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Research Agenda

Efficient, Scalable Algorithm Design

© Create new algorithms and data representations to support
efficient query processing (verbose queries).

® Extend and refine in-memory indexing algorithms to support
parallel, distributed, and dynamic indexing of massive data sets
more efficiently.

©® Explore efficiency and effectiveness trade-offs in large scale
search algorithms.

@ Investigate new approaches to combining structured and
unstructured search.

@ Develop and understand IR evaluation best practices.
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Interesting Facts

© Energy costs can now exceed hardware costs in many “big data”
applications.

® Every 100 ms boost in search speed increases revenue by 0.6%
at Bing.f

® Commodity computer systems can now support over 1 TB RAM

and 40+ CPU cores in a single machine, but trends in practical
algorithmic design have not mirrored these advances.

TR. Kohavi, A. Deng, B. Frasca, T. Walker, Y. Xu, and N. Pohimann: “Online controlled experiments at large scale.” In Proc. KDD,
pages 1168-1176, 2013.
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State-of-the-Art in GOV2
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Data from the RIGOR Workshop at SIGIR 2015. All systems are ran on a
single EC2 instance using the TREC GOV2 collection with queries 701-850.
More at http://github.com/lintool/IR-Reproducibility.
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http://github.com/lintool/IR-Reproducibility

Multi-Stage Retrieval

Bing — Sequence of select,
/\ rank, prune steps

L4 (10" Docs)
e LO Boolean Logic
L3 (10° Docs) e L1 BOW IR Scoring

e L2/L3/L4 Learning to
Rank

L2 Reranking (10° Documents)

1. Burges et al. “Learning to Rank Using Gradient
; H 10 Descent.” In ICML 2005.
LO/L1 Matching/Ranking (107" Documents) 2. Jan Pedersen: “Query Understanding at Bing.” SlI-
GIR Industry Keynote, 2010.
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The Inverted Index
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Processing Regimes for Inverted Lists

e Score-safe processing guarantees that an identical top-k
ordering will occur for a given set ranking metric.
e MAXSCORE
e WAND
e BLOCK-MAX

o Heuristic processing approximates the true top-% list.

e STOP and CONTINUE
e SCORE-AT-A-TIME / impact ordered indexing
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The WAND operator

Weak AND, or Weighted AND — WAND

Given a list of Boolean variables X, X,, ..., X; and a list of associated
positive weights, w,,w., ...,w; and a threshold 6,
WAND(Xy, wy, ..., Xz, wy, 6) is true iff

Z Tiw; > 0,

1<i<t

where z; is the indicator variable for X;, that is

0 otherwise.

{ 1 if X; is true
Xr; =

A. Z. Broder, D. Carmel, H. Herscovici, A. Soffer, and J. Zien: “Efficient query evaluation using a two-level retrieval process.” In
Proc. CIKM, pages 426—434, 2003.
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The WAND operator

Z Ui>9

1<i<t

e Assume the U, is the maximum score a term t € ¢ can contribute
in an additive scoring regime.

e If we set 6 to the current score of the k-th smallest item in a heap
of k items, only items that might be able to enter the heap will ever
be scored.

o |f we set 6 = oo, then only the first k items evaluated can ever
enter the heap.

¢ By varying the threshold, WAND can move from being close to an
OR operation to being close to an AND operation.
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How to use WAND (Sketch)

Index Time:
@ Pick an additive ranking metric and build a document ordered inverted index.

@® For each inverted list, pre-calculate a value U; which represents the maximum
contribution term ¢ can have for that scoring metric.

Query Time:
@ Perform a standard document-at-a-time traversal with one twist.
® Set a finger pointing to the first unevaluated document in each list.

@® Set the term processing order of the lists using the document id — smallest to
largest.

@ While the sum of the U, values are less than ¢ step to the next list.

©® As soon as we exceed 6, the document ID in the current list is selected as the
pivot.

@ A finger search is initiated for all lists evaluated before the pivot, and the current
pivot document ID is scored if all of the previous list document IDs match the
pivot.

