
ure 5 shows the number of branches as a function of k and queries
processed. We can see that the number of branches traversed is
significant for values of k greater than 1,000, which are commonly
used in multi-stage retrieval scenarios.

So, despite several previous papers reporting that IR-Tree is an at-
tractive time and space trade-off for top-k knn queries, our exper-
iments do not reach the same conclusion. The IR-Tree does not ap-
pear to be a competitive search algorithm for in-memory location-
aware search in large text databases. It should be re-iterated that
prior experimental studies of the IR-Tree reported times that were
disk-based and not memory resident, and the textual objects were
considerably smaller than the documents in our collection. So, the
poor performance we have observed could be an artifact of the
problem we are trying to solve, which may not match the origi-
nal intent. Since we are unable to construct the IR-Tree index on
larger datasets, and the performance is not competitive, we do not
consider it further in the following sections.

Filter Effectiveness. We now turn our attention to RQ2, and the
effectiveness of the filter-based queries. Recall that two major types
of queries dominate the literature for location-aware search – range
and knn spatial-textual queries. Both of these query types can be
processed conjunctively or disjunctively. Here we focus on only
bag-of-words disjunctive top-k querying.

As shown in Figure 4, filtered range queries are efficient, but
there is inevitably some loss in effectiveness. This is due to the
diversity in queries that are observed in large query streams. Some
queries cover very densely populated areas, while other query lo-
cations may originate in sparsely populated areas. However, many
potential documents close to the query origin do not guarantee that
these documents also match the keywords in the query. The high-
est scoring documents for the combined textual-spatial score could
be just outside of the MBR range which is fixed at query time.
This makes automatically bounding the size of the MBR difficult
in practice.

Table 3 shows the Maximum Expected Difference (MED) for
two common utility-based effectiveness metrics, ERR and RBP.
For both metrics, we see that the effectiveness loss for all of the
filtering methods is substantial when compared to a rank-safe knn
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Experiment - Tree Traversal
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Figure 3: A comparison of the space usage for a GEOWAND inverted
index, a loosely coupled WAND inverted index combined with an
R-Tree and k-d-Tree, and IR-Tree of varying fanouts. The space
difference between the different WAND and GEOWAND indexes is
negligible.
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Figure 4: The mean running time per query as a function of k for all
query type and index combinations on the WIKIGEO dataset, with
↵ = 0.5.

the total size of the original uncompressed document collection
is around 9 GB. So the space overhead for the IR-Tree is signifi-
cant, approaching 2x the size of the original collection. In fact, the
space overhead for the IR-Tree is so substantial, we were unable to
construct the index for the full CW09BGEO collection. It is clear
that more focus should be placed on using well known methods
for text indexing and compression in future hybrid indexing exper-
imental comparisons, as the current methods are neither scalable
nor friendly to in-memory traversal.

Figure 4 shows the average processing time per query for k =
10, 100, and 1,000. Note that the MBR and knn filtering meth-
ods MBR-1, MBR-10, MBR-100, W-R*, and W-kd are not rank-safe.
So, despite the clear efficiency advantages, some loss of effective-
ness does occur. Effectiveness will be explored further in the next
section. The IR-Tree (IR) and GEOWAND (G-W) methods are both
safe-to-k. We can see that the efficiency gap between GEOWAND
and IR-Tree grows as k increases. At k = 1,000, there is an or-
der of magnitude difference between the running time of the two
algorithms.

As we saw in Figure 4, the hybrid IR-Tree index is less efficient
than all of other approaches we tested, and the performance gap

0

100

200

300

0 2000 4000
No. queries

M
ill

io
n
s 

o
f 
b
ra

n
ch

e
s 

se
a
rc

h
e
d 10

100
1000
10000

Figure 5: The cumulative number of branches evaluated for the IR-
Tree traversal for ↵ = 0.5 on the WIKIGEO collection. The greedy
search must search many more nodes as k increases, which results
in a significant increase in the number of cache misses incurred
when walking the tree.

grows with respect to k. To better understand why the algorithm
performed so poorly, we computed the number of branches in the
IR-Tree that must be evaluated to determine the final top-k list. Fig-
ure 5 shows the number of branches as a function of k and queries
processed. We can see that the number of branches traversed is
significant for values of k greater than 1,000, which are commonly
used in multi-stage retrieval scenarios.