@ |f the real document score exceeds the minimum value in a & heap, it is added to
the heap, and 6 is set to the new minimum heap score.
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WAND in action

Term U, Inverted Lists
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BM-WAND in action

Term U B, Inverted Lists (Blocks of 64 Items)
counterfeiting 19] (22) |23 i 1 EX 05 | |
korean 4.3 1.2 Io.2 :Qg)i |4.3
north 18| |14 18] JIER 11] (o5) |

MinHeap
of size k

0=45<23+43

2. S. Ding and T. Suel: “Faster top-k retrieval using block-max indexes.” In Proc. SIGIR, pages 993-1002, 2011.
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Motivation for this Work

o Recent talks at SIGIR and CIKM have highlighted the fact that the
number of mobile searches have surpassed the number of
desktop searches in all of the major search engines.

e For mobile searches, more than 50% of all queries have local
intent.

e Leveraging GPS data for search is now a key feature in mobile
applications.

e We know that the interaction between 10s or even 100s of
features improves effectiveness. There is value in studying
important features in isolation to better understand when and
where they work best.
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Spatial-Textual Queries

Two common spatial queries:
¢ Range query — Given a location p and a maximum travel
distance, a range query returns all items whose location fall within
that distance from p. An example of a spatial range query is when
a user wants to find all of the petrol stations within 5 km of their
current location.

o KNN query — Given a specific location p, the query returns the k
items closest to p.

Two common textual queries:
e Conjunctive Boolean (AND) query — Given a set of query terms
ty ... 1g , return all documents containing all terms.

¢ Disjunctive Boolean (OR) query — Given a set of query terms
ty ... 1g , return all documents containing any of the terms.

Shane Culpepper (RMIT) Efficient Location-aware Web Search November 9th, 2015 14/32



Research Questions

Research Question 1: Which indexing approaches provide the best
efficiency trade-offs for bag-of-words, top-k knn search in large
document collections?

Research Question 2: What are the efficiency and effectiveness
trade-offs for the two most common spatially constrained query types
when applied to bag-of-words, location-aware search?
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Approach Overview

¢ Filter-based Methods — Apply a spatial filter (KNN or MBR) to
identify a subset of candidate documents. Reorder the documents
using a textual similarity function to get the final top-k document
list.
e Use an R-Tree to do efficient range filtering.
e Use a KD-Tree or an R*-Tree to do efficient KNN filtering.
e Score the filter set using BM25 or any TF-IDF ranking metric.

e Top-k KNN Methods — Score the top-k documents in a single
pass using both components to prune to search space.

e Use a hybrid index such as an IR-Tree.
e Use an augmented inverted index.
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IR Tree

document summaries
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Fig. 4. An example IR-tree. (a) IR-tree content. (b) Node MBBs.

G. Cong, C. S. Jensen, and D. Wu: “Efficient retrieval of the top-k most relevant spatial web objects.” PVLDB, 2(1):337348, Aug.
2009.

Z.Li, K. C. K. Lee, B. Zheng, W.-C. Lee, D. Lee, and X. Wang: “IR-tree: An efficient index for geographic document search.”
TKDE, 23(4):585599, Apr. 2011.
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Combining Text and Spatial Similarity

Spatial-Textual Ranking

Given a spatial-textual query g and a document d, the spatial-textual
similarity can be computed as:

S(g,¢) =a-B(lg,lg) + (1 —a)- 27’

where 3({q, {y) is the spatial similarity, +; is the textual similarity, and
a € (0,1) is a parameter that can be used to add weight the
importance of the two components.

o Bllg, lg) = (1 — Bl ata)y 5~ U(y)

dmax

¢ In this work, 7; is the BM25 ranking function. However, any TF-IDF
scoring function could be used.

e This is referred to as a top-k knn query.
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GEOWAND Algorithm

Algorithm 2: WAND processing with geospatial weights, re-
placing steps 10-21 in Algorithm 1 of Petri et al. [23].

2.1 text_limit <— 0; spatial_limit < O; pivot <— 0
22 while pivot < |g| — 1 do

23 text_limit < text_limit + (1 — o) - Ulpivor]

24 spatial_limit < spatial_limit + o - Ulpivot]

2.5 if text_limit + spatial_limit > 6 then

2.6 s < text_limit + spatial_limit

27 break, and continue from Step 2.9.

238 pivot < pivot + 1

29 if co = cpivor then

2.10 t<+0

211 s < s — spatial_limit + o - B(€q, Lyiver)

2.12 while ¢ < |g| — 1 and cp = ¢pives dO

213 s—s—(1—a) U]+ (1—a) -1

2.14 if s < 6 then

215 \ break, and reset all pointers to Cpivor 4 1.

2.16 > Update heap and € . . . remaining computation similar to the
approach described in Algorithm 1 of of Petri et al. [23].
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Spatial datasets

e Documents
e Queries

e WIKIGEO — 1 Million Geotagged Documents (9 GB Uncompressed)
e CWO09BGEO — 24 Million Geotagged Documents (230 GB Uncompressed)
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Collection Creation

Used a combination of the GeoNames gazetteer and the Freebase
annotations for the ClueWeb Corpora.