So, despite several previous papers reporting that IR-Tree is an at-
tractive time and space trade-off for top-k knn queries, our exper-
iments do not reach the same conclusion. The IR-Tree does not ap-
pear to be a competitive search algorithm for in-memory location-
aware search in large text databases. It should be re-iterated that
prior experimental studies of the IR-Tree reported times that were
disk-based and not memory resident, and the textual objects were
considerably smaller than the documents in our collection. So, the
poor performance we have observed could be an artifact of the
problem we are trying to solve, which may not match the origi-
nal intent. Since we are unable to construct the IR-Tree index on
larger datasets, and the performance is not competitive, we do not
consider it further in the following sections.

Filter Effectiveness. We now turn our attention to RQ2, and the
effectiveness of the filter-based queries. Recall that two major types
of queries dominate the literature for location-aware search – range
and knn spatial-textual queries. Both of these query types can be
processed conjunctively or disjunctively. Here we focus on only
bag-of-words disjunctive top-k querying.

As shown in Figure 4, filtered range queries are efficient, but
there is inevitably some loss in effectiveness. This is due to the
diversity in queries that are observed in large query streams. Some
queries cover very densely populated areas, while other query lo-
cations may originate in sparsely populated areas. However, many
potential documents close to the query origin do not guarantee that
these documents also match the keywords in the query. The high-
est scoring documents for the combined textual-spatial score could
be just outside of the MBR range which is fixed at query time.
This makes automatically bounding the size of the MBR difficult
in practice.

Table 3 shows the Maximum Expected Difference (MED) for
two common utility-based effectiveness metrics, ERR and RBP.
For both metrics, we see that the effectiveness loss for all of the
filtering methods is substantial when compared to a rank-safe knn
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WIKIGEO Summary

• The IR-Tree can use up to 2 times the space of the uncompressed
collection.

• A WAND-based approach is around 20% of the size of the
uncompressed collection.

• So, there is an order of magnitude difference in space usage
between the two approaches.

• To be fair, the IR-Tree was designed to be ran on-disk, and object
sizes are often much smaller than web documents.

• The vocabularies are therefore much smaller, and the pseudo
nodes can be made smaller by reading only terms for the current
query into memory at processing time.

• We were unable to build the IR-Tree on the full CW09BGEO

collection.
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Effectiveness

↵ MBRF MBRF MBRF KNNF KNNF KNNF
1 km 10 km 100 km k = 10 k = 100 k = 1000

MEDRBP0.95

0.2 0.7164 0.6978 0.6601 0.9947 0.9936 0.9703
0.5 0.5991 0.5746 0.5246 0.9921 0.9902 0.9551
0.8 0.4412 0.4085 0.3432 0.9880 0.9849 0.9319

MEDERR@20

0.2 0.6844 0.6646 0.6264 0.9655 0.8892 0.8746
0.5 0.5589 0.5332 0.4825 0.9473 0.8354 0.8149
0.8 0.4021 0.3682 0.3042 0.9220 0.7625 0.7406

Table 3: The Maximum Expected Difference (MED) as measured
with MEDRBP0.95 and MEDERR@20. A MED value less than 0.2 is
considered negligible. The higher the value, the more likely there
is a noticeable effectiveness difference.

For both metrics, we see that the effectiveness loss for all of the
filtering methods is substantial when compared to a rank-safe knn
approach. When comparing the MBR Range Query methods, we
see two important trends. First, the overall effectiveness is never
less than 0.2, even when the queries are heavily biased towards
the spatial score. This is largely an artifact of query diversity.
Some queries have many thousands of potential documents that fall
within the query range, while other queries have only a few. Even
when there are many potential documents, there is no guarantee
that the documents contain the keywords with the highest impact.
Even fewer would be conjunctive Boolean matches.

The second important trend is that the Range queries tend to per-
form better than the loosely coupled knn query approach, even
with a conservative k0 of 2.5 ⇥ k. This is because it is even less
likely that the documents very close to a query are textually relevant
in a dense document region.

These two observations further strengthen our belief that rank-
safe scoring methods such as GEOWAND are in fact the simplest and
most intuitive approach to ranking documents with more than one
type of weighting constraint. The importance of location can be
easily determined independent of locational document clustering.

The virtues of GEOWAND. So, GEOWAND has a few clear ad-
vantages over any of the filtered range query approaches evaluated.
Firstly, GEOWAND allows a user to submit a location-aware query
without the need to input any distance parameters. Clearly, this is
more intuitive than using the knn or MBR filters, in which a k0

or MBR size must be selected by the user or decided a priori by
the retrieval system. The obvious caveat here is that the ↵ normal-
ization must be carefully selected in order to provide the correct
spatial and textual relevancy levels. Secondly, GEOWAND can be
applied to an existing index without much effort. Reindexing is not
necessary, and the only addition that must be made to the system
is an efficient representation of the document locations. Thirdly,
a GEOWAND index can be used to service standard textual queries
without a loss of runtime efficiency or effectiveness compared to a
plain WAND index. Finally, GEOWAND scales similarly to WAND, so
it can be applied to much larger indexes efficiently. Figure 6 shows
the relative efficiency of filter-based and GEOWAND approaches on
a much larger collection. We can also see the additional cost of GE-
OWAND over WAND, and the scalability of the various approaches.

Figure 7 shows the number of postings examined for both GE-
OWAND methods. Clearly GEOWAND benefits from the dynamic re-
finement of the spatial bound when dmax is query specific. This en-
hancement results in fewer candidate documents being fully scored
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Figure 6: A comparison of the time with respect to k for filtering
and GEOWAND systems on the CW09BGEO dataset. Note that ↵ =
0.5 in this experiment, and that W represents a standard textual
WAND timing run across the textual query only.

since � decreases faster as the distance between the document and
the query increases. We hypothesize that the efficiency could be
improved further by reordering the documents spatially.

Figure 8 shows the effectiveness and efficiency trade-offs for all
of the algorithms examined with the CW09BGEO dataset. Clearly,
there is a tension between efficiency and effectiveness for the meth-
ods tested. The knn filters provide fast but less relevant results.
The MBR filter is less efficient, but finds more relevant results. The
larger the MBR, the more documents on average must be scored,
but with improved overall effectiveness. With the knn filter, as k0

increases, the results would become closer to those of GEOWAND,
but efficiency would continue to tail off. The IR-Tree would deliver
the same results as GEOWAND but less efficiently.

5. CONCLUSION
In this paper, we have explored the efficiency and effectiveness

trade-offs for knn and range-based location-aware search queries
(RQ2). Our experimental study has shown that while range-based
queries are fast, the effectiveness of the queries are dependent on
the spatial properties of the queries and the collection. On the other
hand, safe-to-k methods derived from top-k knn spatial-textual
queries are capable of finding relevant documents regardless of the
collection properties.

We have also presented a variation of the WAND processing algo-
rithm called GEOWAND which is easy to implement, efficient, and
scalable. This algorithm provides an attractive trade-off for pro-
cessing location-aware queries, and provides a suitable answer to
RQ1. GEOWAND is an order of magnitude faster than a tightly cou-
pled IR-Tree index, and up to 15 to 20 times smaller. Note that
one important optimization was not explored in this work – docu-
ment reordering based on location. Using space filling curves or
similar approaches has been shown to further improve efficiency
in location-aware search. We believe these efficiency gains are or-
thogonal to our experiments as all of the approaches tested would
benefit in a similar manner from this enhancement, including GE-
OWAND. We intend to explore these and other enhancements in fu-
ture work.
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Summary, Limitations, and Future Work

• GEOWAND is simple to implement, rank-safe, and efficient. We
believe users like things as simple as possible.

• The efficiency of all of the methods can be improved by reordering
documents in the collection using a Space Filling Curve.

• It is not clear how to use document reordering when documents
and/or queries have multiple locations.

• Our data set is synthetic. No good publicly available test
collections exist for experiments on location-aware search. We are
talking to industry partners about this problem now.

• No relevance judgments are available, so we do not have good
tools to evaluate new ranking algorithms combining non-textual
features.

• Location is one of many important non-textual features that can be
used for ranking.
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Questions?
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