We also used the TREC Freebase parse of the Million query track.
If multiple locations were found in a document, we used the first
one.

If multiple locations were in a query, we replicated the query, once
for each location.

For documents, many were clustered on one exact location (New
York). So, we also did location fuzzing where we randomly added
a very small epsilon to the Latitude / Longitude coordinates.

This produced 24 million unique, geotagged documents, and
5,315 geotagged queries.

A subset of the main collection was created by taking the first
million documents that were ordered by spam score, many of
which turned out to be Wikipedia documents.
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Systems Evaluated

System Abbreviation
Standard WAND (text only) w
GeoWAND G-W

IR-Tree IR

R*-Tree (knn queries) W-R*
kd-Tree (knn queries) W-kd

R*-Tree (10km MBR queries) MBR-10

(
(
R*-Tree (1km MBR queries) MBR-1
(
R*-Tree (100km MBR queries) MBR-100

Table: System configurations in all experiments. The W-R*, W-kd, and MBR-k
methods all use WAND over an inverted index to rank queries once the spatial
filtering has finished. The W-R* and W-kd methods retrieve the 2.5 x k
closest documents before reording.
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Experiment - WIKIGEO Performance

© E3IMBR-1
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Figure 4: The mean running time per query as a function of & for all

query type and index combinations on the WIKIGEO dataset, with
a = 0.5.
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Experiment - WIKIGEO Index Size
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Figure 3: A comparison of the space usage for a GEOWAND inverted
index, a loosely coupled WAND inverted index combined with an
R-Tree and k-d-Tree, and IR-Tree of varying fanouts. The space
difference between the different WAND and GEOWAND indexes is
negligible.
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Experiment - Tree Traversal
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Figure 5: The cumulative number of branches evaluated for the IR-
Tree traversal for « = 0.5 on the WIKIGEO collection. The greedy
search must search many more nodes as k increases, which results
in a significant increase in the number of cache misses incurred
when walking the tree.
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WIKIGEO Summary

e The IR-Tree can use up to 2 times the space of the uncompressed
collection.

e A WAND-based approach is around 20% of the size of the
uncompressed collection.

e So, there is an order of magnitude difference in space usage
between the two approaches.

¢ To be fair, the IR-Tree was designed to be ran on-disk, and object
sizes are often much smaller than web documents.

e The vocabularies are therefore much smaller, and the pseudo
nodes can be made smaller by reading only terms for the current
query into memory at processing time.

e We were unable to build the IR-Tree on the full CW09BGEO
collection.
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Effectiveness

a MBRF MBRF MBRF  KNNF KNNF KNNF
1 km 10km 100km k=10 k=100 k= 1000

MEDRrgpo.95
0.2 0.7164 0.6978  0.6601 0.9947 0.9936 0.9703
0.5 05991 0.5746  0.5246 0.9921 0.9902 0.9551
0.8 04412 0.4085 0.3432 0.9880 0.9849 0.9319
MEDEgrra20

02 0.6844 0.6646 0.6264  0.9655 0.8892 0.8746
0.5 05589 0.5332 0.4825  0.9473 0.8354 0.8149
0.8 04021 0.3682 03042  0.9220 0.7625 0.7406

Table 3: The Maximum Expected Difference (MED) as measured
with MEDRggpo.os and MEDgrra20. A MED value less than 0.2 is
considered negligible. The higher the value, the more likely there
is a noticeable effectiveness difference.
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Efficiency vs Effectiveness

System
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Figure 8: Effectiveness versus Efficiency for the CW09BGEO col-
lection for oo = 0.8.

Shane Culpepper (RMIT) Efficient Location-aware Web Search November 9th, 2015



Summary, Limitations, and Future Work

e GEOWAND is simple to implement, rank-safe, and efficient. We
believe users like things as simple as possible.

e The efficiency of all of the methods can be improved by reordering
documents in the collection using a Space Filling Curve.

¢ |t is not clear how to use document reordering when documents
and/or queries have multiple locations.

e Our data set is synthetic. No good publicly available test
collections exist for experiments on location-aware search. We are
talking to industry partners about this problem now.

¢ No relevance judgments are available, so we do not have good
tools to evaluate new ranking algorithms combining non-textual
features.

e Location is one of many important non-textual features that can be
used for ranking.
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Questions?
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